基于植物纤维及其组分的水凝胶合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物纤维是储量丰富、可再生的天然高分子化合物,具有良好的生物相容性和生物降解性能、无毒性的特点。利用可再生的植物纤维开发生产可降解性的高分子材料,实现植物纤维生物质原料在高分子材料领域对石油原料的有效替代,对于缓解能源危机、保护环境,具有重要意义。本研究用不同的方法制备了多种水凝胶。即,以羟乙基纤维素为原料,分别采用接枝共聚和交联剂交联的方法制备羟乙基纤维素基的水凝胶;以甘蔗渣在多元醇中的液化产物和乙酸木质素为原料分别制备对pH敏感的聚氨酯基水凝胶。
     甲基丙烯酸羟乙酯单封端的2,4-甲苯二异氰酸酯改性的羟乙基纤维素与N-异丙基丙烯酰胺接枝共聚制备温敏性水凝胶。扫描电镜表明冷冻干燥的凝胶断面具有多孔的结构。DSC分析的结果表明,水凝胶的低临界共溶温度(LCST)随着凝胶中羟乙基纤维素的含量的增加而升高。当羟乙基纤维素与N-异丙基丙烯酰胺的比例分别为1:2,1:3,1:4时,制备的水凝胶的LCST分别在46℃、40℃、36℃附近。当温度高于水凝胶的LCST时,凝胶收缩;当温度低于凝胶的LCST时,凝胶溶胀。水凝胶对药物模型物(亚甲基蓝和甲基橙)表现明显的缓释性能。
     柠檬酸和羟乙基纤维素的混合溶液通过加热脱水,再加热交联制备羟乙基纤维素水凝胶膜。随柠檬酸用量的增加,羟乙基纤维素水凝胶膜的吸水溶胀率降低,拉伸强度增大,断裂伸长率降低。柠檬酸的用量为羟乙基纤维素的20%制备的水凝胶膜,其吸水溶胀率为5.8,在pH为6.86的缓冲溶液中达溶胀平衡的时间为8h;当膜的溶胀率为0.05~0.10和0.40~0.50时,其拉伸强度分别为1.74MPa和0.13MPa,断裂伸长率分别为24.12%和66.05%。
     柠檬酸和羟乙基纤维素的混合溶液通过冷冻干燥脱水,再加热交联制备多孔水凝胶。水凝胶的孔道尺寸随水的用量的增加而增大。溶胀实验数据表明,多孔水凝胶具有快速的溶胀速率。水凝胶的多孔结构有利于蛋白质、亚甲基蓝在凝胶内部扩散,从而增加其吸附量。当柠檬酸、羟乙基纤维素和水的质量比为1:5:150时,制备的多孔水凝胶的溶胀率为18.5,在pH为6.86的缓冲溶液中达溶胀平衡的时间为2min,水凝胶对牛血清蛋白和亚甲基蓝的吸附量分别为15.7mg/g和7.63mg/g。
     异氰酸酯封端的聚氨酯离子聚合物交联乙酸木质素合成pH敏感的木质素-聚氨酯基水凝胶。凝胶的溶胀率随pH的增加而增大。当木质素用量为30%时,水凝胶在pH为6.86的缓冲溶液中的溶胀率最大为3.14。热重分析结果表明向聚氨酯水凝胶中引入木质素,可以提高凝胶的热稳定性。木质素-聚氨酯水凝胶包裹的硫酸铵表现出明显的缓释特征。
     甘蔗渣在PEG-400和甘油的混合试剂中的液化产物合成的端烯基聚氨酯离子聚合物通过自由基反应合成pH敏感的聚氨酯基水凝胶。聚氨酯离子聚合物通过亲水链段和疏水链段的相互作用形成了具有核-壳结构的乳液,由于液化产物中木质素的疏水作用,增大了聚氨酯离子聚合物的微相分离程度。DSC分析结果表明,含有甘蔗渣液化产物的聚氨酯水凝胶溶胀后,其中的可冻结水全部是自由水。溶胀实验表明,含有甘蔗渣液化产物的聚氨酯水凝胶具有pH和离子敏感性。对铜离子的吸附实验表明,含有甘蔗渣液化产物的聚氨酯水凝胶有望应用于金属离子的分离富集。
As one of the most abundant natural polymers, lignocellulosic fiber has attracted much attention due to its unique advantages of biocompatibility, biodegrability and non-toxicity. The conversion of lignocellulosic fiber into a new source of raw materials for preparing degradable polymer materials is of great importance to protect the environment and save the fossil resources. In this work, hydrogels were prepared by graft copolymerization and chemical crosslinking of hydroxyethyl cellulose (HEC), respectively. pH-sensitive polyurethane- based hydrogels were synthesized from acetic acid lignin and the liquefaction products of bagasse in polyhydric alcohols,.
     An isocyanate-bearing unsaturated monomer (MHTI) was synthesized by the monobloking reaction of 2,4-toluene diisocyanate with 2-hydroxyethyl methacrylate. The temperature-sensitive hydrogels were prepared by the copolymerization of N-isopropylacrylamide (NIPPAm) and modified hydroxyethyl cellulose with MHTI. The results of DSC analysis revealed that the low critical solution temperature (LCST) of hydrogels was enhanced by the introduction of HEC. SEM images suggested that the cross-section of freeze-dried hydrogels was porous. The LCST of the hydrogels prepared with the mass ratio of MHEC/MNIPPAm: 1:2, 1:3, 1:4, was approximately 46℃, 40℃, 36℃respectively. The hydrogels were negatively thenmosensitive, shrank in water above the LCST and swelled in water below the LCST. The data of adsorption and release experiments for the model drug (methylene blue and methyl orange) suggest that the controlled drug release can be achieved.
     Hydrogels film was prepared from HEC using citric acid as a cross-linker. As the citric acid dosages increase, the swell ratio and elongation of film at break decrease, tensile strength of film increase. When the hydrogel film was prepared with the citric acid amount 20% based on HEC, the swelling ratio of film was 5.8 in pH 6.86 buffer solution and the hydrogels achieved an equilibrium swelling state within 8 h; when the swelling ratio of the film was 0.05-0.1 and 0.4-0.5, tensile strength of film was 1.74MPa and 0.13MPa, elongation of film at break was 24.12% and 66.05%, respectively.
     Porous hydrogels were prepared from HEC using citric acid as a cross-linker with the pores formed by a freeze-drying technique prior to the cross linking reaction. The pore size increased with the increase of the ratio of water to HEC during the preparation of the hydrogels. The data of the swelling ratio demonstrated a fast swelling property of the hydrogel. The porous structure of the hydrogels was in favor of the adsorption of protein and dye. The results of thermogravimetry demonstrated that the thermal stability of HEC was improved by crosslinking with citric acid. The data of percent weight remaining in buffer solution with different pH indicated that the hydrogels were stable in both weak acid and base media. The porous hydrogel prepared with the mass ratio of citric acid: HEC: water: 1:5:150 achieved equilibrium swelling within 8 h in pH 6.86 buffer solutions, and the equilibrium swelling ratio of the porous hydrogel was 18.5. The adsorption amount of protein and methylene blue to the porous hydrogel was 15.7mg/g and7.63mg/g respectively.
     Polyurethane hydrogels containing lignin were synthesized from acetic acid lignin by chemical crosslinking with isocyanate (NCO)-terminated polyurethane ionomers (IPUI). The swelling ratio of hydrogels increased with the raise of pH. The hydrogel prepared with the mass ratio of mAAL/mIPUI: 0.3:1 presented maximum swelling ratio (3.14) in pH 6.8 buffer solutions. The results of thermo gravimetric analysis demonstrated that the thermal stability of the hydrogels is improved by the introduction of lignin. The hydrogels were used as coating material for ammonium sulfate and the data of release experiments for ammonium sulfate suggest that the hydrogels can be used as coating materials in slow release fertilizer.
     Polyurethane hydrogels containing liquefaction products of bagasse were synthesized by emulsion polymerization of polyurethane ionomers. The polyurethane ionomer emulsion was formed by the emulsification caused by the microphase separation between hydrophilic and hydrophobic segments of the chains, and the particles in the emulsion give regular spheric, core-shell structure. The polyurethane ionomer prepared from liquefaction products of bagasse present highly microphase-separated degree owing to the hydrophoblic interaction of the lignin in liquefied bagasse. The data of the swelling ratio showed that the hydrogels were sensitive to pH and ionic strength. The results of DSC analysis revealed that the freezing water in the swollen hydrogels were all free water. The adsorption experiment of the hydrogels for Cu (II) ion suggests that the hydrogels can be used as adsorbent for removal of heavy metal ions from aqueous solutions.
引文
[1]陈莉.智能高分子材料[M].北京:化学工业出版社, 2004, 43-44
    [2]赵青春.聚合物水凝胶研究进展[J].高分子材料科学与工程. 2003, 21 (2), 28-32
    [3] Yong Q, Park K. Environment-sensitive hydrogels for drug delivery [J]. Adv Drug Deliv Rev. 2001, 53(3): 321-339
    [4] Firestone BA, Siegel RA. Kinetics and mechanisms of water sorption in hydrophobic, ionizable copolymer gels [J]. J Appl Polym Sci, 1991, 43(5): 901-914.
    [5]孙姣霞,罗彦凤,彭辉,韩志伟.一种pH敏感性智能水凝胶的合成与表征.高分子材料科学与工程[J]. 2009, 25(9): 138-41
    [6] Wang BB,Zhu W,Zhang Y,et al. Synthesis of a chemicallycrosslinked thermo-sensitive hydrogel film and in situ encapsulation of model protein drugs [J]. React Funct Polym, 2006, 66(5): 509-518.
    [7] Katono H,Maruyama A,Sanui,K,et al. Thermo-responsive swelling and drug release switching of interpenetrating polymer networks composed of poly(acrylamide-co-butyl methacrylate) and poly(acrylic acid) [J]. J Control Release, 1991, 16: 215-227.
    [8] Schild HG. Poly(N-isopropylacrylamide): experiment, theory and application[J]. Prog Polym Sci, 1992, 17(2):163-249.
    [9] Shibayama M, Mizutaini SY, Nomura S. Thermal properties of copolymer gels containing N-isopropylacrylamide[J]. Macromolecules, 1996, 29(6): 2019-2024.
    [10] Brazel CS, Peppas NA. Synthesis and characterization of thermo-and chemomechanically responsive poly(N-isopropylacrylamide-co-methacrylic acid) hydrogels [J]. Macromolecules, 1995, 28(24): 8016-8020.
    [11] Jeong B, Bae YH, Kim SW. Drug release from biodegradable injectable thermosensitive hydrogel of PEG–PLGA–PEG triblock copolymers [J]. J Control Release, 2003, 63(1-2):155-163
    [12] Jeong B, Bae YH,Lee D, et al. Biodegradable block copolymers as injeetable drug-delivery systems [J]. Nature, 1997, 388 (6645): 860-862.
    [13]林浩,田华雨,孙敬茹,庄秀丽.温度敏感的PLGA-PEG-PLGA水凝胶的合成、表征和药物释放[J].高等学校化学学报. 2006, 27(7): 1385-1388.
    [14] Mamada A, Tanaka T, Kungwachakun D, et al. Photo induced phase transition of gels [J]. Macromolecules, 1990, 23(4): 1517-1519
    [15] Suzuki A, Tanaka T. Phase transition in polymer gels induced by visible light [J]. Nature, 1990,346 (): 345-347
    [16] Gong JP, Nitta T, Osada Y. Electrokinetic modeling of the contractile phenomena of polyelectrolyte gels. One dimensional capillary model [J]. J Phys Chem, 1994, 98(38): 9583–9587
    [17] Kim SJ, Shin SR, Lee JH, et al. Electrical response characterization of chitosan/polyacrylonitrile hydrogel in NaCl solutions[J]. J Appl Polym Sci, 2003, 90(1): 91-96.
    [18] Shiga T, Hirose Y, Okada A, et al. Electric field-associated deformation of polyelectrolyte gel near a phase transition point [J]. J Appl Poly Sci, 1992, 46(4): 635–640.
    [19]郑云华,刘根起,程永清,杨世文.聚乙烯醇磷酸酯水凝胶电刺激响应行为的研究[J].高分子学报, 2009, 9:922-928
    [20] Osada Y, Okuzaki H, Hori H. A polymer gel with electrically driven motility [J]. Nature, 1992, 355: 242–244.
    [21] Gade VK, Shirale DJ, Gaikwad PD, et al. Immobilization of GOD on Ppy-PVS composite film for determination of glucose: A comparative study of phosphate and acetate buffers [J]. Int J Polym Mater, 2007, 56(11): 1051-1065
    [22] Ulijn RV, Bibi N, Jayawarna V, et al. Bioresponsive hydrogels [J]. Mater Today, 2007, 10 (4) :40-48.
    [23] Shamim N. Thermosensitive polymer (N-isopropylacrylamide) coated nanomagneticparticles: Preparation and characterization [J]. Colloids Surf B: Biointerfaces, 2007, 55(1): 51-58
    [24]顾雪蓉,朱育平.凝胶化学[M].北京:化学工业出版社. 2004, 11.
    [25] Patel A, Mequanint K. Novel physically crosslinked polyurethane-block-poly(vinyl pyrrolidone) hydrogel biomaterials [J]. Macromol Biosci, 2007, 7(5):727-737
    [26] Pal K, Banthia AK, Majumdar DK. Biomedical evaluation of polyvinyl alcohol- gelatin esterifiedhydrogel for wound dressing [J]. J Mater Sci Mater Med, 2007, 18: 1889- 1894.
    [27] Kobayashi M, Kanekiyo M, Ando I, et al. A study of the gelation mechanismof poly(vinyl alcohol) in aqueous solution by high-resolution solid-state 13CNMR spectroscopy [J]. Polym Gels Networks, 1998, 10(6): 347- 354.
    [28] Miguel VS, Catalina F, Peinado C. Self-assembly of physically crosslinked micelles of poly (2-acrylamido-2-methyl-1-propane sulphonic acid-co-isodecyl methacrylate)-copper (II) complexes [J]. Eur Polym J, 2008, 44(5): 1368-1377
    [29] Matsuda A, Sato J, Yasunaga H, et al. Order-disorder transition of a hydrogel containing an n-alkyl acrylate [J]. Macromolecule, 1994, 27(26): 7695-7698
    [30] Kopecek J, Yang JY. Hydrogels as smart biomaterials [J]. Polym Int, 2007, 56(9):1078–1098
    [31]李贤真,李彦锋,朱晓夏,等.高分子水凝胶材料研究进展[J].功能材料, 2003, 4 (34): 382-385
    [32] Liu HL, Liu MZ, H J, et al. A novel method to prepare temperature/ pH-sensitive poly(N,N-diethylacrylamide-co-acrylicacid) hydrogels with rapid swelling/deswelling behaviors[J]. Polym Adv Technol, 2009, 20(12): 1152–1156
    [33]冯巧,卢国冬,刘玉琼,等.前端聚合制备多孔聚丙烯酰胺水凝胶—溶剂和引发剂对反应和产物的影响.高分子学报, 2009,7: 674-679
    [34]王建全,吴文辉.不同交联剂对甲基丙烯酸-β-羟乙酯/E-51双甲基丙烯酸酯聚合物水凝胶性能的影响[J].高分子学报, 2006, 6:869-872
    [35]张克举,王乐明,李小红,等.魔芋粉-丙烯酸-丙烯酰胺接枝共聚合成高吸水树脂[J].化工学报, 2007, 58(6): 1592-1597
    [36] Pourjavadi A, Harzandi AM, Hosseinzadeh H. Modified carrageenan 3. Synthesis of a novel polysaccharide-based superabsorbent hydrogel via graft copolymerization of acrylic acid onto kappa-carrageenan in air [J]. Eur Polym J, 2004, 40(7): 1363-1370
    [37] Choi HS, Kim YS, Zhang Y, et al. Plasma-induced graft co-polymerization of acrylic acid onto the polyurethane surface [J]. Surf Coat Technol, 2004, 182(1): 55-64
    [38] Kiatkamjornwong S, Chomsaksakul W, Sonsuk M. Radiation modification of water absorption of cassava starch by acrylic acid/acrylamide [J]. Radiat Phys Chem, 2000, 59(4): 413-427.
    [39] Razzak MT, Darwis D. Irradiation of polyvinyl alcohol and polyvinyl pyrrolidone blended hydrogel for wound dressing [J]. Radiat Phys Chem, 2001, 62(1): 107-113.
    [40] Baek SH, Kim BK . Synthesis of polyacrylamide/polyurethane hydrogels by latex IPN and AB crosslinked polymers[J]. Colloids Surf A Physicochem Eng Asp, 2003, 220 (1-3):191-198
    [41]贾剑飞,刘琼,范晓东,等.温敏性聚(N-异丙基丙烯酰胺)/PU-β-环糊精互穿网络水凝胶的溶胀特性[J].功能高分子学报, 2002, 15( 3): 281-285
    [42] Yan SF, Yin JG, Yu Y, et al. Thermo- and pH-sensitive poly(vinylmethyl ether)/carboxymethylchitosan hydrogels crosslinked using electron beam irradiation or using glutaraldehyde as a crosslinker[J]. Polym Int, 2009, 58(11): 1246-1251
    [43] Arndt KF, Richter A, Ludwig S, et al. Poly(vinyl alcohol)/poly(acrylic acid) hydrogels: FT-IR spectroscopic characterization of crosslinking reaction and work at transition point[J]. Acta Polym. 1999, 50(11-12), 383-390
    [44]郭兴林,李福绵,张树霖.不同结晶度聚乙烯醇水凝胶中水氢键缺损的拉曼光谱学研究[J].高分子学报, 2001,(4): 408-511
    [45] Calderara I, Gougeon R, DELMOTTE L, et al. NMR Study of the structure and properties of poly(MMA-co-VP) cross-linked hydrogels[J]. J Polym Sci Polym Chem Ed,2000, 35(17): 3619-3625
    [46]曾蓉,冯志程, SMIT R.变温核磁共振对壳聚糖/磷酸甘油盐温敏性水凝胶的初步研究[J].化学学报, 2007, 65(21): 2459-2465
    [47]唐黎明.以聚氨酯预聚物为交联剂的两性水凝胶[J].清华大学学报(自然科学版), 2004,44(3): 307-310
    [48] Kim JH, Kim JY, Lee YM, et al. Controlled release of riboflavin and insulin through crosslinked poly(vinyl alcohol)/chitosan blend membrane[J]. J Appl Polym Sci,1992,44(10): 44, 1823-1828
    [49]李彪,姜永梅,刘洋.聚( N-异丙基丙烯酰胺)/聚丙烯酰胺无机/有机互穿网络水凝胶的制备及表征[J].高分子学报, 2009,5,419-424.
    [50] Miyazaki T. Yamaoka K, Kaneko T, et al. Hydrogels with the ordered structures [J]. Sci Technol Adv Mater, 2000, l(4): 201-210.
    [51]袁丛辉,余娜,林松柏,等. PVA-PAMPS-PAA三元互穿网络型水凝胶的合成及其性能研究[J].高分子学报, 2009,3:249-256
    [52] Kim SH, Chu CC. Synthesis and characterization of dextran-methacrylate hydrogels and structural study by SEM[J]. J Biomed Mater Res, 2000, 49: 517-527
    [53] Koh WG, Revzin A, Pishko MV. Poly(ethylene glycol) hydrogel microstructures eneapsulating living cells [J]. Langmuir, 2002, 18(7): 2459-2462.
    [54]何江川,林强.多孔性热敏水凝胶P (NIPA-co-SMA)的合成及性质[J].高分子材料科学与工程, 2005, 21(1): 81-84
    [55] Jeong B, Bae YH , Kim SW. Drug release from biodegradable injectable thermosensitive hydrogel of PEG-PLGA-PEG triblock copolymers[J]. J Control Release, 2000, 63: 155-163.
    [56] Zhang Y,Zhu W,Wang B,et al. Postfabrication encapsulation of model protein drugs in a negatively thermosensitive hydrogel [J]. J Pharm Sci, 2005, 94(8): 1676-1684.
    [57] Ito T, Yamaguchi T. Osmotic pressure control in response to a specific ion signal at physiological temperature using a molecular recognition ion gating nembrane [J]. J Am Chem Soc, 2004, 126(20): 6202-6203.
    [58]徐晖,丁平田,赵会英,等.药物在pH敏感聚甲基丙烯酸-poloxamer水凝胶中的扩散行为[J].应用化学, 2001,18(4): 305-308
    [59]林友文,陈庆,罗红斌. N-(2-磺酸基苯甲基)壳聚糖的合成、表征及其水凝胶的pH敏感性[J].高等学校化学学报, 2007, 28(1): 183-187
    [60] Park SE, Nho YC, Lim YM, et al. PreParation of pH-sensitive polyvinyl alcohol-g-methacrylic acid and polyvinyl alcohol-g-acrylicacid) hydrogels by Gamma ray irradiation and their insulin release behavior[J]. J Appl Polym Sci, 2004, 91(1): 636-643
    [61] Baroli B. Hydrogels for tissue engineering and delivery of tissue-Inducing substances [J]. J Pharm Sci, 2007, 96 :2197-2223
    [62] Bryant SJ, Anseth KS. The effects of scaffold thickness on tissue engineered cartilage in photocrosslinked poly(ethylene oxide) hydrogels[J]. Biomaterials, 2001,22(6): 619-626.
    [63] Lee YK, Mooney DJ. Hydrogels for tissue engineering[J]. Chem Rev, 2001, 101(7):1869-1879
    [64] Ferruti P, Bianchi S, Ranucci E. Novel agmatine-containing poly(amidoamine) hydrogels as scaffolds for tissue engineering [J]. Biomacromolecules, 2005, 6(4): 2229-2235.
    [65] Loebsack A, Greene K, Wyatt S, et al. In vivo characterization of a porous hydrogel material for use as a tissue bulking agent [J]. J Biomed Mater Res, 2001, 57(4): 575-581
    [66]唐群委,孙慧,敖海勇,等.温度敏感聚丙烯酸盐/聚乙二醇互穿网络水凝胶的合成及重金属离子吸收[J].功能材料, 2008, 39(1): 86-90
    [67] Kasgoz H, Ozgumus S, Orbay M. Preparation of modified polyacrylamide hydrogels and application in removal of Cu (II) ion[J]. Polymer, 2001, 42(18): 7497-7502
    [68]张剑波.温敏性水凝胶对金属离子Y3+, UO2+2的浓集分离[J].环境科学,1999,20(6): 87-90
    [69]徐宁,牟建明,王国强.用聚(丙烯酸/丙烯酰胺)水凝胶吸附单价阳离子染料的研究[J].环境科学学报, 2004, 24(1): 65-70
    [70] Uzum OB, Kundakci S, Durukan HB, et al. Water uptake and dye sorption studies of chemically crosslinked highly swollen novel ternary acrylamide-based hydrogels including citraconic acid and sodium acrylate[J]. Polym Adv Technol, 2008, 19(7): 775-784
    [71]何培新,肖卫东,黄鹤,等[J].高吸水性三元共聚树脂的合成及性能研究[J].高分子材料科学与工程,1999, 15 (6) : 65-68
    [72]许晓秋,刘延栋.高吸水性树脂的工艺与配方[M].北京:化学工业出版社, 2004:18-24
    [73] Han XZ, Chen SS, Hu XG. Controlled-release fertilizer encapsulated by starch/polyvinylalcohol coating [J]. Desalination, 2009, 240(1-3): 21-26
    [74] Farris S, Schaich KM, Liu LS, et al. Development of polyion-complex hydrogels as an alternative approach for the production of bio-based polymers for food packaging applications: a review [J]. Trends Food Sci Technol, 2009, 20(8): 316-332
    [75] Li X, Tabil LG, Panigrahi S, Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A Review[J]. J Polym Environ, 2007, 15(1): 25-33.
    [76] Coloma X, Carrasco F, Pages P, et al. Effects of different treatments on the interface of HDPE/lignocellulosic fiber composites[J]. Compos Sci Technol, 2003, 63(2): 161-169.
    [77] Alma MH, Basturk MA. Liquefaction of grapevine cane (Vitis vinisera L.) waste and its application to phenol–formaldehyde type adhesive [J]. Ind Crops Prod, 2006, 24: 171-176.
    [78]谌凡更,卢卓敏,王红娟.植物纤维液化物及其制法和用途[P].中国, 1528824, 2003.
    [79] Xie T, Chen F G. Fast Liquefaction of Bagasse in Ethylene Carbonate and Preparation of Epoxy Resin from the Liquefied Product [J]. J Appl Polym Sci, 2005, 98(5): 1961-1968.
    [80] Okabe K,Yao T, Shiraishi N, et al. Preparation of thin carbon fibers from waste wood-derived phenolic resin[J]. J Mater Sci, 2005, 40(14): 3847-3848.
    [81] Shibata K, Okabe T, Saito K, et al. Electromagnetic Shielding Properties of Woodceramics Made from Wastepaper[J]. J Porous Mater, 1997, 4(4): 269-275.
    [82] Rosenau T, Potthast A, Sixta H, Kosma P. The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (Lyocell process) [J]. Prog Polym Sci, 2001,26(9): 1763-1837
    [83] Kuo YN, Hong J. Polym. Investigation of solubility of microcrystalline cellulose in aqueous NaOH [J]. Adv Technol, 2005,16 (5): 425-428
    [84] Swatloski R P ,Spear S K,Holbrey J D ,Rogers R D. Dissolution of cellose with ionic liquids [J]. J Am Chem Soc ,2002 ,124(18):4974-4975
    [85] Kohler S, Liebert Tim, Heinze T. Ammonium-based cellulose solvents suitable for homogeneous etherification [J]. Macromol Biosci, 2009, 9(9): 836-841
    [86] Qiu WL; Zhang FR; Takashi E, et al. Milling-induced esterification between cellulose and maleated polypropylene [J]. J Appl Polym Sci. 2004, 91(3): 1703-1709
    [87] Saito H, Sakurai A, Sakakibara M, et al. Preparation and properties of transparent cellulose hydrogels[J]. J Appl Polym Sci, 2003, 90(11), 3020-3025
    [88] Chang CY, Lue A, Zhang LN. Effects of crosslinking methods on structure and properties of cellulose/PVA hydrogels[J]. Macromol Chem Phys. 2008, 209: 1266-1273.
    [89] Li L, Lin ZB, Yang X, et al. A novel cellulose hydrogel prepared from its ionic liquid solution [J]. Chinese Sci Bull, 2009, 54(9): 1622-1625
    [90] Chang CY, Duan B, Zhang LN. Fabrication and characterization of novel macroporous cellulose-alginate hydrogels[J]. Polymer, 2009, 50(23): 5467-5473
    [91] Yan LF, Shuai Q, Gong XL et al. Synthesis of microporous cationic hydrogel of hydroxypropyl cellulose (HPC) and its application on anionic dye removal [J]. Clean, 2009, 37 (4–5): 392-398
    [92] Sannino A, Nicolais L. Concurrent effect of microporosity and chemical structure on the equilibrium sorption properties of cellulose-based hydrogels [J]. Polymer, 2005, 46(13): 4676-4685
    [93] Kato N, Gehrke SH. Microporous, fast response cellulose ether hydrogel prepared by freeze-drying[J]. Colloids Surf. B Biointerfaces, 2004, 38(3-4): 191-196
    [94] Sannino A, Pappada S, Madaghiele M, et al. Crosslinking of cellulose derivatives and hyaluronic acid with water-soluble carbodiimide [J]. Polymer, 2005,46(25): 11206-11212
    [95] Coma V, Sebti I, Pardon P, et al. Film properties from crosslinking of cellulosic derivatives with a polyfunctional carboxylic acid [J]. Carbohydr Polym, 2003, 51(3): 265-271
    [96] Demitri C, Del SR, Scalera F, et al. Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid[J]. J Appl Polym Sci, 2008, 110(4): 2453-2460.
    [97] Uraki Y, Hashida K, Sano Y. Self-assembly of pulp derivatives as amphiphilic compounds: Preparation of amphiphilic compound from acetic acid pulp and its properties as an inclusion compound [J]. Holzforschung, 1997, 51(1): 91-97
    [98] Uraki Y, Imura T, Kishimoto T, Ubukata M. Body temperature-responsive gels derived from hydroxypropylcellulose bearing lignin[J]. Carbohydr Polym, 2004, 58(2): 123-130
    [99] Uraki Y, Imura T, Kishimoto T, Ubukata M Body temperature-responsive gels derived from hydroxypropylcellulose bearing lignin II: adsorption and release[J]. Cellulose, 2006, 13(3): 225-234
    [100] Li XJ, Yin MH, Zhang GL, et al. Synthesis and characterization of novel temperature and pH responsive hydroxylpropyl cellulose-based graft copolymers [J]. Chin J Chem Eng, 2009, 17(1): 145-149.
    [101]赵宝秀,王鹏,郑彤,等.微波辐射纤维素基高吸水树脂的合成工艺及性能[J].高分子材料科学与工程, 2005, 21(4): 133-136
    [102] Ibrahim SM, El Salmawi KM, Zahran AH. Synthesis of crosslinked superabsorbent carboxymethyl cellulose/acrylamide hydrogels through electron-beam irradiation [J]. J Appl Polym Sci, 2007, 104: 2003-2008.
    [103] Shen D, Yu H, Huang Y. Synthesis of graft copolymer of ethyl cellulose through living polymerization and its self-assembly [J].Cellulose, 2006, 13(3): 235-244.
    [104] Kang H, Liu W, Riu R, et al. A novel, amphiphilic ethyl cellulose grafting copolymer with poly(2-hydroxyethyl methacrylate) side chains and its micellization [J] Macromol Chem Phys, 2008, 209(4): 424-430
    [105] Ifuku S, Kadla JF. Preparation of a thermosensitive highly regioselective cellulose/N-Isopropylacrylamide copolymer through atom transfer radical polymerization [J]. Biomacromolecules, 2008, 9(11): 3308-3313
    [106] Akelah A, Sherrington DC. Synthesis of some vinyl derivatives of cellulose and their grafting copolymerization with styrene [J]. J Appl Polym Sci, 1981, 26(10): 3377-3384.
    [107] Trombino S, Cassano R, Bloise E, et al. Synthesis and antioxidant activity evaluation of a novel cellulose hydrogel containing trans-ferulic acid [J]. Carbohydr Polym, 2009, 75(1):184-188.
    [108]石艳丽,张高奇,马敬红,梁伯润.羧甲基纤维素钠/聚(N-异丙基丙烯酰胺)半互穿网络水凝胶的制备及溶胀性能[J].高分子材料科学与工程, 2005, 21(5): 145-148
    [109] Chauhan GS, Mahajan S. Structural aspects and nature of swelling medium As Equilibrium Swelling Determinants of Acrylamide and Cellulosic-Based Smart Hydrogels[J]. J Appl Polym Sci, 2002, 85: 1161-1169
    [110] Shen XD, Kitajyo Y, Duan Q, et al. Synthesis and photocrosslinking reaction of N-allylcarbamoylmethyl cellulose leading to hydrogel[J]. Polymer Bulletin, 2006, 56(2-3):137-143
    [111] Wang M, Xu L, Hu H, et al. Radiation synthesis of PVP/CMC hydrogels as wound dressing [J]. Nucl Instrum Methods Phys Res Sect B, 2007,265(1): 385-389
    [112] Hiroki A, Tran HT, Nagasawa N, et al. Metal adsorption of carboxymethyl cellulose/carboxymethyl chitosan blend hydrogels prepared by gamma irradiation [J]. Radiat Phys Chem, 2009, 78(12): 1076-1080
    [113] Ossipov DA, Hilborn J. Poly(vinyl alcohol)-based hydrogels formed by“click chemistry”[J]. Macromolecules, 2006, 39 (5): 1709-1718
    [114] Zhang J, Xu XD, Wu DQ, et al. Synthesis of thermosensitive P(NIPAAm-co-HEMA)/cellulose hydrogels via“click”chemistry[J]. Carbohydr Polym, 2009, 77(3): 583-589
    [115] Yamamoto H, Amaike M, Saitoh H, et al. Gel formation of lignin and biodegradation of the lignin gels by microorganisms[J]. Materials Mater Sci Eng C, 2000, 7(2): 143-147
    [116] Nishida M, UrakiY, Sano Y. Lignin gel with unique swelling property[J]. Bioresour Technol, 2003, 88(1): 81-83
    [117] Parajuli D, Inoue K, Ohto K, et al. Adsorption of heavy metals on crosslinked lignocatechol:a modified lignin gel[J]. React Funct Polym, 2005, 62(2): 129-139
    [118] El-Zawawy W K. Preparation of hydrogel from green polymer [J]. Polym Adv Technol, 2005, 16(11): 48-54
    [119] Raschip IE, Vasile C, Ciolacu D, et al. Semi-interpenetrating polymer networks containing polysaccharides. I xanthan/lignin networks [J]. High Perform Polym, 2007, 19(5-6): 603-620
    [120] Chaa L, Joly N, Lequart V, et al. Isolation, characterization and valorization of hemicelluloses from Aristida pungens leaves as biomaterial [J]. Carbohydr Polym, 2008, 74(3): 597-602
    [121] Doner LW, Hicks KB. Isolation of hemicellulose from corn fiber by alkaline hydrogen peroxide extraction[J],1997,74(2):176-181
    [122] Glasser WG, Kaar WE, Jain RK, et al. Isolation options for non-cellulosic heteropolysaccharides (HetPS) [J]. Cellulose, 2000,7(3):299-317
    [123] Gabrielii I, Gatenholm P. Preparation and properties of hydrogels based on hemicellulose [J]. J Appl Polym Sci, 1998, 69(8): 1661-1667
    [124] Tanodekaew S, Channasanon S, Uppanan P. Xylan/polyvinyl alcohol blend and its performance as hydrogel [J]. J Appl Polym Sci, 2006, 100(3): 1914-1918
    [125] Lindblad MS, Ranucci E, Albertsson AC. Biodegradable polymers from renewable sources. new hemicellulose-based hydrogels [J]. Macromol Rapid Commun, 2001, 22(12): 962-967
    [126] Lindblad MS, Albertsson AC, Ranucci E, et al. Biodegradable polymers from renewable sources: rheological characterization of hemicellulose-based bydrogels[J]. Biomacromolecules, 2005, 6(2): 684-690
    [127] Uraki Y, Imura T, Kishimoto T, et al. Body temperature-responsive gels derived from hydroxypropylcellulose bearing lignin II: adsorption and release behavior[J]. Cellulose, 2006, 13(3): 225 -234.
    [128]李绍雄,刘益军.聚氨酯树脂及其应用[M].北京:化学工业出版社. 2002: 17-18
    [129] Chen J, Pascault JP, Taha M. Synthesis of polyurethane acrylate oligomers based on polybutadiene polyol[J]. J. Polym. Sci. Part A, 1996, 34(16): 2889-2907.
    [130] Ding YT, Xin ZR, Gao Y, et al. Functionalization of an ethylene-propylene copolymer with allyl(3-isocyanate-4-tolyl) carbamate [J]. J Polym Sci Part B, 2003, 41(4):387-402.
    [131] Grepinet B, Pla F, Hobbes P, et al. Modeling and simulation of urethane acrylates synthesis. I. Kinetics of uncatalyzed reaction of toluene diisocyanate with a monoalcohol [J]. J. Appl. Polym. Sci., 2000, 75(5):705-712.
    [132] Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev [J]. 2001, 53(3):321-339.
    [133] Lee WF, Hsu CH. Thermoreversible hydrogels: 3. Synthesis and swelling behavior of the (N-isopropylacrylamide-co-trimethylacrylamidopropyl ammonium iodide) copolymeric hydrogels[J]. Polymer, 1998, 39(22): 5393-5403
    [134] Yin LC, Fei LK, Tang C, et al. Synthesis, characterization, mechanical properties and biocompatibility of interpenetrating polymer network–superporous hydrogel containing sodium alginate[J]. Polym Int. 2007, 56, 1563-1571.
    [135] Yoo HJ, Kim HD. Synthesis and properties of waterborne polyurethane hydrogels for wound healing dressings [J]. J Biomed Mater Res Part B Appl Biomater, 2008, 85B (2): 326-333.
    [136] Zhao L, Xu L, Mitomo H, et al. Synthesis of pH-sensitive PVP/CM-chitosan hydrogels with improved surface property by irradiation [J]. Carbohydr Polym, 2006, 64(3): 473-480.
    [137] Farris S, Schaich KM, Liu LS, et al. Development of polyion-complex hydrogels as an alternative approach for the production of bio-based polymers for food packaging applications: a review[J]. Trends Food Sci Technol, 2009, 20: 316-332
    [138] Fritz J, Link U, Braun R. Environmental impacts of biobased/biodegradable packaging [J]. Starch, 2001, 53(3-4): 105-109
    [139] Siracusa V, Rocculi P, Romani S, et al. Biodegradable polymers for food packaging: a review. Trends Food Sci Technol, 2008, 19(12): 634-643
    [140] Wenzl T, Lankmayr EP. Comparative studies of the static and dynamic headspace extraction of saturated short chain aldehydes from cellulose-based packaging materials[J]. Anal Bioanal Chem, 2002, 372(5-6): 649-653
    [141] Elegir G, Kindl A, Sadocco P, et al. Development of antimicrobial cellulose packaging through laccase-mediated grafting of phenolic compound[J]. Enzyme Microb Technol, 2008,43(2): 84-92
    [142] Patil NS, Dordick JS, Rethwisch DG. Macroporous poly(sucrose acrylate) hydrogel for controlled release of macromolecules[J]. Biomaterials. 1996, 17(24): 2343-2350.
    [143] Bryant SJ, Cuy JL, Hauch KD, et al. Photo-patterning of porous hydrogels for tissue engineering [J]. Biomaterials. 2007, 28(19): 2978-2986.
    [144] Kato N, Gehrke SH. Microporous, fast response cellulose ether hydrogel prepared by freeze-drying[J]. Colloids Surf. B Biointerfaces. 2004, 38(3-4), 191-1996.
    [145] Pradas MM, Ribellesa JLG, Aroca AS, et al. Porous poly(2-hydroxyethyl acrylate) hydrogels [J]. Polymer, 2001 ,42(1): 4667-4674
    [146] Partap S, Rehman I, Jones JR, et al. "Supercritical carbon dioxide in water" emulsion-templated synthesis of porous calcium alginate hydrogels[J]. Adv Mater, 2006, 18(4), 501.
    [147] Kabiri K, Omidian H, Zohuriaan-Mehr MJ. Novel approach to highly porous superabsorbent hydrogels: Synergistic effect of porogens on porosity and swelling rate [J]. Polym Int, 2003, 52(7): 1158-1164
    [148] Yang J, Wang F, Tan TW. Controlling degradation and physical properties of chemical sand fixing agent-poly (aspartic acid) by crosslinking density and composites [J]. J Appl Polym Sci, 2009, 111(3): 1557-1563
    [149] Jin SP, Bian FL, Liu MZ, et al. Swelling mechanism of porous P(VP-co-MAA)/PNIPAM semi-IPN hydrogels with various pore sizes prepared by a freeze treatment [J]. Polym Int, 2009, 58(2):142-148.
    [150]何小唯.碳水化合物功能材料[M].北京:中国轻工业出版社, 2007: 139
    [151]卢国冬,燕青芝,宿新泰,等.多孔水凝胶研究进展[J].化学进展. 2007, 19(4): 485-493
    [152] Samaryk V, Voronov A, Tarnavchyk I, et al. A versatile approach to develop porous hydrogels with a regular pore distribution and investigation of their physicomechanical properties [J]. J Appl Polym Sci, 2009, 114(4): 2204-2212
    [153] Wilson CJ, Clegg RE, Leavesley DI, et al. Mediation of biomaterial-cell interactions by adsorbed proteins: A review [J]. Tissue Eng, 2005, 11(1-2): 1-18.
    [154] Francois P, Vaudaux P, Nurdin, et al. Physical and biological effects of a surface coating procedure on polyurethane catheters [J]. Biomaterials, 1996, 17(7): 667-678.
    [155] Petrini P, Tanzi MC, Graham NB, et al. Linear poly(ethylene oxide)-based polyurethane hydrogels:polyurethane-ureas and polyurethane-amides [J]. J Mater Sci Mater Med, 1999,10(10): 635-639
    [156] Bromberg L. Crosslinked poly(ethylene glycol) networks as reservoirs for protein delivery[J]. J Appl Polym Sci,1996,59:459-466
    [157] Lai YC, Baccei LJ. Novel polyurethane hydrogels for biomedical applications[J]. J Appl Polym Sci, 1991, 42: 3173-3179
    [158] Fromstein JD, Woodhouse KA. Elastomeric biodegradable polyurethane blends for soft tissue applications[J]. J Biomater Sci Polym Ed, 2002, 13: 391-406
    [159] Ping P, Wang W, Chen X, Jing X. Poly(e-caprolactone) polyurethane and its shape-memory property[J]. Biomacromolecules, 2005, 6: 587-592
    [160] Zhang CH, Zhang N, Wen XJ. Synthesis and characterization of biocompatible, degradable, light-curable, polyurethane-based elastic hydrogels[J]. J Biomed Mater Res Part A , 2007, 82 (3): 637-650
    [161] Pei Ni, Thring Ronald W. Synthesis of polyurethane from solvolysis lignin using a polymerization catalyst: mechanical and thermal properties [J]. Int J Polym Mater I, 2003, 52(8): 685-707.
    [162] Hatakeyama T, Matsumumoto Y. Glass transition of rigid polyurethane foams derived from sodium lignosulfonate mixed with diethylene, triethylene and polyethylene glycols [J]. Thermochim Acta, 2004, 416 (1-2): 29-33.
    [163]武汉大学.分析化学实验(第四版)[M].北京:高教出版社, 2004: 250
    [164] Ge JJ, Wu R, Shi XG, et al. Biodegradable polyurethane materials from bark and starch. II. coating material for controlled-release fertilizer[J]. J Appl PolymSci, 2002, 86: 2948–2952
    [165] Velada JL, Liu Y, Huglin MB. Effect of pH on the swelling behaviour of hydrogels based on N-isopropylacrylamide with acidic comonomers[J]. Macromol Chem Phys, 1998, 199(6):1127-1134
    [166] El-Refaie K, Sakran AlA. Controlled release formulation of agrochemicals from calcium alginate[J]. Ind Eng Chem Res, 1996,35: 3726-3729.
    [167] K. Byung-Su, C. Young-Sang and H. Hyun-Ku,Controlled release of urea from rosin-coated fertilizer particles[J]. Ind Eng Chem Res, 1996,35: 250-257.
    [168] Ge JJ, Wu R, Shi XG, et al. Biodegradable polyurethane materials from bark and starch. II. coating material for controlled-release fertilizer[J]. J Appl PolymSci, 2002, 86: 2948–2952
    [169] Yoshitake N.; Furugawa M. Thermal degradation mechanism ofα,γ-diphenyl alkyl allophanate as a model polyurethane by pyrolysis-high-resolution gas chromatography/FT-IR[J]. J Anal Appl Pyrolysis, 1995,33:(4):269-281
    [170]郭贵全,卢卓敏,谌凡更.植物纤维液化制备高分子材料研究进展.高分子材料科学与工程, 2005, 21(1): 34-38
    [171] Kurimoto Y, Takeda M, Koizumi A, et al. Mechanical properties of polyurethane flms prepared from liquefied wood with polymeric MDI. Bioresour Technol, 2000, 74(2): 151-157.
    [172] Tohmura S, Li GY, Qin TF. Preparation and Characterization of Wood Polyalcohol-Based Isocyanate Adhesives. J Appl Polym Sci, 2005, 98(2): 791-795.
    [173] Yao Y, Yoshioka M, Shiraishi N. Rigid polyurthane foams from combined liquefaction mixtures of wood and starch. Mokuzai Gakkaishi, 1995, 41, 659
    [174] Chandy MC, Rajasekharan Pillai VN. Water sorption and water binding properties of crosslinked polyacrylamides: effect of macromolecular structure and crosslinking. Polym Int, 1995, 37:39-45
    [175] Yao Y, Yoshioka M, Shiraishi N. Combined liquefaction of wood and starch in a polyethylene–glycerin blended solvent. Mokuzai Gakkaishi, 1993, 39, 930
    [176] Yao Y, Yoshioka M, Shiraishi N. Water-absorbing polyurethane foams from liquefied starch. J Appl Polym Sci. 1996,60(11), 1939-1949.
    [177] Nomula S, Cooper SL. Hydrophobic aggregation in polyurethane ionomer solutions. J Colloid Polym Sci, 1998, 205 (2): 331-339
    [178] Kim JY, Song SH, Kim DS, et al. Synthesis of novel amphiphilic pH-sensitive polyurethane networks through water-in-oil soap-free emulsion polymerization process. I. Microstructural differences and swelling behaviors. J Appl Polym Sci, 2000, 76(14): 2115-2127
    [179] Uraki Y,Chen CL, Gratzl JS. Self-assembly of pulp derivatives as amphiphilic compounds: Preparation of amphiphilic compound from acetic acid pulp and its properties as an inclusion compound. Holzforschung, 1997,51(5): 91-97
    [180] Chen SA, Chan WC. Polyurethane cationomers. II. Phase inversion and its effect on physical properties J Polym Sci B: Polym Phys, 1990, 28(9): 1515-1532
    [181] Jin X, Hsieh YL. Anisotropic dimensional swelling of membranes of ultrafine hydrogel fibers. Macromol Chem Phys, 2005, 206(17):1745-1751
    [182] Liu HQ, Zhen M, Wu RH. Ionic-strength- and pH-responsive poly[acrylamide-co-(maleilc acid)] hydrogel nanofibers. Macromol Chem. Phys, 2007, 208(8): 874-880
    [183] Huang J, Wang XL, Yu XH. Solute permeation through the polyurethane-NIPAAm hydrogel membranes with various cross-linking densities. Desalination, 2006, 192(1-3):125-131
    [184] Moawed EA. Preparation of novel ion exchange polyurethane foam and its application for separation and determination of palladium in environmental samples. Anal Chim Acta, 2006, 580(2): 263-270
    [185] Burham N, Abdel-Azeem SM, El-Shahat MF. Separation and determination of trace amounts of zinc, lead, cadmium and mercury in tap and Qaroun lake water using polyurethane foam functionalized with 4-hydroxytoluene and 4-hydroxyacetophenone. Anal Chim Acta, 2006, 579(2): 193-201
    [186] Moawed EA, El-Shahat MF. Preparation, characterization and application of polyurethane foam functionalized withα-naphthol for preconcentration and determination of trace amounts of nickel and copper in cast iron and granite. React Funct Polym, 2006,66(7): 720-727

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700