导电多层膜的层层自组装及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自组装多层膜已经引起了来自不同领域科学家的广泛关注。自组装多层膜主要存在于气/液或液/固界面上,且很容易通过层-层自组装技术来构建。1991年,Decher发展了一种基于阴、阳聚电解质间静电作用为推动力的制备多层膜的方法,由此揭开了自组装多层膜制备与研究的新篇章。本论文旨在采用自组装法制备高导电性多层膜,研究多层膜的电导率与结构的关系,提出了相应的导电机理,促进高导电性自组装多层膜的发展。
     在论文的第二章中,采用十六烷基三甲基溴化铵(C16TAB)修饰氧化石墨(GO)与聚丙烯酸(PAA)进行静电自组装。实验表明通过C16TAB表面修饰后,GO可与PAA牢固的吸附,制备的多层膜具有较高的导电性。由于PAA分子链可以扩散进入纳米GO薄片层间,致使GO薄片层间距扩大甚至剥离,当GO层间距(或组装层数n)增大至渗滤阈值时便会产生渗滤效应。采用分子量为2000-4000的PAA组装的多层膜具有典型的PTC/NTC效应。分子量较低的PAA更容易扩散至GO层间,导致多层膜产生更高的电导率和更低的渗滤阈值。将(PAA/GO)n多层膜还原后,电导率得到极大提高,渗滤阈值向较高组装双层数移动。依此,我们获得了组装高电导率和低渗滤阈值多层膜的新方法。
     在论文的第三章,利用与第二章类似的静电自组装方法,成功地实现了C16TAB修饰的石墨(G)与聚苯乙烯磺酸钠(PSS)的层层自组装。实验结果表明将纳米GO薄片还原后的表面更易被C16TAB修饰,所制备的(PSS/G)n多层膜的电导率得到极大提高。当多层膜的厚度达到52纳米时,便会克服表面粗糙度与形貌的影响,产生渗滤现象,渗滤阈值n=4时,电导率最高可达204.1 S/cm。
     在论文的第四章,我们首先提出用聚合—生长两步法(无需任何模版)制备了高度有序的PANI阵列。实验结果证实苯胺浓度、酸用量、酸浓度及酸种类对PANI纤维阵列的形貌具有很大影响,实现了PANI阵列的尺寸与形貌可控性,通过优化制备条件可以制备出高度有序的PANI薄片和纤维阵列。研究了高度有序PANI阵列的生长机理,发现苯胺阳离子为PANI阵列的生长起到“模板”作用。采用XRD、UV-vis及FTIR测试表明,PANI阵列具有有序的分子构象和较高的结晶性。制备的PANI阵列的电导率与温度的关系符合准一维可变程跳跃模型,显示出半导体特性。
     在论文的第五章中,我们采用第四章中制备的高度有序PANI纤维阵列与PSS制备了(PSS/PANI)n自组装导电多层膜。实验结果证明PANI纤维阵列溶解后仍呈纳米颗粒状,保持良好的晶体结构,所制备的多层膜比采用传统法制备的PANI颗粒制备的多层膜具有更高的电导率、电化学活性和更低的渗滤阈值。
     在论文的第六章中,研究了采用旋涂自组装技术制备(PSS/G+/G-)n多层膜。结果表明不同PSS/G+/G-比例制备的多层膜与组装层数均呈线性关系;相同组装层数与相同旋涂转速时,不同PSS/G+/G-比制备的多层膜中PSS的组装量相等,而G(G++G-)的组装量则与G层数成正比例关系;旋涂转速ω越高,所制备的多层膜越薄,且G的组装量与ω-1/2呈正比关系。PSS/G+/G-比例高的多层膜具有较高的电导率和较低的渗滤阈值,较高的旋涂转速制备的多层膜具有较低的渗滤阈值。采用目数较大的纳米石墨片组装的(PSS/G+/G-)n旋涂自组装多层膜具有更高的电导率与更低的渗滤阈值。
     我们采用自组装法制备多种高导电性多层膜,研究了多层膜的制备条件—结构—导电性之间的系统关系,发现了多层膜的电导性渗滤现象,提出了其导电机理。这些结果在导电多层膜的制备方法,导电性能和导电机理等方面深化和拓展了自组装导电多层膜研究范畴,促进高导电性自组装膜的发展。
In recent years, the self-assembled multilayer films have attracted much attention from the scientists in many fields. In general, self-assembled multilayer films exist in the interfaces between gas and liquid or liquid and solid. In 1991, professor Decher developed a simple route to fabricate multilayer films using the electrostatic interaction between cationic and anionic polyelectrolytes as driving force. This technique is believed to be a rapid and simple way to produce multilayer films where the film composition and thickness can be adjusted by controlling the preparation coditions. The method has been regarded as an important milstone for the multilayer film research. In this dissertation, we focus on the preparation of multilayer film with high conductivity by self-assembled method, investigate the relationship between electrical conductivity and structure of the multilayer film, and try to propose a theory to reveal the conductive mechanism, which will promote the development of the conducting self-assembly multilayer films.
     In chapter 2, a multilayer (PAA/GO)n consisting of poly(acrylic acid) (PAA) and graphite oxide (GO) nanoplatelets modified with cationic surfactant cetyltrimethylammonium bromide (C16TAB) is self-assembled successfully by using the electrostatic interaction. The results show that C16TAB modified GO nanoplatelets can adsorb PAA chains firmly, and the multilayer films show high conductivity. Because of the fact that PAA chains can diffuse into the interlayer of carbon molecular layers, the interlayer interaction is weakened and the interlayer height is expanded. When the C-C interlayer height reaches a threshold value (or n reaches a threshold value), the electrons in the carbon interlayer become free, and a percolation effect appears. The multilayer film has typical PTC/NTC effects if the PAA with an average molecular weight ranging from 2,000 to 4,000 is used to fabricate the multilayer films. The results also prove that the PAA chains with lower molecular weight can diffuse into the interlayer of carbon molecular layers easier, which will result in the fabrication of the multilayer films with higher conductivity and lower percolation threshold value. After reduction by hydrazine hydride, the conductivities of the conducting films are dramatically improved, and the percolation threshold occurs at high number of bilayers. By this assembling method, we develop an approach for self-assembly of the multilayer films with high conductivity and low percolation threshold value.
     In chapter 3, we successfully fabricate the (PSS/G)n conducting films consisting of C16TAB modifed graphite nanoplatelets and PSS polyelectrolyte. The results reveal that the reduced graphite nanoplatelets can be easily covered by C16TAB. Compared with (PAA/GO)n multilayer film, the conductivity of (PSS/G)n film is improved greatly. When the thickness of multilayer film is greater than 52 nm, a percolation effect appears, the multilayer film shows a percolation threshold at n = 4 and the highest conductivity of 204.1 S/cm.
     In chapter 4, we firstly propose a two-step method contained polymerization and growth process to prepare highly oriented PANI arrays without any templete. The results demonstrate that aniline concentration, acids dosage, acids concentration and species have great effects on the morphology of the PANI arrays, which realize the size and morphology controllability. We can obtain highly oriented PANI flake and fiber arrays at optimized preparation conditions. From the experimental results, we conclude anilinium cation micelles act as“template”in the formation process. Using XRD, UV-vis and FTIR, it is found that the PANI arrays have oriented molecular configuration and excellent crystallization. Furthermore, the relationship between conductivity of the PANI arrays and temperature follow the quasi one-dimensional variable range hopping model, which show that the highly oriented PANI arrays have semiconducting characters.
     In chapter 5, we obtain (PSS/PANI)n multilayer films from highly oriented PANI fiber array and PSS. The results show that the PANI exist in nanoparticles after PANI arrays dissolving in the solvent, the crystallization and molecular structure of the PANI arrays are still preserved. The multilayer films present higher conductivity and lower percolation threshold value than that prepared using traditional PANI particles.
     In chapter 6, the spin self-assembly of (PSS/G+/G-)n multilayer films are investigated, and the results show that the deposited amount against the bilayers exhibit a linear dependence at different PSS/G+/G- ratios, indicating a progressive and uniform deposition process. The multilayer films have thinner thickness at higher rotation speed (ω), and the deposition amount of surfactants (C16TAB and sodium dodecylsulfate) modified graphite nanoplatelets against theω-1/2 exhibit a direct proportion relationship. We can control the conductivity and percolation threshold value by adjusting PSS/G+/G- ratios. Generally, the films prepared at high PSS/G+/G- ratio have high conductivity and low percolation threshold. Furthermore, we also obtain the fact that smaller size of graphite nanoplatelets are expected to fabricate the spin self-assembly multilayer films with higher conductivity and lower percolation threshold value.
     Based on above, we prepare some kinds of highly conducting multilayer films by using self-assembly method. The relationships between the preparation conditions, structure and conductivity are investigated, and we find a percolation behaviour of conductivity for the multilayer film, and propose percolation mechanism. These results deepen and widen the research field of self-assembled conducting multilayer films in materials preparation, conductivity properties and conducting mechanism, and promote the development of the highly conducting self-assembled multilayer films.
引文
[1] Blodgett K.B., Langmuir I. Built-up films of Barium stearate and their optical properties. Physical Review 1937;57:964-982.
    [2] Kuhn H., M?bius D. Systeme aus monomolekularen schicten. Zeuamenbau and chemische verhalten. Angewandte Chememie 1971;83:672-690.
    [3] Netzer L., Sagiv J. A new approach to construction of artificial monolayer assemblies. Journal of the American Chemical Society 1983;105:674-676.
    [4] Lee H., Kepley J., Hong H.G., Mallouk T.E. Inorganic analogs of Langmuir-Blodgett films: adsorption of ordered zirconium 1,10-decanebisphosphonate multilayers o silicon surfaces. Journal of the American Chemical Society 1988;110:618-620.
    [5] Decher G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 1997;277:1232-1237.
    [6] Blodgett K.B. Films built by depositing successive monomolecular layers on a solid surface. Journal of the American Chemical Society 1935;57:1007-1022.
    [7] Allara D.L., Nuzzo R.G. Spontaneously organized molecular assemblie. 1. Formation, dynamics, and physical properties of n-alkanoic acids adsorbed from solution on an oxidized aluminum surface. Langmuir 1985;1:45-52.
    [8] Allara D.L., Nuzzo R.G. Spontaneously organized molecular assemblie. 2. Quantitative infrared spectroscopic determination of equilibrium structures of solution-adsorbed n-alkanoic acids on an oxidized aluminum surface. Langmuir 1985;1:52-66.
    [9] Ogawa H., Chihera T., Taya K. Selective monomethyl esterification of dicarboxylic acids by use of monocarboxylate chemisorption on alumina. Journal of the American Chemical Society 1985;107:1365-1369.
    [10] Tao Y.T. Structural comparison of self-assembled monolayers of n-alkanoic acids on the surface of silver, copper, and aluminum. Journal of the American Chemical Society 1993;115:4350-4358.
    [11] Sagiv J. Origanized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces. Journal of the American Chemical Society 1980;102:92-98.
    [12] Brandriss S., Margel S. Synthesis and characterization of self-assembled hydrophobic monolayer coatings on silica colloids. Langmuir 1993;9:1232-1240.
    [13] Finklea H.O., Robinson L.R., Blackburn A., Richter B., Allara D.L., Bright T. Formation of an organized monolayer by solution adsorption of octadecyltrichlorosilane on gold: electrochemical properties and structural characterization. Langmuir 1986,2:239-244.
    [14] Dubois L.H., Nuzzo R.G. Model organic rearrangements on aluminum surfaces. Annual Review of Physical Chemistry 1992;43:437-463.
    [15] Bain C.D., Whitesides G.M. Modeling organic surfaces with self-assembled monolayers. Adv Mater 1989,1:506-512.
    [16] Bain C.D., Troughton E.B., Tao Y.T., Evall J., Whitesides G.M., Nuzzo R.G. Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. Journal of the American Chemical Society 1989;111:321-335.
    [17] Cao G., Hong H.G., Mallouk T.E. Layered metal phosphates and phosphonates: from crystals to monolayers. Accounts of Chemical Research 1992;25:420-427.
    [18] Lee H., Kepley L.J., Hong H.G., Mallouk T.E. Inorganic analogs of Langmuir-Blodgett films: adsorption of ordered zirconium 1,10-decanebisphosphonate multilayers on silicon surfaces. Journal of the American Chemical Society 1988;110:618-620.
    [19] Lee L., Kepley L.J., Hong H.G., Akhter S., Mallouk T.E. Adsorption of ordered zirconium phosphonate multialyer films on silicon and gold surfaces. Journal of Physical Chemistry 1988;92:2597.
    [20] Katz H.E., Scheller R.G., Putvinski T.M., Schilling M.L., Wilson W.L., Chidsey C.E. D. Polar orientation of dyes in robust multilayers by zirconium phosphate-phosphonate interlayers. Science 1991:1485-1487.
    [21] Katz H.E., Schilling M.L. Electrical properties of multilayers based on zirconium phosphate/phosphonate bonds. Chemistry of Materials 1993;5:1162-1166.
    [22] Linford M.R., Chidsey C.E.D. Alkyl monolayers covalently bonded to silicon surfaces. Journal of the American Chemical Society 1993;115:12631-12632.
    [23] Linford, M.R., Chidsey C. E.D., Fenter P. Eisenberger P.M. Alkyl monolayers on silicon prepared from 1-alkenes and hydrogen-terminated silicon. Journal of the American Chemical Society 1995;117:3145-3155.
    [24] Tillman N., Ulman A., Penner T. L. Formation of multilayers by self-assembly. Langmuir 1989;5:101-111.
    [25] Silberzan P., Le’ger L., Ausserre D., Benattar J.J. Silanation of silica surfaces. A new method of constructing pure or mixed monolayers. Langmuir 1991;7:1647-1651.
    [26] Netzer L., Iscovichi R., Sagiv J.Adsorbed monolayers versus Langmuir-Blodgett monolayers-why and how? II: Characterization of built-up films constructed by stepwise adsorption of individual monolayers. Thin Solid Films 1983;100:67-76.
    [27] Decher G., Hong J.D. Buildup of ultrathin multilayer films by a self-assembly process: I. Consecutive adsorption of anionic and cationic bipolar amphiphiles. Makromolekulare Chemie 1991;46:321-327.
    [28] Decher G., Hong J.D., Schmitt J. Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 1992;210-211:831-835.
    [29] Decher G., Schmitt J. Fine-tuning of the film thickness of ultrathin multilayer films composed of consecutively alternating layers of anionic and cationic polyelectrolytes. Progress in Collid and Polymer Science 1992;89:160-164.
    [30] Zerkowski J.A., Whitesides G.M. Steric control of secondary, solid-state architecture in 1:1 complexes of melamines and barbiturates that crystallize as crinkled tapes. Journal of the American Chemical Society 1994;116:4298-4304.
    [31] Yang J., Marendaz J.L., Geib S.J., Hamilton A.D. Hydrogen bonding control of self-assembly: simple isophthalic acid derivatives from cyclic hexameric aggregates. Tetrahedron Letters 1994;35:3665-3668.
    [32] Gallant M., Viet M.T.P., Wuest J.D. Use of hydrogen bonds to control molecular aggregation. Association of dipyridones joined by flexible spacers. Journal of Organic Chemistry 1991;56:2284-2286.
    [33] Wang L.Y., Wang Z.Q., Zhang X., Shen J.C., Chi L.F., Fuchs H. A new approach for the fabrication of an alternating multilayer film of poly(4-vinylpyridine) and poly(acrylic acid) based on hydrogen bonding. Macromolecular Rapid Communications 1997;18:509-514.
    [34] Stockton W.B., Rubner M.F. Molecular-level processing of conjugated polymers. 4. Layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions.Macromolecules 1997;30:2717-2725.
    [35] Wang L.Y., Fu Y., Wang Z.Q., Fan Y.G., Zhang X. Investigation into an alternating multilayer film of poly(4-vinylpyridine) and poly(acrylic acid) based on hydrogen bonding. Langmuir 1999;15:1360-1363.
    [36] Fu Y., Bai S.L., Cui S.X., Qiu D.L., Wang Z.Q., Zhang X. Hydrogen-bonding-directed layer-by-layer multilayer assembly: reconformation yielding microporous films. Macromolecules 2002;35:9451-9458.
    [37] Lvov Y., Ariga K., Ichinose I., Kunitake T. Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption. Journal of the American Chemical Society 1995;117:6117-6123.
    [38] Lang J., Liu M. Layer-by-layer assembly of DNA films and their interactions with dyes. Journal of Physical Chemistry B 1999;103:11393-11397.
    [39] Serizawa T., Takeshita H., Akashi M. Electrostatic adsorption of polystyrene nanospheres onto the surface of an ultrathin polymer film prepared by using an alternate adsorption technique. Langmuir 1998;14:4088-4094.
    [40] Kleinfeld E.R., Ferguson G.S. Stepwise-formation of multilayered nanostructural films from macromolecular precursors. Science 1994:370-373.
    [41] Linford M.R., Auch M., Mohwald H. Nonmonotonic effects of ionic strength on surface dye extraction during dye-polyelectrolyte multilayer formation. Journal of the American Chemical Society 1998;120:178-182.
    [42] Liu M., Kira A., Nakahara H. Two-dimensional aggregation of a long-chain thiacarbocyanine dye monolayer on polyanion subphases. Journal of Physical Chemistry 1996;100:20138-20142.
    [43] Ray K., Nakahara H. Adsorption of sulforhodamine dyes in cationic Langmuir-Blodgett films: spectroscopic and structural studies. Journal of Physical Chemistry B 2002;106:92-100.
    [44] Liu M., Lang J., Nakahara H. Interactions of an amphiphilic thiacarbocyanine dye with polypeptides and DNA at the air/water interface. Colloids and Surfaces A 2000;175:153-159.
    [45] Liu J.F., Yang K.Z., Lu Z.H. Controlled assembly of regular composite nanowire arrays and their multilayers using electropolymerized polymers as templates. Journal of the American Chemical Society 1997;119:11061-11065.
    [46] Chan E.L., Lee D.C., Ng M.K., Wu G.H., Lee K.Y., Yu L. A novel layer-by-layer approach toimmobilization of polymers and nanoclusters. Journal of the American Chemical Society 2002;124:12238-12243.
    [47] Such G.K., Quinn J.F., Quinn A., Tjipto E., Caruso F. Assembly of ultrathin polymer multilayer films by click chemistry. Journal of the American Chemical Society 2006;128:9318-9319.
    [48] Kolb H.C., Finn M.G., Sharpless K.B. Click chemistry: Diverse chemical function from a few good reactions. Angewandte Chemie International Edition 2001;40:2004-2021.
    [49] Shimazaki Y., Mitsuishi M., Ito S., Yamamoto M. Preparation of the layer-by-layer deposited ultrathin film based on the charge-transfer interaction. Langmuir 1997;13:1385-1387.
    [50] Iler R.K. Multilayers of colloidal particles. Journal of Colloid and Interface Science 1966;21:569-594.
    [51] Kolarik L., Furlong D. N., Joy H., Struijk C., Rowe R. Building assemblies from high molecular weight polyelectrolytes. Langmuir 1999;15:8265-8275.
    [52] Laschewsky A., Mayer B., Wischerhoff E., Arys X., Jonas A. Polyelectrolyte complexes at interfaces. Bunsenges Ber Physical Chemistry 1996;100:1033-1038.
    [53] Bertrand P., Jonas A., Laschewsky A., Legras R. Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties. Macromolecular Rapid Communications 2000;21:319-348.
    [54] Anzai J. I., Nakamura N. Preparation of active avidin films by a layer-by-layer deposition of poly(vinyl sulfate) and avidin on a solid surface. Journal of Chemical Society Perkin Trans 1999;2:2413-2414.
    [55] Chen W., McCarthy T.J. Layer-by-layer deposition: A tool for polymer surface modification. Macromolecules 1997;30:78-86.
    [56] Hsieh M.C., Farris R.J., McCarthy T.J. Surface“priming”for layer-by-layer deposition: Polyelectrolyte multilayer formation on alllamine plasma-modified poly(tetrafluoroethylene). Macromolecules 1997;30:8453-8458.
    [57] Ghosh P., Crooks R.M. Covalent grafting of a patterned, hyperbranched polymer onto a plastic substrate using microcontact printing. Journal of the American Chemical Society 1999;121:8395-8396.
    [58] Lvov Y., Essler F., Decher G. Combination of polycation/polyanion self-assembly and Langmuir-Blodgett transfer for the construction of superlattice films. Journal of PhysicalChemistry 1993;97:13773-13777.
    [59] Gao M.Y., Zhang X., Yang B., Shen J.C. A monolayer of Pbl2 nanoparticles adsorbed on MD-LB film. Journal of Chemical Society: Chemical Communications 1994;2229-2230.
    [60]吴涛,张希.自组装超薄膜:从纳米层状构筑到功能组装.高等学校化学学报,2001;22:1057-1065.
    [61] Kotov N. A. Layer-by-layer self-assembly: The contribution of hydrophobic interactions. Nanostructured Materials 1999;12:789-796.
    [62] Fischer P., Laschewsky A. Layer-by-layer adsorption of identically charged polyelectrolytes. Macromolecules 2000;33:1100-1102.
    [63] Decher G., Lvov Y., Schmitt J. Proof of multilayer structural organization in self-assembled polycation-polyanion molecular films. Thin Solid Films 1994;244:772-777.
    [64] Dubas S.T., Schlenoff J.B. Factors controlling the growth of polyelectrolyte multilayers. Macromolecules 1999;32:8153-8160.
    [65] Lowack K., Helm C.A. Molecular mechanisms controlling the self-assembly process of polyelectrolyte multilayers. Macromolecules 1998;31:823-833.
    [66] Arys X., Jonas A.M., Laschewsky A., Legras R. Supramolecular Polyelectrolyte Assemblies, In: Supramolecular Polymers, Ciferri A. Ed., Marcel Dekker, New York 2000, p. 505-564.
    [67] Joanny J.F. Polyelectrolyte adsorption and charge inversion. European Physical Journal B 1999;9:117-122.
    [68] Fischer P., Laschewsky A., Wischerhoff E., Arys X., Jonas A., Legras R. Polyelectrolytes bearing azobenzenes for the functionalization of multilayers. Macromolecular Symposia 1999;137:1-24.
    [69] Lvov Y., Ariga K., Onda M., Ichinose I., Kunitake T. A careful examination of the adsorption step in the alternate layer-by-layer assembly of linear polyanion and polycation. Colloids and Surfaces A 1999;146:337-346.
    [70] Ramsden J., Lvov Y., Decher G. Determination of optical constants of molecular films assembled via alternate polyion adsorption. Thin Solid Films 1995;254:246-251.
    [71] Hsieh M.C., Farris R.J., McCarthy T.J. Surface“priming”for layer-by-layer deposition: Polyelectrolyte multilayer formation on allylamine plasma-modified poly(tetrafluoroethylene). Macromolecules 1997;30:8453-8458.
    [72] Wang L., Fu Y., Wang Z., Fan Y., Zhang X. Investigation into an alternating multilayer film of poly(4-vinylpyridine) and poly(acrylic acid) based on hydrogen bonding. Langmuir 1999;15:1360-1363.
    [73] Kleinfeld E.R., Ferguson G.S. Stepwise formation of multilayered nanostructural films from macromolecular precursors. Science 1994;265:370-373.
    [74] Shinbo K., Suzuki K., Kato K., Kaneko F., Kobayashi S. Thermally stimulated currents and electrical conduction in self-assembled ultrathin films. Thin Solid Films 1998;327-329:209-213.
    [75] Lvov Y., Decher G. Assembly of multilayer ordered films by alternating adsorption of oppositely charged macromolecules. Crystallography Reports 1994;39:628-647.
    [76] Okubo T., Suda M. Alternate sign reversal in theζpotential and synchronous expansion and contraction in the absorbed multi-layers of poly(4-vinyl-N-n-butylpyridinium bromide) cations and poly(styrene sulfonate) anions on colloidal silica spheres. Colloid and Polymer Science 1999;277:813-817.
    [77] Schlenoff J.B., Li M. Ber Bunsenges Physical Chemistry 1996;100:943-947.
    [78] Arys X., Jonas A.M., Laguitton B., Legras R., Laschewsky A., Wischerhoff E. Structural studies on thin organic coatings built by repeated adsorption of polyelectrolytes. Progress in OrganicCoatings 1998;34:108-118.
    [79] Losche M., Schmitt J., Decher G., Bouwman W.G., Kjaer K. Detailed structure of molecularly thin polyelectrolyte multilayer films on solid substrates as revealed by neutron reflectometry. Macromolecules 1998;31:8893-8906.
    [80] Hoogeveen N.G., Cohen Stuart M.A., Fleer G.J. Polyelectrolyte adsorption on oxides: II. Reversibility and exchange. Journal of Colloid and Interface Science 1996;182:146-157.
    [81] Kim J., Tripathy S.K., Kumar J., Chittibabu K.G. Fabrication of multilayer thin films via metal-macromolecular ligand complexation. Materials Science and Engineering C 1999; 7:11-18.
    [82] Wu A., Yoo D., Lee J.K., Rubner M.F. Solid-state light-emitting devices based on the trischelated ruthenium complex: 3. high efficiency devices via a layer-by-layer molecular-level blending approach. Journal of the American Chemical Society 1999;121:4883-4891.
    [83] Balladur V., Theretz A., Mandrand B. Determination of the main forces driving DNAoligonucleotide adsorption onto aminated silica wafers. Journal of Colloid and Interface Science 1997;194:408-418.
    [84] Wang L., Fu Y., Wang Z.H., Wang Y., Sun C. Fang Y., Zhang X. Multilayer assemblies of poly(4-vinylpyridine) bearing an osmium complex and poly(acrylic acid) via hydrogen bonding. Macromolecular Chemistry and Physics 1999;200:1523-1527.
    [85] Shimazaki Y., Mitsuishi M., Ho S., Yamamoto M. Preparation and characterization of the layer-by-layer deposited ultrathin film based on the charge-transfer interaction in organic solvents. Langmuir 1998;14:2768-2773.
    [86] Tian J., Wu C.C., Thompson M.E., Sturm J.C., Register R.A., Marsella M.J., Swager T.M. Photophysical properties, self-assembled thin films, and light-emitting diodes of poly(p-pyridylvinylene)s and poly(p-pyridinium vinylene)s. Chemistry of Materials 1995;7:2190-2198.
    [87] Salditt T., An Q., Plech A., Eschbaumer C., Schubert U.S. Monolayers of metallo-spramolecular xomplexes. Chemical Communications 1998:2731-2732.
    [88] Van F., Krasemann L., Tieke B. Ultrathin membranes for gas separation and pervaporation prepared upon electrostatic self-assembly of polyelectrolytes. Thin Solid Films 1998;327-329:762-766.
    [89] Hoogeveen N.G., Cohen M.A., Fleer G.J. Polyelectrolyte adsorption on oxides: II. Reversibility and exchange. Journal of Colloid and Interface Science 1996;182:146.
    [90] Hoogeveen N.G.. Cohen M.A., Fleer G. Polyelectrolyte adsorption on oxides: I. Kinetics and adsorbed amounts. Journal of Colloid and Interface Science 1996;182:133-145.
    [91] Kolarik L., Furlong D.F., Joy H., Struijk C., Rowe R. Building assemblies from high molecular weight polyelectrolytes. Langmuir 1999;15:8265-8275.
    [92] Borukhov I., Andelman D., Orland H. Scaling laws of polyelectrolyte adsorption. Macromolecules 1998;31:1665-1671.
    [93] Linford M.R., Auch M., Mohwald H. Nonmonotonic effect of ionic strength on surface dye extraction during dye-polyelectrolyte multilayer formation. Journal of the American Chemical Society 1998;120:178-182.
    [94] Yoo D., Shiratori S.S., Rubner M.F. Controlling bilayer composition and surface wettability of sequentially adsorbed multilayers of weak polyelectrolytes. Macromolecules1998;31:4309-4318.
    [95] Levasalmi J.M., McCarthy T.J. Poly(4-methyl-1-pentene)-supported polyelectrolyte multilayer films: preparation and gas permeability. Macromolecules 1997;30:1752-1757.
    [96] Kim J., Tripathy S.K., Kumar J., Chittibabu K.G. Fabrication of multilayer thin films via metal-macromolecular ligand complexation. Materials Science and Engineering C 1999;7:11-18.
    [97] Decher G., Schmitt J. Fine-tuning of the film thickness of ultrathin multilayer films composed of consecutively alternating layers of anionic and cationic polyelectrolytes. Progress in Colloid and Polymer Science 1992;89:160-164.
    [98] Zhang X., Sun Y.P., Gao M.L., Kong X.X., Shen J.C. Effects of pH on the supramolecular structure of polymeric molecular deposition films. Macromolecular Chemistry and Physics 1996;197:509-515.
    [99] Ferguson G.S., Kleinfeld E.R. Mosaic tiling in molecular dimensions. Advanced Materials 1995;7:414-416.
    [100] Schmitt J., Decher G., Dressick W.J., Brandow S.L., Geer R.E., Shashidhar R., Calvert J.M. Metal nanoparticle/polymer superlattice films: fabrication and control of layer structure. Advanced Materials 1997;9:61-65.
    [101] Laurent D., Schlenoff J.B. Multialyer assemblies of redox polyelectrolytes. Langmuir 1997;13:1552-1557.
    [102] Hoogeveen N.G., Stuart M.A.C., Fleer G.J. Formation and stability of multilayers of polyelectrolytes. Langmuir 1996;12:3675-3681.
    [103] Lvov Y., Yamada S., Kunitake T. Non-linear optical effects in layer-by-layer alternate films of polycations and an azobenzene-containing polyanion. Thin Solid Films 1997;300:107-112.
    [104] Koetse M., Laschewsky A., Mayer B., Rolland O., Wischerhoff E. Ultrathin coatings by multiple polyelectrolyte adsorption/surface activation (CoMPAS). Macromolecules 1998;31:9316-9327.
    [105] Ghannoum S., Xin Y., Jaber J., Halaoui L.I. Self-assembly of polyacrylate-capped platinum nanoparticles on a polyelectrolyte surface: Kinetics of adsorption and effect of ionic strength and deposition protocol. Langmuir 2003;19:4804-4811.
    [106] Ge C.H., Armstrong N.R., Saavedra S.S. pH-sensing properties of poly(aniline) ultrathin filmsself-assembled on indium-Iin oxide. Analytical Chemistry 2007;79:1401-1410.
    [107] Geskin V.M., Letuchy Y.A., Katsman Y.A. Polyaniline in solution: characterization of acid-base equilibria by means of optical and ESR spectroscopy. Synthetic Metals 1992;48:241-245.
    [108] Heflin J.R., Guzy M.T., Neyman P.J., Gaskins K.J., Brands C., Wang Z., Gibson H.W., Davis R.M., Cott K.E.V. Efficient, thermally stable, second order nonlinear optical response in organic hybrid covalent/ionic self-assembled films. Langmuir 2006;22:5723-5727.
    [109] Kamineni V.K., Lvov Y.M., Dobbins T.A. Layer-by-layer nanoassembly of polyelectrolytes using formamide as the working medium. Langmuir 2007;23:7423-7427.
    [110] Decher G. Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 1997;277:1232.
    [111] Zhang X., Shen J.C. Self-assembled ultrathin films: From layered nanoarchitectures to functional assemblies. Advanced Materials 1999;11:1139-1143.
    [112] Zhang X., Chen H., Zhang H. Layer-by-layer assembly: From conventional to unconventional methods. Chemical Communications 2007:1395-1405.
    [113] Wang W.P., Pan C.Y. Preparation and characterization of polystyrene/graphite composite prepared by cationic grafting polymerization. Polymer 2004;45:3987-3995.
    [114] Elmore P.A., Breazeale MA. Dispersion and frequency dependent nonlinearity parameters in a graphite-epoxy composte. Ultrasonics 2004;41:709-718.
    [115] Moreno-Baron L., Merkoci A., Alegret S. Graphite-epoxy composite as an alternative material to design mercury free working electrodes for stripping voltammetry. Electrochimica Acta 2003;48:2599-2605.
    [116] Chen G.H., Weng W.G., Wu D.J., Wu C.L. PMMA/graphite nanosheets composite and its conducting properties. European Polymer Journal 2003;39:2329-2335.
    [117] Chen G.H., Wu D.J., Weng W.G., Wu C.L. Exfoliation of graphite flake and its nanocomposites. Carbon 2003;41:619-621.
    [118] Chen G.H., Wu C.L., Weng W.G., Wu D.J., Yan W.L. Preparation of polystyrene/graphite nanosheet composite. Polymer 2003;44:1781-1784.
    [119] Kovtyukhova N.I., Ollivier P.J., Martin B.R., Mallouk T.E., Chizhik S.A., Buzaneva E.V., Gorchinskiy A.D. Layer-by-layer assembly of ultrathin composite films from micro-sized graphite oxide sheets and polycations. Chemistry of Materials 1999;11:771-778.
    [120] Cassagneau T., Guerin F., Fendler J.H. Preparation and characterization of ultrathin films layer-by-layer self-assembled from graphite oxide nanoplatelets and polymers. Langmuir 2000;16:7318-7324.
    [121] Mermoux M., Chabre Y., Rousseau A. FTIR and 13C NMR study of graphite oxide. Carbon 1991;29:469-474.
    [122] Lerf A., He H., Riedl T., Forster M., Klinowsk I. 13C and 1H MAS NMR studies of graphite oxide and its chemically modified derivatives. Solid State Ionics 1997, 101-103, 857-862.
    [123] Szabo T., Tombacz E., Illes E., Dekany I. Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides. Carbon 2006;44:537-545.
    [124] Manne S., Cleveland J., Gaub H., Stucky G., Hansma K. Direct visualization of surfactant hemimicelles by force microscopy of the electrical double layer. Langmuir 1994;10:4409-4413.
    [125] Wu J.H., Lin J.M., Zhou M. Synthesis and properties of starch-graft-polyacrylamide/clay superabsorbent nanocomposite. Macromolecular Rapid Communications 2000;21:1032-1034.
    [126] Wu J.H., Wei Y.L., Lin J.M., Lin S.B. Study on starch-graft-acrylamide/mineral powder superabsorbent composite. Polymer 2003;44:6513-6520.
    [127] Lin J.M., Wu J.H., Yang Z.F., Pu M.L. Synthesis and properties of poly(acrylic acid)/Mica superabsorbent nanocomposite. Macromolecular Rapid Communications 2001;22:422-424.
    [128]复旦大学化学系高分子教研组.《高分子实验技术》.上海:复旦大学出版社,1984;34-41.
    [129] Clint J.H. Surfactant aggregation; Chapman and Hall: New York, 1992; Chapter 9.
    [130] Grant L.M., Tiberg F., Ducker W.A. Nanometer-scale organization of ethylene oxide surfactants on graphite, hydrophilic silica, and hydrophobic silica. Journal of Physical Chemistry B 1998;102:4288-4294.
    [131] Patrick H.N., Warr G.G., Manne S., Aksay I.A. Self-assembly structures of nonionic surfactants at graphite/solution interfaces. Langmuir 1997;13:4349-4356.
    [132] Wanless E.J., Davey T.W., Ducker W.A. Surface aggregate phase transition. Langmuir 1997;13:4223-4228.
    [133] Xu S.L., Wang C., Zeng Q.D., Wu P., Wang Z.G., Yan H.K., Bai C.L. Self-assembly of cationic surfactants on graphite surface studied by STM. Langmuir 2002;18:657-660.
    [134] Manne S., Gaub H.E. Molecular organization of surfactants at solid-liquid interfaces. Science 1995;270:1480-1482.
    [135] Jaschke M., Butt H.J., Gaub H.E., Manne S. Surfactant aggregates at a metal surface. Langmuir 1997;13:1381-1384.
    [136] Lamont R.E., Ducker W.J. Surface-induced transformations for surfactant aggregates. Journal of the American Chemical Society 1998;120:7602-7607.
    [137] Ducker W.A., Wanless E.J. Adsorption of hexadecyltrimetrylammonium Bromide to mica: nanometer-scale study of binding-site competition effects. Langmuir 1999;15:160-168.
    [138] Kotov N.A., Dekany I., Fendler J.H. Ultrathin graphite oxide-polyelectrolyte composites prepared by self-assembly: transition between conductive and non-conductive states. Advanced Materials 1996;8:637-641.
    [139] Kovtyukhova N.I., Ollivier P.J., Martin B.R., Mallouk T.E., Chizhik S.A., Buzaneva E.V. Layer-by-layer assembly of ultrathin composite films from micro-sized graphite oxide sheets and polycations. Chemistry of Materials 1999;11:771-778.
    [140] Peckett J., Trens P., Gougeon R., Poppl A., Harris R. Electrochemically oxidized graphite: Characterization and some ion exchange properties. Carbon 2000;38:345-353.
    [141] Yang D., Sacher E. Platinum nanoparticle interaction with chemically modified highly oriented pyrolytic graphite surfaces. Chemistry of Materials 2006;18:1811-1816.
    [142] Zhang B., Wang T., Zhang S., Qiu J., Jian X. Preparation and characterization of carbon membranes made from poly(phthalazinone ether sulfone ketone). Carbon 2006;44:2764-2769.
    [143] Pardo H., Faccio R., Araujo-Moreira F., Lima O., Mombru A. Synthesis and characterization of stable room temperature bulk ferromagnetic graphite. Carbon 2006;44:565-569.
    [144] Chen G.H., Wu D.J., Weng W.G., Yan W.L. Preparation of polymer/graphite conducting nanocomposite by intercalation polymerization. Journal of Applied Polymer Science 2001;82:2506-2518.
    [145] Hashimoto K., Sumitom H., Kowasumi M. Preparation of a new polyamide macromer having a vinylbenyl group from bicyclic oxalactam and its radical copolymerization with styrene. Polymer Bulletin 1984;11:121-128.
    [146] Fukuda K., Kikuya K., Isono K., Yoshio M. Foliated natural graphite as the anode material for rechargeable lithium-ion cells. Journal of Power Sources 1997, 69, 165-168.
    [147] Szabo T., Tombacz E., Illes E., Dekany I. Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides. Carbon 2006;44:537-545.
    [148]郭薇,魏莉,张彤.云母表面金纳米颗粒单层膜的制备.高等学校化学学报,2001;22:1987-1989.
    [149] Schaak R.E., Mallouk T.E. Self-assembly of tiled perovskite monolayer and multilayer thin films. Chemistry of Materials 2000;12:2513-2516.
    [150] Zhao X., Koos A.A., Chu B., Johnston C., Grobert N., Grant P. Spay deposited fluoropolymer/multi-walled carbon nanotube composite films with high dielectric permittivity at low percolation threshold. Carbon 2009;47:561-569.
    [151] Zhang C., Wang L., Wang J., Ma C.A. Self-assembly and conductive network formation of vapor-grown carbon fiber in a poly(vinylidene fluoride) melt. Carbon 2008;46:2053-2058.
    [152] Ganguli S., Roy A.K., Anderson D.P. Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites. Carbon 2008;46:806-817.
    [153] Emmerich F.G., Sousa J.C., Torriani I.L., Luengo C.A. Applications of a granular model and percolation theory to the electrical resistivity of heat treated endocarp of babassu nut. Carbon 1987;25:417-424.
    [154] Ravier J., Houze F., Carmona F., Schneegans O., Saadaoui H. Mesostructure of polymer/carbon black composites observed by conductive probe atomic force microscopy. Carbon 2001;39:314-318.
    [155] Wu J.H., Tang Q.W., Sun H., Lin J.M., Ao H.Y., Huang M.L., Huang Y.F. Conducting film from graphite oxide nanoplatelets and poly(acrylic acid) by layer-by-layer self-assembly. Langmuir 2008;24:4800-4805.
    [156] Xi Y., Bin Y., Chiang C., Matsuo M. Dielectric effects on positive temperature coefficient composites of polyethylene and short carbon fibers. Carbon 2007;45:1302-1309.
    [157] Zhang C., Ma C., Wang P., Sumita M. Temperature dependence of electrical resistivity for carbon black filled ultra-high molecular weight polyethylene composites prepared by hot compaction. Carbon 2005;43:2544-2553.
    [158] Xu H., Dang Z. Electrical property and microstructure analysis of poly(vinylidene fluoride)-based composites with different conducting fillers. Chemical Physics Letters 2007;438:196-202.
    [159] Xiong C., Zhou Z., Xu W., Hu H., Zhang Y., Dong L. Polyurethane/carbon black composites with high positive temperature coefficient and low critical transformation temperature. Carbon2005;43:1788-1792.
    [160] Kohler F. US Patent 3,243,753, 1966
    [161]Panwar V., Sachdev V., Mehra R. Insulator conductor transition in low-density polyethylene-graphite composites. European Polymer Journal 2007;43:573-585.
    [162]李荣群,李威,苗金玲.高分子PTC材料的一种新理论模型.高分子材料科学与工程,2003;19:42-49.
    [163] Hopkins A.R., Reynolds J.R. Crystallization driven formation of conducting polymer networks in polymer blends. Macromolecules 2000;33:5221-5226.
    [164] Zhang X., Gao M.L., Kong X.X., Sun Y.P., Shen J.C. Build-up of a new type of ultrathin film of porphyrin and phthalocyanine based on cationic and anionic electrostatic attraction. Journal of Chemical Society: Chemical Communications 1994:1055-1056.
    [165] Sun Y.P., Zhang X., Sun C.Q., Wang Z.Q., Shen J.C., Wang D.J., Li TJ. Supramolecular assembly of alternating porphyrin and phthalocyanine layers based on electrostatic interactions. Chemical Communications 1996;10:2379-2380.
    [166] Iler R.K. Journal of Colloid and Interface Science 1966;21:569.
    [167] Decher G., Hong J.D. Buildup of ultrathin multilayer films by a self-assembly process: I. Consecutive adsorption of anionic and cationic bipolar amphiphiles. Makromolekulare Chemie 1991;46:321-327.
    [168] Cochin D., Laschewsky A. Layer-by-layer self-assembly of hydrophobically modified polyelectrolytes. Macromolecular Chemistry and Physics 1999;200:609-615.
    [169] Bertrand P., Jonas A., Laschewsky A., Legras R. Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties. Macromolecular Rapid Communications 2000;21:319-348.
    [170] Durstock M.F., Taylor B. Electrostatic self-assembly as a means to create organic photovoltaic devices. Synthetic Metals 2001;116:373-377.
    [171] Weng W.G., Chen G.H., Wu D.J. Crystallization kinetics and melting behaviors of nylon 6/foliated graphite nanocomposites. Polymer 2003;44:8119-8132.
    [172] Lu W., Wu D.J., Wu C.L., Chen G.H. Nonlinear DC response in high-density polyethylene/graphite nanosheets composites. Journal of Materials Science 2006;41:1785-1790.
    [173] Chen G.H., Wu D.J., Weng W.G., Wu C.L. Exfoliation of graphite flake and its nanocomposites.Carbon 2003;41:579-625.
    [174] Wu G., Lin J., Zheng Q., Zhang M.Q. Correlation between percolation behavior of electricity and viscoelasticity for graphite filled high density polyethylene. Polymer 2006;47:2442-2447.
    [175] Kotosonov A.S., Kuvshinnikov S.V., Chmutin I.A., Shevchenko V.G., Ponomarenko A.T., Yenikolopyan NS. Anisotropy in the properties and mechanism of conduction in graphite-filled polypropylene. Polymer Science USSR 1991;33:1631-1637.
    [176] Zhao W.F., Wang H.Q., Tang H.T., Chen G.H. Facile preparation of epoxy-based composite with oriented graphite nanosheets. Polymer 2006;47:8401-8405.
    [177] Xiao P., Xiao M., Gong K.C. Preparation of exfoliated graphite/polystyrene composite by polymerization-filling technique. Polymer 2001;42:4813-4816.
    [178] Chen G.H., Weng W.G., Wu D.J., Wu C.L. PMMA/graphite nanosheets composite and its conducting properties. European Polymer Journal 2003;39:2329-2335.
    [179]邹艳红,刘洪波,傅玲,陈宗璋.氧化石墨在H2还原过程中的结构与性能变化.中国有色金属学报, 2005;15:940-945.
    [180] Matsuo Y., Sugie Y. Electrochemical lithication of carbon prepared from pyrolysis of graphite oxide. Journal of the Electrochemistry Society, 1999;146:2011-2014.
    [181] Xiao M,. Du X.S., Meng Y.Z. The influence of thermal treatment conditions on the structures and electrical conductivities of graphite oxide. New Carbon Materials, 2004;19:92-96.
    [182] Gu T., Huang Z. Thermodynamics of hemimicellization of cetyltrimethylammonium bromide at the silica gel/water interface. Colloids and Surfaces 1989;40:71-76.
    [185] Iler R.K. The Chemistry of Silica; John Wiley & Sons: New York, 1979; pp 680-687.
    [184] Manne S., Cleveland J.P., Gaub H.E., Stucky G.D., Hansma P.K. Direct visualization of surfactant hemimicelles by force microscopy of the electrical double layer. Langmuir 1994;10:4409-4413.
    [185] Ducker W.A., Wanless E.J. Adsorption of hexadecyltrimetrylammonium Bromide to mica: nanometer-scale study of binding-site competition effects. Langmuir 1999;15:160-168.
    [186]余海湖,杨恩宇,陈小幺,李鸿辉,姜德生.有机分子与聚电解质静电吸附成膜特性研究.离子交换与吸附,2004;20:323-330.
    [187] Pauling L. The nature of the chemical bond. Ithaca, NY: Cornell University Press; 1960, p 261.
    [188] Kiraly Z., Findenegg G.H. Calorimetric evidence of the formation of half-cylindrical aggregatesof a cationic surfactant at the graphite/water interface. Journal of Physical Chemistry B 1998;102:1203-1211.
    [189] Wu J.H., Tang Q.W., Sun H., Lin J.M., Ao H.Y., Huang M.L., Huang Y.F. Conducting film from graphtie oxide nanoplatelets and poly(acrylic acid) by layer-by-layer self-assembly. Langmuir 2008;24:4800-4805.
    [190] Kotov N.A., Dekany I., Fendler J.H. Ultrathin graphite oxide-polyelectrolyte composites prepared by self-assembly: Transition between conductive and non-conductive states. Advanced Materials 1996;8:637-641.
    [191] Stockton W.B., Rubner M.F. Molecular-level processing of conjugated polymers. 4. Layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions. Macromolecules 1997;30:2717-2725.
    [192] Ariga K., Hill J.P., Ji Q.M. Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Physical Chemistry Chemical Physics 2007;9:2319-2340.
    [193] Sun J.Q., Wu T., Liu F., Wang Z.Q., Zhang X., Shen J.C. Covalently attached multilayer assemblies by sequential adsorption of polycationic diazo-resins and polyanionic poly(acrylic acid). Langmuir 2000;16:4620-4624.
    [194] Cheung J.H., Stockton W.B., Rubner M.F. Molecular-level processing of conjugated polymers. 3. Layer-by-layer manipulation of polyaniline via electrostatic interactions. Macromolecules 1997;30:2712-2716.
    [195] Farhat T., Yassin G., Dubas S.T., Schlenoff J.B. Water and ion pairing in polyelectrolyte multilayers. Langmuir 1999;15:6621-6623.
    [196] Kovytyukhova N.I., Ollivier P.J., Martin B.R., Mallouk T.E., Chizhik S.A., Buzaneva E.V., Gorchinskiy A.D. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chemistry of Materials 1999;11:771-778.
    [197] Johal M.S., Chiarelli P.A. Polymer-surfactant complexation in polyelectrolyte multilayer assemblies. Soft Matter 2007;3:34-46.
    [198] Kellogg C.J., Mayes A.M., Stockton W.B., Ferreira M., Rubner M.F. Neutron reflectivity investigations of self-assembled conjugated polyion multilayers. Langmuir 1996;12:5109-5113.
    [199] Moriguchi I., Teraoka Y., Kagawa S., Fendler J.H. Construction of nanostructured carbonaceousfilms by the layer-by-layer self-assembly of poly(diallyldimethylammonium) chloride and poly(amic acid) and subsequent pyrolysis. Chemistry of Materials 1999;11:1603-1608.
    [200] Kim Y.S., Liao K.S., Jan C.J., Bergbreiter D.E., Grunlan J.C. Conductive thin films on functionalized polyethylene particles. Chemistry of Materials 2006;18:2997-3004.
    [201] Fou A.C., Rubner M.F. Molecular-level processing of conjugated polymers. 2. Layer-by-layer manipulation of in-situ polymerized p-type doped conducting polymers. Macromolecules 1995;28:7115-7120.
    [202] Cheng J.H., Fou A.F., Rubner M.F. Molecular self-assembly of conducting polymers. Thin Solid Films 1994;244:985-989.
    [203] Shan D., Han E., Xue H.G., Cosnier S. Self-assembled films of hemoglobin/laponite/chitosan: application for the direct electrochemistry and catalysis to hydrogen peroxide. Biomacromolecules 2007;8:3041-3046.
    [204] Peter M., Lammertink R., Hempenius M.A., Vancso G.L. Electrochemistry of surface-grafted stimulus-responsive monolayers of poly(ferrocenyldimethysilane) on gold. Langmuir 2005;21:5115-5123.
    [205] Martinez-Ferrero E., Grosso D., Boissiere C., Sanchez C., Oms O., Leclercq D. Electrochemical investigations into ferrocenylphosphonic acid functionalized mesostructured porous nanocrystalline titanium oxide films. Journal of Materials Chemistry 2006;16:3762-3767.
    [206] Tagliazucchi M., Grumelli D., Calvo E.J. Nanostructured modified electrodes: Role of ions and solvent flux in redox active polyelectrolyte multilayer films. Physical Chemistry Chemical Physics 2006;8:5086-5095.
    [207] Wang B., Vyas R.N., Shaik S. Preparation parameter development for layer-by-layer assembly of Keggin-type polyoxometalates. Langmuir 2007;23:11120-11126.
    [208] Imoto K., Takahashi K., Yamaguchi T., Komura T., Murata K. High-performance carbon counter electrode for dye-sensitized solar cells. Solar Energy Materials and Solar Cells 2003;79:459-69.
    [209] Sun L., Crooks R.M. Indirect visualization of defect structures contained within self-assembled organomercaptan monolayers: combined use of electrochemistry and scanning tunneling microscopy. Langmuir 1993;9:1951-1954.
    [210] Miyano K., Asano K. Adsorption kinetics of water-soluble polymers onto a spread monolayer. Langmuir 1991;7:444-445.
    [211]张宏宇.基于氢键的聚合物多层膜的构筑及结构调控.吉林大学博士学位论文,2005.
    [212] Lu W., Fadeev A.G., Qi B.H., Smela E., Mattes B.R., Ding J., Spinks G.M. Use of ionic liquids forπ–conjugated polymer electrochemical devices. Science 2002;297:983-987.
    [213] Kim B.J., Oh S.G., Han M.G., Im S.S. Preparation of polyaniline nanoparticles in micellar solutions as polymerization medium. Langmuir 2000;16:5841-5845.
    [214] Kaul P.B., Day K.A., Abramson A.R. Application of the three omega method for the thermal conductivity measurement of polyaniline. Journal of Applied Physics 2007;101:83507-83513.
    [215] Virji S., Huang J., Kaner K.B., Weiller B.H. Polyaniline nanofiber gas sensors: Examination of response mechanisms. Nano Letters 2004;4:491-496.
    [216] Huang J.X., Virji S., Weiller B.H., Kaner R.B. Nanostructured polyaniline sensors. Chemistry-A European Journal 2004;10:1314-1319.
    [217] Virji S., Kaner R.B., Weiller B.H. Hydrazine detection by polyaniline using fluorinated alcohol additives. Chemistry of Materials 2005;17:1256-1260.
    [218] Li G., Zhang Z. Synthesis of dendritic polyaniline nanofibers in a surfactant gel. Macromolecules 2004;37:2683-2685.
    [219] Huang J., Kaner R.B. A general chemical route to polyaniline nanofibers. Journal of the American Chemistry Society 2004;126: 851-855.
    [220] Dorey S., Vasilev C., Vidal L., Labbe C., Gospodinova N. Ulthafine nano-colloid of polyaniline. Polymer 2005;46:1309-1315.
    [221] Huang K., Meng X.H., Wan M.X. Polyaniline hollow microspheres constructed with their own self-assembled nanofibers. Journal of Applied Polymer Science 2006;1000:3050-3054.
    [222] Wu C.G., Bein T. Conducting polyaniline filaments in a mesoporous chanel host. Science 1994;264:1757-1759.
    [223] Misoska V., Price W., Ralph S., Wallace G. Electrochemical synthesis of pyrrole through a polystyrene opal matrix. Synthetic Metals 2001;121:1501-1502.
    [224] Cepak V.M., Martin C.R. Preparation of polymeric micro- and nanostructures using a tempalte-based deposition method. Chemistry of Materials 1999;11:1363-1367.
    [225] Skotheim T.A. Elsenbaumer R.L., Reynolds J.R. Handbook of Conducting Polymers, MarcelDekker, New York, 2nd edn., 1997, p 423.
    [226] Zhang X.Y., Manohar S.K. Polyaniline nanofibers: Chemical synthesis using surfactants. Chemical Communications 2004;20:2360-2361.
    [227] Lasic S.S. Liposomes: Form physics to applications, Plenum Press: New York, 1993.
    [228] Wei Z.X., Zhang Z.M., Wan M.X. Formation mechanism of self-assembled polyaniline micro/nanotubes. Langmuir 2002;18:917-921.
    [229] Huang J., Wan M.X. In situ doping polymerization of polyaniline microtubules in the presence ofβ–naphthalenesulfonic acid. Journal of Polymer Science A: Polymer Chemistry 1999;37:151-157.
    [230] Huang K., Wan M.X. Self-assembled polyaniline nanostructures with photoisomerization function. Chemistry of Materials 2002;14:3486-3492.
    [231] Liang L., Liu J., Windisch C.F., Jr., Exarhos G.J., Lin Y. Direct assembly of large arrays of oriented conducting polymer nanowires. Angewandte Chemie-International Edition 2002;41:3665-3668.
    [232] Wei Y., Tang X., Sun Y., Focke W.W. A study of the mechanism of aniline polymerization. Journal of Polymer Science A 1989;27:2385-2396.
    [233] Gospodinova N., Terlemezyan L., Mokreva P., Kossev K. On the mechanism of oxidative polymerization of aniline. Polymer 1993;34:2434-2437.
    [234] Zimmermann A., Kunzelmann U., Dunsch L. Initial states in the electropolymerization of aniline andρ–aminodiphenylamine as studied by in situ FT-IR and UV-Vis spectroelectrochemistry. Synthetic Metals 1998;93:17-25.
    [235] Cram D.J., Hammond G.S. Organic Chemistry; McGraw Hill: New York, 1964; pp 210-211.
    [236] Madathil R., Ponrathman S., Byrne H.J. Evidence of a redox equilibrium assisted chain propagation mode for aniline polymerization: in situ spectral investigation in dodecylbenzene sufonic acid based system. Polymer 2004;45:5465-5471.
    [237] Wang Y.Y., Jing X.L. Formation of polyaniline nanofibers: A morphological study. Journal of Physical Chemistry B 2008;112:1157-1162.
    [238] Xia H.B., Narayanan J., Cheng D.M., Xiao C.Y., Liu X.Y., Chan H.S.O. Formation of ordered arrays of oriented polyaniline nanoparticle nanorods. Journal of Physical Chemistry B 2005;109:12677-12684.
    [239] Zhu Y., Hu D., Wan M.X., Jiang L., Wei Y. Conducting and superhydrophobic Rambutan-like hollow spheres of polyaniline. Advanced Materials 2007:19:2092.
    [240] Zhang Z.M., Wei Z.X., Wan M.X. Nanostructures of polyaniline doped with inorganic acids. Macromolecules 2002;35:5937-5942.
    [241] Hassan P.A., Sawant S.N., Bagkar N.C., Yakhmi J.V. Microstructural changes in SDS micelles induced by hydrotropic salt. Langmuir 2004;18:2543-2548.
    [242] Xia H.B., Chan H.S.O., Xiao C.Y., Cheng D.M. Self-assembled oriented conducting polyaniline nanotubes. Nanotechnology 2004;15:1807-1811.
    [243] Qiu H.J., Zhai J., Li S.H., Jiang L., Wan M.X. Oriented growth of self-assembled polyaniline nanowire arrays using a novel method. Advanced Functional Materials 2003;13:925-928.
    [244] Ding H.J., Wan M.X., Wei Y. Controlling the diameter of polyaniline nanofibers by adjusting the oxidant redox potential. Advanced Materials 2007;19:465-469.
    [245] Mazerolles L., Folch S., Colomban P. Study of polyanilines by high-resolution electron microscopy. Macromolecules 1999;32:8504-8508.
    [246] Heindl A., Kohler H.H. Rod formation of ionic surfactants: A thermodynamic model. Langmuir 1996;12:2464-2477.
    [247] Harada M., Adachi M. Surfactant-mediated fabrication of silica nanotubes. Advanced Materials 2000;12:839-841.
    [248] Li D., Kaner R.B. Shape and aggregation control of nanoparticles: not shake, not stirred. Journal of the American Chemistry Society, 2006;128:968.
    [249] Li W., Zhu M., Zhang Q., Chen D. Expanded conformation of macromolecular chain in polyaniline with one-dimensional nanostructure prepare by interfacial polymerization. Applied Physics Letters 2006;89:103110-103112.
    [250] Wei Z.X., Zhang Z.M., Wan M.X. Formation mechanism of self-assembled polyaniliine micro/nanotubes. Langmuir 2002;18:917-921.
    [251] Anilkumar P., Jayakannan M. New renewable resource amphiphilic molecular design for size-controlled and highly ordered polyaniline nanofibers. Langmuir 2006;22:5952-5957.
    [252] Kim Y.H., Foster C., Chiang J., Heeger A.J. Localized charged excitations in polyaniline: infrared photoexcitation and protonation studies. Synthetic Metals 1989;29:285-290.
    [253] Wan M.X., Yang J. Mechanism of proton doping in polyaniline. Journal of Applied PolymerScience 1995;55:399-405.
    [254] Zhang L.J., Long Y.Z., Chen Z.J., Wan M.X. The effect of hydrogen bonding on self-assembled polyaniline nanostructures. Advanced Functional Materials 2004;14:693-698.
    [255] Kang E.T., Neoh K.G., Tan K.L. Polyaniline: A polymer with many interesting intrinsic redox states. Progress in Polymer Science 1998;23:277-324.
    [256] Srinivasan S., Pramanik P. The effect of hydrogen bonding on self-assembled polyaniline nanostructures. Synthetic Metals 1994;63:199-204.
    [257] Chen S.A., Lee H.T. Structure and properties of poly(acrylic acid)-doped polyaniline. Macromolecules 1995;28:2858-2866.
    [258] Tang J., Jing X., Wang B., Wang F. Infrared spectra of soluble polyaniline. Synthetic Metals 1988;24:231-238.
    [259] Lu F.L., Wudl F., Nowak M., Heeger A.J. Phenyl-capped octaaniline (COA): an excellent model for polyaniline. Journal of the American Chemistry Society 1986;108:8311-8313.
    [260] Wang Y., Rubner M.F. An investigation of the conductivity stability of acid-doped polyanilines. Synthetic Metals 1992;47:255-266.
    [261] Stejskal J., Sapurina I., Trchova M., Konyushenko E.N. Oxidation of aniline: Polyaniline granules, nanotubes, and oligoaniline microspheres. Macromolecules 2008;41:3530-3536.
    [262] Anilkumar P., Jayakannan M. New renewable resource amphiphilic molecular design for size-controlled and highly ordered polyaniline nanofibers. Langmuir 2006;22:5952-5957.
    [263] Wu J.H., Tang Q.W., Li Q.H., Lin J.M. Self-assembly growth of oriented polyaniline arrays: A morphology and structure study. Polymer 2008;49:5262-5267.
    [264] Chen A., Wang H., Zhao B., Li X. The preparation of polypyrrole-Fe3O4 nanocomposites by the use of common ion effect. Synthetic Metals 2003;139:411-415.
    [265] Yoon C.O., Reghu M., Moses D., Heeger A.J. Transport near the metal-insulator: polypyrrole doped with PF6. Physical Review B 1994;49:10851-10863.
    [266] Mott N.F., Davis E.A. Electronic Processes in Non-Crystalline Materials, 2nd ed., Clarendon Press: Oxford, 1979; p. 34.
    [267] Li G.F., Josowicz M., Janata J., Semancik S. Effect of thermal excitation on intermolecular charge transfer efficiency in conducting polyaniline. Applied Physics Letters 2004;85:1187-1189.
    [268] Zabrodski A.G., Zeninova K.N. Low-temperature conductivity and metal-insulator transition in compensate n-Ge. Soviet Physics JETP 1984;59:425-427.
    [269] Zhang Z.M., Wei Z.X., Wan M.X. Nanostructures of polyaniline doped with inorganic acids. Macromolecules 2002;35:5937-5942.
    [270] Li J.S., Wei X.T., Lin Y.S. Synthesis of ordered mesoporous silica membranes containing iron oxide nanocrystallites. Journal of Membrane Science 2008;312:186-192.
    [271] Kim J.H., Fujita S., Shiratori S. Fabrication and characterization of TiO2 thin film prepared by a layer-by-layer self-assembly method. Thin Solid Films 2006;499:83-89.
    [272] Chan W.C.W., Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998;281:2016-2018.
    [273] Kleinfeld E.R., Ferguson G.S. Stepwise formation of multilayered nanostructural films from macromolecular precursors. Science 1994;265:370-373.
    [274] Kovtyukhova N.I., Ollivier P.J., Martin B.R. Layer-by-layer assembly of ultrathin composite films from micro-sized graphite oxide sheets and polycations. Chemistry of Materials 1999;11:771-778.
    [275] Decher G. Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 1997;277:1232.
    [276] Wu J.H., Tang Q.W., Sun H. Lin J.M., Ao H.Y., Huang M.L., Huang Y.F. Conducting film from graphite oxide nanoplatelets and poly(acrylic acid) by layer-by-layer self-assembly. Langmuir 2008;24:4800-4805.
    [277] Stockton W.B., Rubner M.F. Molecular-level processing of conjugated polymers. 3. Layer-by-layer manipulation of polyaniline via electrostatic interactions. Macromolecules 1997;30:2712-2716.
    [278] Fu Y., Chen H., Qiu D.L., Wang Z.Q., Zhang X. Multilayer assemblies of poly(4-vinylpyridine) and poly(acrylic acid) bearing photoisomeric spironaphthoxazine via hydrogen bonding. Langmuir 2002;18:4989-4995.
    [279] Zhang H.Y., Wang D., Wang Z.Q., Zhang X. Hydrogen bonded layer-by-layer assembly of poly(2-vinylpyridine) and poly(acrylic acid): Influence of molecular weight on the formation of microporous film by post-base treatment. European Polymer Journal 2007;43:2784-2791.
    [280] Sukhishvili S.A., Granick S. Investigation of the influence of polyelectrolyte charge density onthe growth of multilayer thin films prepared by the layer-by-layer technique. Macromolecules 2002;35:889-897.
    [281] Caruso F., Furlong D.N., Ariga K., Ichinose I., Kunitake T. Characterization of polyelectrolyte-protein multilayer films by atomic force microscopy, scanning electron microscopy, and fourier transform infrared reflection-absorption spectroscopy. Langmuir 1998, 14, 4559-4565.
    [282] Onda M., Ariga K., Kunitake T.J. Activity and stability of glucose oxidase in molecular films assembled alternately with polyions. Bioscience and Bioengineering 1999;87:69-75.
    [283] Ackern F.V., Krasemann L., Tieke B. Ultrathin membranes for gas separation and pervaporation prepared upon electrostatic self-assembly of polyelectrolytes. Thin Solid Films, 1998;327-329:762-766.
    [284] Wang H., He Y., Tuo X., Wang X. Sequentially adsorbed electrostatic multilayers of branched side-chain polyelectrolytes bearing donor-acceptor type azo chromophores. Macromolecules 2004;37:135-146.
    [285] Huang K., Wan M. Self-assembled nanostructural polyaniline doped with azobenzenesulfonic acid. Synthetic Metals 2003;135-136:173-174.
    [286] Huang J.K, Kaner R.B. A general chemical route to polyaniline nanofibers. Journal of the American Chemical Society 2004;126:851-855.
    [287] De Vito S., Martin C.R. Toward colloidal dispersions of tempalte-synthesized polypyrrole nanotubules. Chemistry of Materials 1998;10:1738-1741.
    [288] Shen Y.Q., Wan M.X. Tubular polypyrrole synthesized by in situ doping polymerization iin the presence of organic function acids as dopants. Journal of Polymer Science A: Polymer Chemistry 1999;37:1443-1449.
    [289] Xin L.Y., Zhang X.G. Preparation and characterization of camphor sulfonic acid doped polyaniline nano-tubes and nano-fibrils by interfacial polymerization. Acta Polymerica Sinica 2005;3:437-441.
    [290] MacDiarmind A.G., Chang J.C., Halpern M., Mu W.S., Somasiri N.L., Wu W., Yaniger S.I. Molecular Crystals and Liquid Crystals 1985;121:187-194.
    [291] Asturias G.E., MacDiarmid A.G., McCall R.P., Epsteinb A.J. The oxidation state of“emeraldine”base. Synthetic Metals 1989;29:157-162.
    [292] Zhang L.J., Wan M.X. Synthesis and characterization of self-assembled polyaniline nanotubes doped with D-10-camphorsulfonic acid. Nanotechnology 2002;13:750-755.
    [293] Zhang Z.M., Wei Z.X., Wan M.X. Nanostructures of polyaniline doped with inorganic acids. Macromolecules 2002;35:5937-5942.
    [294] Caruso F., Niikura K., Furlong D.N., Okahata Y. 1. Ultrathin multilayer polyelectrolyte films on gold: construction and thickness determination. Langmuir 1997;13:3422-3426.
    [295] Ladam G., Schaad P., Decher G. In situ determination of the structural properties of initially deposited polyelectrolyte multilayers. Langmuir 2000;16:1249-1255.
    [296] Donath E., Walther D., Mohwald H. Nonlinear hairy layer theory of electrophoretic fingerprinting applied to consecutive layer by layer polyelectrolyte adsorption onto charged polystyrene latex particles. Langmuir 1997;13:5294-5305.
    [297] Caruso F., Donath E., Mohwald H. Influence of polyelectrolyte multilayer coatings on forster resonance energy transfer between 6-carboxyfluorescein and rhodamine B-labeled particles in aqueous solution. Journal of Physical Chemistry B 1998;102:2011-2016.
    [298] Rieser T., Lunkwitz K., Muller M. Membrane Formation and Modification, ACS Symposium Series, 2000;744:189-204.
    [299] Caruso F., Lichtenfeld H., Donath E. Investigation of electrostatic interactions in polyelectrolyte multilayer films: binding of anionic fluorescent probes to layers assembled onto colloids. Macromolecules 1999;32:2317-2328.
    [300] Park M.K., Onishi K., Locklin J., Caruso F., Advincula R.C. Self-assembly and characterization of polyaniline and surfonated polystyrene multilayer-coated colloidal particles and hollow shells. Langmuir 2003;19:8550-8554.
    [301]Cheung J.H., Stockton W.B., Rubner M.F. Molecular-level processing of conjugated polymers. 3. Layer-by-layer manipulation of polyaniline via electrostatic interactions. Macromolecules 1997;30:2712-2716.
    [302] Quinn J.F., Johnston A.P.R, Such G.K., Zelikin A.N., Caruso F. Chemical Society Reviews Next generation, sequentially assembled ultrathin films: beyond electrostatics. 2007;36:707-718.
    [303] Laurent D., Schlenoff J.B. Multilayer assemblies of redox polyelectrolytes. Langmuir 1997;13:1552-1557.
    [304] Liu A.H., Kashiwagi Y., Anzai J. Polyelectrolyte multilayer films containing ferrocene: effectsof polyelectrolyte type and ferrocene contents in the film on the redox properties. Electroanalysis 2003;15:1139-1142.
    [305] Baur J.W., Rubner M.F., Reynolds J.R., Kim S. Forster energy transfer studies of polyelectrolyte heterostructures containing conjugated polymers: A means to estimate layer interpenetration. Langmuir 1999;15:6460-6469.
    [306] Yoo D., Shiratori S.S., Rubner M.F. Controlling bilayer composition and surface wettability of sequentially adsorbed multilayers of weak polyelectrolytes. Macromolecules 1998;31:4309-4318.
    [307] Hong H.P., Steitz R., Kirstein S., Davidov D. Superlattice structure in poly(phenylenevinylene)-based self-assembled films. Advanced Materials 1998;10:1104.
    [308] Greene B.W. The effect of added salt on the adsorbability of a synthetic polyelectrolyte. Journal of Colloid and Interface Science 1971;37:144-153.
    [309] Motschmann H., Stamm M., Toprakcioglu C. Adsorption kinetics of block copolymers from a good solvent: a two-stage process. Macromolecules 1991;24:3681-3688.
    [310] Hesselink F. On the theory of polyelectrolyte adsorption: The effect on adsorption behavior of the electrostatic contribution to the adsorption free energy. Journal of Colloid and Interface Science 1977;60:448-466.
    [311] Mermut O., Barrett C.J. Effects of charge density and counterions on the assembly of polyelectrolyte multilayers. Journal of Physical Chemistry B 2003;107:2525-2530.
    [312] Raposo M., Oliveira O.N. Adsorption of poly(o-methoxyaniline) in layer-by-layer films. Langmuir 2002;18:6866-6874.
    [313] Breit M., Gao M., Plessen G., Lemmer U., Feldmann J., Cundiff S.T. Formation dynamics of layer-by-layer self-assembled films probed by second harmonic generation. Journal of Chemical Physics 2002;117:3956-3960.
    [314] Lvov Y., Ariga K., Onda M., Ichinose I., Kunitake T. A careful examination of the adsorption step in the alternate layer-by-layer assembly of linear polyanion and polycation. Colloids and Surfaces A 1999;146:337-346.
    [315] Jiang X.M., Chen Z.C., Lv D.S., Wu Q., Lin X.F. Basic law controlling the growth regime of layer-by-layer assembled polyelectrolyte multilayers. Macromolecular Chemistry and Physics 2007;209:175-183.
    [316]Cheung J.H., Stockton W.B., Rubner M.F. Molecular-level processing of conjugated polymers. 3. layer-by-layer manipulation of polyaniline via electrostatic interactions. Macromolecules 1997, 30, 2712-2716.
    [317] Ostrander J.W., Mamedov A.A., Kotov N.A. Two modes of linear layer-by-layer growth of nanoparticle-polyectrolyte multilayers and different interactions in the layer-by-layer deposition. Journal of the American Chemical Society 2001;123:1101-1110.
    [318] Ostrander J.W., Mamedov A.A., Kotov N.A. Two modes of linear layer-by-layer growth of nanoparticle-polyelectrolyte multilayers and different interactions in the layer-by-layer deposition. Journal of the American Chemical Society 2001;123:1101-1110.
    [319] Cheah K., Forsyth M., Simon G.P. Conducting composite using an immiscible polymer blend matrix. Synthetic Metals 1999;102:1232-1233.
    [320] Xie H.Q., Ma Y.M., Guo J.S. Conductive polyaniline-SBS composites from in situ emulsion polymerization. Polymer 1999;40:261-265.
    [321] Sung W.B., Seung S.I. Physical properties and doping characteristics of polyaniline-nylon 6 composite films. Polymer 1998;39:485-489.
    [322] Yang J.P., Rannou P., Planes J., Pron A., Nechtschein M. Preparation of low density polyethylene-based polyaniline conducting polymer composites with low percolation threshold via extrusion. Synthetic Metals 1998;93:169-173.
    [323] Laska J., Zak K., Pron A. Conducting blends of polyaniline with conventional polymers. Synthetic Metals 1997;84:117-118.
    [324] Kim Y.S., Liao K.S., Jan C.J., Bergbreiter D.E., Grunlan J.C. Conductive thin films on functionalized polyethylene particles. Chemistry of Materials 2006;18:2997-3004.
    [325]Cheung J.H., Stockton W.B., Rubner M.F. Molecular-level processing of conjugated polymers. 3. Layer-by-layer manipulation of polyaniline via electrostatic interactions. Macromolecules 1997;30:2712-2716.
    [326] Kimura T., Asano Y., Yasuda S. Self-temperature-control plane heaters by polyethylene glycol-graphite systems. 3. Polymer 1996;37:2981-2987.
    [327] Brom H.B., Adriaanse L.J., Tenunissen P.A.A., Reedijk J.A., Michels M.A.J., Brokken-Zijp J.C.M. Frequency and temperature scaling of the conductivity in percolating fractal networks of carbon-black/polymer composites. Synthetic Metals 1997;84:929-930.
    [328] Dorfman B.F. Critical parameters of percolation in metal-dielectric diamond-like composites of atoic scale. Thin Solid Films 1998;330:76-82.
    [329] Xiao P., Xiao M., Gong K.C. Preparation of exfoliated graphite/polystyrene composite by polymerization-filling technique. Polymer 2001;42:4813-4816.
    [330] Sumfleth J., Prado L., Sriyai M., Schute K. Titania-doped multi-walled carbon nanotubes epoxy composites: Enhanced dispersion and synergistic effects in multiphase nanocomposites. Polymer 2008;49:5105-5112.
    [331] Panwar V., Mehra R.M. Study of electrical and dielectric properties of styrene-acrylonitrile/graphite sheets composites. European Polymer Journal 2008;44:2367-2375.
    [332] Wang B., Vyas R.N., Shaik S. Preparation parameter development for layer-by-layer assembly of Keggin-type polyoxometalates. Langmuir 2007;23:11120-11126.
    [333]Imoto K., Takahashi K., Yamaguchi T., Komura T., Murata K. Solar Energy Materials and Solar Cells 2003;79:459-69.
    [334] Iler R.K. Multilayers of colloidal particles. Multilayers of colloidal particles. Journal of Colloid and Interface Science 1966;21:569-594.
    [335] Fromhertz P. In Electron Microscopy at Molecular Dimension Baumeister W, Vogell W. Ed Springer-Verlag, Berlin, 1980, p 338.
    [336] Decher G., Hong J.D., Schmitt J. Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 1992;210-211:831-835.
    [337] Decher G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 1997;277:1232-1237.
    [338] Zhang X., Shen J.C. Self-assembled ultrathin films: From layered nanoarchitectures to functional assemblies. Advanced Materials 1999;11:1139-1143.
    [339] Zhang Y.J., Yang S.G., Guan Y., Cao W.X., Xu J. Fabrication of stable hollow capsules by covalent layer-by-layer self-assembly. Macromolecules 2003;36:4238-4240.
    [340] Ma N., Wang Y.P., Wang Z.Q., Zhang X. Polymer micelles as building blocks for the incorporation of azobenzene: Enhancing the photochromic properties in layer-by-layer films. Langmuir 2006;22:3906-3909.
    [341] Wang J.F., Jia X.R., Zhong H., Luo Y.F., Zhao X.S., Cao W.X., Li M.Q. Self-assembledmultilayer films based on dendrimers with covalent interlayer linkage. Chemistry of Materials 2002;14:2854-2858.
    [342] Lee J.H., Rhee S.W., Jung D.Y. Selective layer reaction of layer-by-layer assembled layered double-hydroxide nanocrystals. Journal of the American Chemical Society 2007;129:3522-3523.
    [343] Cho J.H., Char R., Hong J.D., Lee K.B. Fabrication of highly ordered multilayer films using a spin self-assembly method. Advanced Materials 2001;13:1076-1078.
    [344] An M.S., Hong J.D. Consecutively spin-assembled layered nanoarchitectures of poly(sodium 4-styrene sulfonate) and poly(allylamine hydrochloride). Thin Solid Films 2006;1-2:74-77.
    [345] Natansohn A., Rochon P. Photoinduced motions in azo-containing polymers. Chemical Reviews 2002;102:4139-4176.
    [346] Ariga K., Hill J.P., Ji Q.M. Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Physial Chemistry Chemical Physics 2007;9:2319-2340.
    [347] Xia D.Y., Li D., Ku Z., Luo Y., Brueck S.R. Top-down approaches to the formation of silica nanoparticle patterns. Langmuir 2007;23:5377-5385.
    [348] Meyerhofer D. Characteristics of resist films produced by spinning. Journal of Applied Physics 1978;49:3993-3997.
    [349] Steinert B.W., Dean D.R. Magnetic field alignment and electrical properties of solution cast PET-carbon nanotube composite films. Polymer 2009;50:898-904.
    [350] Isayev A.I., Kumar R., Lewis T.M. Ultrasound assisted twin screw extrusion of polymer-nanocomposites containing carbon nanotubes. Polymer 2009;50:250-260.
    [351] Pihtili H. An experimental investigation of wear of glass fibre-epoxy resin and glass fibre-polyester resin composite materials. European Polymer Journal 2009;45:149-154.
    [352] He F., Fan J., Lau S. Thermal, mechanical, and dielectric properties of graphite reinforced poly(vinylidene fluoride) composites. Polymer Testting 2008;27:964-970.
    [353] Sumfleth J., de Almeida Prado L.A.S., Sriyai M., Schulte K. Titania-doped multi-walled carbon nanotubes epoxy composites: Enhanced dispersion and synergistic effects in multiphase. Polymer 2008;49:5105-5112.
    [354] Xu S.X., Wen M., Li J., Guo S.Y., Wang M., Du Q., Shen J.B., Zhang Y.Q., Jiang S.L. Structure and properties of electrically conducting composites consisting of alternating layers of purepolypropylene and polypropylene with a carbon black filler. Polymer 2008;49:4861-4870.
    [355] Ahir S.V., Huang Y.Y., Terentjev E.M. Polymers with aligned carbon nanotubes: Active composite materials. Polymer 2008;49:3841-3854.
    [356]Cheung J.H., Stockton W.B., Rubner M.F. Molecular-level processing of conjugated polymers. 3. Layer-by-layer manipulation of polyaniline via electrostatic interactions. Macromolecules 1997;30:2712-2716.
    [357] Stockton W.B., Rubner M.F. Molecular-level processing of conjugated polymers. 4. Layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions. Macromolecules 1997;30:2717-2725.
    [358] Kim Y.S., Liao K.S., Jan C.J., Bergberiter D.E., Grunlan J.C. Conductive thin films on functionalized polyethylene particles. Chemistry of Materials 2006;18:2997-3004.
    [359] Moriguchi I., Teraoka Y., Kagawa S., Fendler J.H. Construction of nanostructured carbonaceous films by the layer-by-layer self-assembly of poly(diallyldimethylammonium) chloride and poly(amic acid) and subsequent pyrolysis. Chemistry of Materials 1999;11:1603-1608.
    [360] Fou A.C., Rubner M.F. Molecular-level processing of conjugated polymers. 2. Layer-by-layer manipulation of in-situ polymerized p-type doped conducting polymers. Macromolecules 1995;28:7115-7120.
    [361] Zhang J., Mine M., Zhu D., Matsuo M. Electrical and dielectric behaviors and their origins in the three-dimensional polyvinyl alcohol/MWCNT composites with low percolation threshod. Carbon 2009;47:1311-1320.
    [362] Zhao X., Koos A.A., Chu B., Johnston C., Grobert N., Grant P.S. Spray deposited fluoropolymer/multi-walled carbon nanotube composite films with high dielectric permittivity at low percolation threshod. Carbon 2009;47:561-569.
    [363] Cai D.Y., Song M. Latex technology as a simple route to improve the thermal conductivity of a carbon nanotube/polymer composite. Carbon 2008;46:2107-2112.
    [364] Ma X.F., Chang P.R., Yu J.G., Lu P.L. Characterization of glycerol plasticized-starch (GPS)/carbon black (CB) membranes prepared by melt extrusion and microwave radiation. Carbohydrate Polymers 2008;74:895-900.
    [365] Aoki K., Kawaguchi F., Nishiumi T., Chen J.Y. Electrically conducting suspensions formed by polyaniline. Electrochimica Acta 2008;53:3798-3802.
    [366] Tang Q.W., Wu J.H., Li Q.H., Lin J.M. High conducting multilayer films from poly(sodium styrenesulfonate) and graphite nanoplatelets by layer-by-layer self-assembly. Polymer 2008;49:5329-5335.
    [367] Dominguez H. Self-aggregation of the SDS surfactant at a solid-liquid interface. Journal of Physical Chemistry B 2007;111:4054-4059

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700