丙烯酸—丙烯酰胺共聚纤维及其吸水性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在较全面分析高吸水纤维特征及吸水机理、类型及制备方法、应用及发展趋势的基础上,以含亲水性基团的丙烯酸、丙烯酰胺为单体,含活性反应基团的不饱和单体为潜交联剂合成线性成纤聚合物,并采用先纺丝成形而后交联的方法,制备出具有较高吸水保水性能的丙烯酸—丙烯酰胺共聚物纤维。研究了潜交联剂种类、潜交联剂用量、交联温度及交联时间等因素对交联后丙烯酸—丙烯酰胺共聚物吸水性能的影响,结果表明,以含有活性羟基且具有不饱和双键的丙烯酸-2-羟丙酯为潜交联剂,其用量为单体质量1wt%,在140℃下交联30min所得丙烯酸—丙烯酰胺共聚物交联结构较为完善,饱和吸水率可达400g/g,饱和吸盐水率可达60g/g。
     以过硫酸钾(KPS)为引发剂、丙烯酸-2-羟丙酯(HQ)为潜交联剂、经球磨处理的酸活化海泡石为填料,采用水溶液聚合填充法制备海泡石填充丙烯酸-丙烯酰胺共聚物(PAAMx),并经后交联处理赋予其交联结构。研究了KPS用量、AA中和度及海泡石用量对聚合反应动力学的影响,并讨论了海泡石用量、交联温度和交联时间对CPAAMx吸水性能的影响。结果表明,本研究范围内的最佳聚合条件是:KPS用量为0.5wt%,AA中和度为60%,海泡石用量为5wt%;最佳交联条件为:交联温度为140℃,交联时间为30min。
     对丙烯酸-丙烯酰胺共聚物(PAAM)水溶液的流变行为进行拟合分析发现,PAAM水溶液的流变行为符合符合Ostwald-de Wale幂律方程,粘均分子量和测试温度均对PAAM水溶液的流变行为有较大影响。随PAAM粘均分子量增大,溶液的表观粘度增大,非牛顿流动性突出:随测试温度升高,溶液的表观粘度降低,非牛顿流动性突出。
     对海泡石改性PAAM悬浊液(PAAMx悬浊液)的流变行为进行拟合分析发现,当海泡石用量较小时,PAAMx悬浊液的流变行为符合Ostwald-de Wale幂律方程;当海泡石用量较大时,PAAMx悬浊液的流变行为符合Hersche-Bulkley流动模型。海泡石用量和PAAMx悬浊液的浓度对悬浊液的流变行为均有一定影响。随海泡石用量增大,PAAMx悬浊液的表观粘度下降,其非牛顿流动性更为显著;随PAAMx悬浊液的浓度增大,其表观粘度增大,非牛顿性也明显增大。
     以KPS为引发剂、HQ为潜交联剂、经球磨处理的酸活化海泡石为填
On the basis of the analysis of the characteristic and mechanism, type and preparation method, research and application development of superabsrobent fibers, acryle acid (AA) and acrylamide (AM) were chosen as monomers because of the hydrophilic side group on their molecules. 2-hydropropyl acrylate (HQ) was used as potential crosslinking agent due to its activating hydroxyl group and its unsaturated bond. Copoly (acrylic acid-acrylamide) (PAAM) was prepared by aqueous solution polymerization, and CPAAM fibers with three- dimensional network structure were prepared by heat treatment after spinning of PAAM aqueous solution. Sepiolite-filled CPAAM (CPAAMx) fibers, PVA-CPAAM blend fibers and aliphatic alcohols modified CPAAM fibers were made by introducing sepiolite, PVA and aliphatic alcohols into CPAAM fibers, respectively. The factors, on which the structures and properties of the fibers depended, the rheology of PAAM aqeous solution and sepiolite-filled PAAM suspension, the mechnism of crosslinking and the effect of three-dimensional network structure on the water absorptive properties of fibers were studied.The effect of potential crosslinking agent type and content, crosslinking temperature and time on the water absorptive property of CPAAM was firstly studied. The results showed that per gram CPAAM, which was prepared by chosing HQ as a potential crosslinking agent with content of lwt% and heat crosslinking at 140°C for 30 minutes, could absorb 400 g distilled water or 60 g 0.9% NaCl solution.The effect of polymerizing conditions on the copolymerization kinetics and the dependence of water absorptive properties of PAAMx on its sepio-lite content and crosslinking condition were studied. The optimal polymerizing conditions in this research were: initiator content of 0.5wt%, AA neutralization of 60% and sepiolite content of 5wt%. The optimal crosslinking conditions in this research were crosslinking for 30min at 140℃.The rheology of PAAM aqueous solution and sepiolite-filled PAAM suspension was investigated. The decrease of shear viscosity with increasing
    shear rate showed the shear shinning. Lower average viscosity molecular weight and higher temperature would lead to a lower shear viscosity of PAAM aqueous solution. The shear viscosity of sepiolite-filled PAAM suspension decreased with the increase in sepiolite content and its concentration.The study of CPAAMx fiber showed the complementary of the organic phase and inorganic phase in the fiber. The results indicated that, the gel fraction, thermal stability, tensile strength and water absorptive property of the fiber were developed by filling some sepiolite in the fiber. Fiber which contained 3wt% sepiolite obtained higher water absorbency with the water retention of more than 80%.The study of PVA-CPAAM blend fiber showed the changing of congery states of both PVA and PAAM molecules after mixing. Chemical crosslink points between PAAM molecules were formed after heat-treatment, and the water absorbency of fibers decreased with the increase in crosslinking temperature and time. Tensile properties of PVA-CPAAM blend fibers were also studied. The results showed that PVA-CPAAM blend fibers could be used for nonwoven manufacture.The dependence of modifying effective and water absorptive properties of aliphatic alcohols modified fibers on alkyl chain length of aliphatic alcohols and volume ratio of isopropyl alcohol to water (Hmix) in the modified mixture was studied. Incipiently, the modified fibers with longer alkyl chain had higher modifying effective. With the increase in modifying time, the modifing effective of fibers with shorter alkyl chain increased quickly. In this research, the fibers modified by 1-butanol mixture for 1 ~ 6 min with Hmix of 1/1 obtained better water absorptive properties.
引文
[1] G. F. Fanta, R. C. Burr, C. R. Russell, C. E. Rist, Graft copolymers of starch. I. Copolymerization of gelatinized wheat starch with acrylonitrile. Fractionation of copolymer and effect of solvent on copolymer composition, Journal of Applied Polymer Science, 1966, 10(6): 929~931
    [2] M.O. Weaver, E. B. Bagley, G. F. Fanta, et al, Highly absorbent starch-containing polymeric compositions, USA, USP 3, 981, 100 (1976.9.21)
    [3] N.W. Taylor, G. F. Fanta, W. M. Doane, C. R. Russell. Swelling and rheology of saponified starch-g-polyacrylonitrile copolymers: Effect of starch granule pretreatment and grafted chain length, Journal of Applied Polymer Science, 1978, 22(5): 1343~1357
    [4] Superabsorbent fibers: market trends. Chemical fibers international, 1998, 48(3): 89~91
    [5] 高吸水纤维市场前景广阔,化工时刊,1998,1(1):44~45
    [6] 汪多仁,高吸水纤维的合成与应用,生活用纸,2002,(10):41~42
    [7] 水上义胜,手岛勉,上利胜美等,一种高吸水纤维,日本,JP 44,247/92(1992.8.19)
    [8] 高桥智三,杨德富,超吸水纤维,广西化纤通讯,1992,20(2):55~65
    [9] Y.J. Kim, K. J. Yoon, S. W. Ko, Preparation and properties of alginate superabsorbent filament fibers crosslinked with glutaraldehyde, Journal of Applied Polymer Science, 2000, 78(10): 1797~1804
    [10] W. Dohrn, P. Buttner, C. Knobelsdorf, Alceru superabsorb-New high absorption lyocell fiber, Chemical Fibers International, 2002, 52: 405~407
    [11] 孙玉山,徐纪纲,骆强,超吸水纤维聚合工艺和聚合原液可纺性研究,合成纤维,2000,29(6):23~25
    [12] 高科技纤维新宠,技术与市场,2002,(8):8~9
    [13] 曹达戈,李胜海,胡淦中,高蓬松、强收缩吸水性纤维的丌发,合成纤维,2002,31(6):27~28,32
    [14] O. Shozo, Production of super water-absorbing fiber, Japan, JP 1, 148, 874, 1989.6.12
    [15] 柯金炼,林杰,丙烯酸与CMC接枝共聚合反应及吸水性能的研究,福建林业科技,1999,26(4):27~30
    [16] 王俊,姚评佳,吕鸣群等,丙烯酸与CMC在~(60)Co辐照下的接枝聚合反应,广西大学学报(自然科学版),2002,27(4):305~308
    [17] 佐佐木幸治,川中直树,高吸水性復合糸及用纖維构造物,日本,特開2001-329439(2001.11.27)
    [18] T. Hayashi, Crosslinked acrylic moisture absorbing fibers and production methods thereof, USA, USP 6, 736, 856(2004.5.18)
    [19] 林昆华,蔡冬梅,一种高吸水纤维及用其制成的高吸水纸,化学研究与应用,2000,12(3):339~342
    [20] H.T. Deo, V. D. Gotmare, Acrylonitrile monomer grafting on gray cotton to impart high water absorbency, Journal of Applied Polymer Science, 1999, 72(7): 887~894
    [21] K.Y. Lim, K. J. Yoon, B. C. Kim, Highly absorbable lyocell fiber spun from celluloses/hydrolyzed starch-g-PAN solution in NMMO monohydrate, European Polymer Journal, 2003, 39(11): 2115~2120
    [22] L. Katz, H. Hollenberg, et al, Superabsorbent coated fibers and method for their preparation, USA, USP 4, 888, 238(1989.12.9)
    [23] 沼田长之著,陈龙云译,高吸水吸湿纤维BELL OASIS,国外纺织技术,2002,4:7~9
    [24] L.K. Bi, Polymer compositions and absorbent fibers produced therefrom, USA, USP 5, 026, 784(1991.6.25)
    [25] M. Yoshilatsu, Highly water-absorbent fiber, Europe, EP 0, 609, 464 (1994.8.10)
    [26] 邓新华,孙元,边栋才等,PVA/PAA-AM共混高吸水纤维的微观结构与吸液能力,精细化工,2005,22(3):177~180
    [27] 唐世君,于守健,一种新型舒适材料-高吸水HYGRA纤维,中国个体 防护装备,2001,(3):20~21
    [28] 孙玉山,骆强,朱庆松等,超吸水纤维的制造方法及其纤维,中国,CN 1,407,147(2003.4.2)
    [29] 大井康弘,拹谷满,一,纤维工业,1996,52(9):28~29
    [30] Akers, Paul J. Future for superabsorbent fibres. Technical Textiles International, 1997, 6 (1): 20~23
    [31] T. Katsuhiko, Collating method for standard-size sheet, Japan, JP 6, 247, 609(1994.9.6)
    [32] Sheu, Cables such as optical fiber cables including superabsorbent polymeric materials which are temperature and salt tolerant, USA, USP 5, 163, 115(1992.11.10)
    [33] 佘万能,沈革新,彭长征等,光缆或电缆用高吸水膨胀型阻水纱,中国,CN 1,349,228(2002.5.15)
    [34] U.Takakiyo, Alkaline battery, Japan, JP 6, 125, 6562, 1986.11.14
    [35] 林道,食品包装用高吸水纤维,包装与食品机械,2003,21(2):38~40
    [36] F. Katahira, K. Hakari, A. Ando, Development of new asbestos-free FRC building materials, Sumitomo Metals, 1992, 44(5): 172~179
    [37] 高茜斐,赵耀明,高吸水性纤维,合成纤维,2002,35(4):24~26
    [38] No guarantees-Only opportunities, Nonwovens Report International, 2002, (377): 20~27
    [39] E. Rezai, R. Warner, Polymer-grafted cellulose fibers. Ⅰ. Enhanced water absorbency and tensile strength, Journal of Applied Polymer Science, 1997, 65(8): 1463~1469
    [40] D.E. Henton, C. Powell, R. E. Reim, The decomposition of sodium persulfate in the presence of acrylic acid, Journal of Applied Polymer Science, 1997, 64(3): 591~560
    [41] S.S. Cutie, D. E. Henton, C. Powell, et al, The effects of MEHQ on the polymerization of acrylic acid in the preparation of superabsorbent gels, Journal of Applied Polymer Science, 1997, 64(3): 577~589
    [42] Z.S. Liu, G. L. Rempel, Preparation of superabsorbent polymers by crosslinking acrylic acid and acrylamide copolymers, Journal of Applied Polymer Science, 1997, 64(7): 1345 ~ 1353
    [43] H. Omidian, S. A. Hashemi, P. G. Sammes, et al, Modified acrylic-based superabsorbent polymers. Effect of temperature and initiator concentration, Polymer, 1998, 39(15): 3459 ~ 3466
    [44] M. D. Li, Y. Y. Zhou, Influence of suspension parameters on water absorbency of starch-g-poly(sodium acrylate) synthesized by inverse suspension polymerization, Journal of Donghua University(End.), 2002, 19(1): 1 ~4
    [45] R. Skouri, F. Schosseler, J. P. Munch, et al, Swelling and elastic properties of polyelectrolyte gels Macromolecules, 1995, 28(1): 197-210
    [46] O. Okay, S. B. Aariisik, S. D. Zor, Swelling behavior of anionic acrylamide-based hydrogels in aqueous salt solutions: Comparison of experiment with theory, Journal of Applied Polymer Science, 1998, 70(3): 567 ~ 575
    [47] K. J. Yao, W. J. Zhou, Synthesis and water absorbency of the copolymer of acrylamide with anionic monomers, Journal of Applied Polymer Science, 1994, 53(11): 1533 ~ 1538
    [48] C. B. Shah, S. M. Barnett, Swelling behavior of hyaluronic acid gels, Journal of Applied Polymer Science, 1992, 45(2): 293 ~ 298
    [49] M. Yoshinabu, M. Morita, I. Sakata, Porous structure and rheological properties of hydrogels of highly water-absorptive cellulose graft copolymers, Journal of Applied Polymer Science, 1992, 45(5): 805 ~812
    [50] W. F. Lee, R. J. Wu, Superabsorbent polymeric materials. I. Swelling behaviors of crosslinked poly(sodium acrylate-co-hydroxyethyl methacrylate) in aqueous salt solution, Journal of Applied Polymer Science, 1996,62(7): 1099~1114
    [51] B. Erman, P. J. Flory, Critical phenomena and transitions in swollen polymer networks and in linear macromolecules, Mcromolecules, 1986, 19(9): 2342~2348
    [52] S. Kiatkamjornwong, P. Suwanmala, Partially hydrolyzed polyacrylamide- poly (N-vinylpyrrolidone) copolymers as super- absorbents synthesized by gamma irradiation, Journal of Applied Polymer Science, 1998, 68(2): 191 ~ 203
    [53] P. J. Flory, Priciples of polymer chemistry, Cornell University Ithaca, NY, 1953
    [54] P. J. Flory, E. Saiz, B. Erman, Optical anisotropies of aliphatic esters, Journal of Physical Chemistry Table of Contents, 1981, 85(22): 3215 ~ 3221
    [55] P. J. Flory, Structural investigations on poly(4-hydroxy-l-proline). 1. Theoretical studies, Macromolecules, 1979, 12(1): 119~122
    [56] H. S. Choi, I. H. Kim, Y. C. Bac, Swelling behaviors of sub-micron-sized copolymer gel particles: The effect of physical crosslinking, Journal of Polymer Science, Part B: Polymer Physics, 2001,39:1928 ~1934
    [57] P. J. Flory, Introductory lecture, Faraday Discussions of the Chemical Society, 1974,57:7~1
    [58] P. J. Higgs, R. J. Gaylord, Slip-links, hoops and tubes: Tests of entanglement models of rubber elasticity, Polymer, 1990, 31(1): 70 ~ 74
    [59] M Doi, S. F. Edwards, The theory of polymer dynamics, Clarendon: Oxford, 1986
    [60] K. Iwata, S. F. Edwards, Journal of Chemical Physics, New model of polymer entanglement: Localized Gauss integral model. Plateau modulus G_n, topological second virial coefficient A~2 and physical foundation of the tube model, 1989, 90: 4567 ~ 4581
    [61] H. Hiroyuki, Visualizing apparatus of particle of mixed phase system, Japan, JP 5,346,389, 1993.12.27
    [62] M. Bakass, A. Mokhlisse, M. Lallemant, Absorption and desorption of liquid water by a superabsorbent polyelectrolyte: Role of polymer on the capacity for absorption of a ground, Journal of Applied Polymer Science, 2001, 82(6): 1541 ~ 1548
    [63] A. Sannino, M. Madaghiele, F. Conversano, et al, Cellulose derivative- hyaluronic acid-based microporous hydrogels cross-linked through divinyl sulfone (dvs) to modulate equilibrium sorption capacity and network stability, Biomacromolecules, 2004, 5: 92~96
    [64] M. Vamvakaki, S. C. Hadjiyannakou, E. Loizidou, et al, Synthesis and characterization of novel networks with nano-engineered structures: cross-linked star homopolymers, Chemical Material, 2001, 13: 4738~4744
    [65] Fatima Rosa, Joao Bordado, Miguel Casquilho, Dynamic and Equilibrium Swelling of a Sulfonic Acid Superabsorbent Copolymer in Salt Solutions, Journal of Polymer Science: Part B: Polymer Physics, 2004, 42: 505~514
    [66] M. Bakass, A. Mokhlisse, M. Lallemant, Absorption and desorption of liquid water by a superabsorbent polyelectrolyte: Role of polymer on the capacity for absorption of a ground, Journal of Applied Polymer Science, 2001, 82(6): 1541~1548
    [67] A. Sannino, M. Madaghiele, F. Conversano, et al, Cellulose derivativehyaluronic acid-based microporous hydrogels cross-linked through divinyl sulfone (dvs) to modulate equilibrium sorption capacity and network stability, Biomacromolecules, 2004, 5: 92~96
    [68] W.F. Lee, P. L. Yeh, Superabsorbent polymeric materials. Ⅲ. Effect of initial total monomer concentration on the swelling behavior of crosslinked poly (sodium acrylate) in aqueous salt solution, Journal of Applied Polymer Science, 1997, 64: 2371~2380
    [69] K. J. Zhao, W. J. Zhou, Synthesis and water absorbency of the copolymer of acrylamide with anionic monomers, Journal of Applied Polymer Science, 1994, 53: 1533~1538
    [70] 褚建云,王罗新,刘晓东,聚丙烯酸盐高吸水树脂的应用及其改性,皮革科学与工程,2003,13(3):42~45
    [71] 唐群委,林建明,吴季怀等,无机层状矿物/聚合物高吸水性复合材料,应用化工,2005,34(6):328~331
    [72] W.F. Lee, Y. C. Chen, Effect of intercalated reactive mica on water absorbency for poly (sodium acrylate) composite super absorbents, European Polymer Journal, 2005, 47(7): 1605~1612
    [73] A. Li, A.Q. Wang, Sythesis and properties of clay-based super absorbent composite, European Polymer Journal, 2005, 47(7): 1630~ 1637
    [74] J.H. Wu, Y. L. Wei, J.M. Lin, et al, Study on starch-graft-acrylamide/mineral powder super absorbent composite, Polymer, 2003, 44: 6513~6520
    [75] 张健,张民伟,张乐等,高吸水性树脂的耐盐性与凝胶强度改善的研究,石油化工,2002,(12):994~997
    [76] Kabiri Kourosh, Zohuriaan-Mehr, Super absorbent hydrogel composites, Polymer for Advanced Technologies, 2003, 14(6): 438~444
    [77] 唐蜀忠,鲁红升,余渝,两步法制备的AM-AA交联共聚物高吸水树脂的保水性能研究,精细石油化工进展,2003,4(10):4~7
    [78] W.L. Doo, J. Y. Kee, W. K. Sohk, Synthesis of AA-based superabsorbent interpenetrated with sodium PVA sulfate, Journal of Applied Polymer Science, 2000, 78: 2525~2532
    [79] W.L. Doo, G. S. Kyong, J. Y. Kee, et al, Synthesis of acrylic acidbased superabsorbent interpenetrated with sodium PVA sulfate using inverse-emulsion polymerization, Euroup Polymer Journal, 2002, 38: 579~586
    [80] 王进,于善普,李旭东,超高吸水树脂的吸水性和抗电解质性能的研究,印染,2000,(9):16~18
    [81] 路建美,朱秀林,王丽华等,微波法合成两性高吸水性树脂,石油化工,1997,26(3):152~155
    [82] 乔丽坤,扬荣杰,醇类化合物对聚丙烯酸树脂表面改性后的溶胀动力学研究,化学工程师,2004,(1):14~16
    [83] W.J. Zhou, K. J. Yao, M. J. Kurth, Studies of crosslinked poly(AM-MSAS-AA) gels. Ⅱ. Effects of polymerization conditions on the water absorbency, Journal of Applied Polymer Science, 1996, 64 (5): 1009~1014
    [84] Uchida Shoki, Water-absorbable high strength fiber, Japan, JP 1, 183, 515(1989.07.21)
    [85] Ota Shozo, Production of super water-absorbing fiber, Japan, JP 1, 148, 874(1989.06.12)
    [86] O.E. Philippova, N.L. Sitnikova, G.B. Demidovich, et al, Mixed polyelectrolyte/ionomer behavior of poly(methacrylic acid) gel upon titration. Macromolecules, 1996, 29(13): 4642~4645
    [87] P.J. Akers, Future for superabsorbent fibres, Technical Textiles International, 1997, 6(1): 20~23
    [88] P. Martens, A. T. Metters, K. S. Anseth, et al. A generalized bulk-degradation model for hydrogel networks formed from multivinyl cross-linking molecules, Journal of Physics Chemistry B, 2001, 105: 5131~5138
    [89] X. R. Xia, R. E. Baynes, N. A. Monteiro-Riviere, et al, Characterization of polyacrylate membrane-coated fibers used in chemical absorption studies with programmed thermal treatment and FT-IR microscopy, Analysis Chemistry, 2004, 76: 4245~4250
    [90] 严瑞瑄,水溶性高分子,北京:化学工业出版社,1998
    [91] Superabsorbent fibers: market trends, Chemical Fibers International, 1998, 48(3): 89~90
    [92] M. Vamvakaki, S. C. Hadjiyannakou, E. Loizidou, Synthesis and characterization of novel networks with nano-engineered structures: Cross-linked star homopolymers, Chemical Material, 2001, 13: 4738~4744
    [93] 林润雄,王伟基,高吸水性树脂的研究、生产与市场,化工科技,2001,9(3):44~54
    [94] M. Vamvakaki, C. S. Patrickios, Synthesis and characterization of electrolytic amphiphilic model networks based on cross-linked star polymers: Effect of star architecture, Chemical Material, 2002, 14: 1630~1638
    [95] W. Xue, S. CPVA-PAAM, M. B. Huglin. New superabsorbent thermoreversible hydrogels, Polymer, 2001, 42: 2247~2250
    [96] M. Nichifor, X. X. Zhu, D. Cristea, et al, Interaction of hydrophobically modified cationic dextran hydrogels with biological surfactants, Journal of Physics & Chemistry, part B, 2001, 105: 2314~2321
    [97] L. Bromberg, Synthesis and Self-Assembly of Poly(ethylene oxide)- b-poly(propylene oxide)-b-poly(ethylene oxide)-g-poly(acrylic acid) Gels, Ind. Eng. Chem. Res. 2001, 40: 2437~2444
    [98] L. Bromberg, M. Temchenko, R. H. Colby, Interactions among Hydrophobically Modified Polyelectrolytes and Surfactants of the Same Charge, Langmuir, 2000, 16: 2609~2614
    [99] 丁远蓉,丙烯酸-丙烯酰胺共聚/聚乙烯醇共混吸水纤维的研究,天津工业大学硕士学位论文,2004.3
    [100] 刘延栋,刘京,高分子通报,1994,(3):184~186
    [101] E. V. Painter, Method for evaluating superabsorbent specialty polymers, TAPPI Proceedings: 1985 Nonwovens Symposium, TAPPI Press, 1985: 91~95
    [102] X. Y. Hu, C. F. Xiao, Study on superabsorbent polyacrylonitrile-based fibre, Indian Journal of Fibre & Textile Research, 2005, 30: 207~210
    [103] 陈稀,黄象安,化学纤维实验教程,北京:纺织工业出版社,1988
    [104] 虞志光,高聚物分子量及其分布的测定,上海:上海科学技术出版社,1984
    [105] 邹新禧,超强吸水剂,北京:化学工业出版社,2002.1
    [106] 孙克时,李志强,张淑玲等,水溶液共聚法合成耐盐性高吸水性树脂,化学与粘合,2000,3:105~107,126
    [107] W.F. Lee, L.G. Yang, Superabsorbent Polymeric Materials. Ⅻ. Effect of Montmorillonite on Water Absorbency for Poly(Sodium Acrylate) and Montmorillonite Nanocomposite Superabsorbents, Journal of Applied Polymer Science, 2004, 92: 3422~3429
    [108] 封严,三维网状结构共聚甲基丙烯酸酯纤维及其吸油性能研究,天津工业大学博士学位论文,2004.10
    [109] Frideric L. Buchholz, Keeping dry with superabsorbent polymers, American Chemical Society, 1994, 24(9): 38~43
    [110] K. Kimura, T. Hatsuda, K. Nagasuna, Europe, EP 0, 450, 924(1991.5.26)
    [111] Sanju Francisa, Manmohan Kumarb, Lalit Varshney, Radiation synthesis of superabsorbent poly(acrylic acid)-carrageenan hydrogels, Radiation Physics and Chemistry, 2004, 69: 481~486
    [112] 大森英三,张育川,朱传棨译,功能性丙烯酸树脂,北京:化学工业出 版社,1993
    [113] S. Hellebust, S. Nilsson, A. M. Blokhus, Phase behavior of anionic polyelectrolyte mixtures in aqueous solution, effects of molecular weights, polymer charge density, and ionic strength of solution, Macromolecules, 2003, 36(14): 5372~5382
    [114] F. Bordi, R. H. Colby, C. Cametti, et al, Electrical conductivity of polyelectrolyte solutions in the semidilute and concentrated regime: the role of counterion condensation, Journal Physics & Chemistry B., 2002, 106(27): 6887~6893
    [115] K. J. Mccarthy, C. W. Burkhardt, D. P. Parazak, Properties of heterodisperse poly(acrylamide-co-sodium acrylate);MHS constants and dilute solution behavior of heterodsiperse p(AAm-co-SA) in 0.5 M and 1 M NaC1, Journal of Applied Polymer Science, 1987, 33: 1683~1698
    [116] L. N. Butler, C. M. Fellows, R. G. Gilbert, Water sensitivity of latex-based films, Indian English Chemistry Research, 2003, 42: 456~464
    [117] 高俊刚,李源勋,高分子材料,北京:化学工业出版社,2002
    [118] M. Alkan, O. Demirbas, M. Dogan, Electrokinetic properties of sepiolite suspensions in different electrolyte media, Journal of Colloid and Interface Science, 2005, 281(1): 240~248
    [119] S. Zhu, Y. Tian, A. E. Hamielec, Radical concentrations in free radical copolymerization of MMA/EGDMA, Polymer, 1990, 31(1): 154~159
    [120] J. D. Pandey, V. Sanguri, Prediction of density of liquid mixtures using Flory's statistical theory, Journal of Chemical Research, 2001, 8: 344~345
    [121] S. B. Ross-Murphy, Polymer networks principles of their formation structure and properties. Blackie Academic and Professional, New York & London, 1998, Chap.3
    [122] H. Mcevoy, S. B. Ross-Murphy, A. H. Clark, Large deformation and ultimate properties of biopolymer gels: 1. Single biopolymer component systems, Polymer, 1985, 26(8): 1483~1492
    [123] 山下晋山,金山柬助,纪奎江译,交联剂手册,北京:化学工业出版社, 1993
    [124] G. E. Mitchell, L. R. Wilson, M. T. Dineen, et al, Quantitative characterization of microscopic variations in the cross-link density of gels, Macromolecules, 2002, 35(4): 1336~1341
    [125] Y. Yamane, I. Ando, F. L. Buchholz, et al, Detection of spatial inhomogeneity in poly(acrylic acid) gels by measuring time-dependent diffusion coefficients of a probe in NMR experiments: Effect of the degree of cross-linking and degree of swelling, Macromolecules, 2004, 37(26): 9841~9849
    [126] 丁远蓉,肖长发,贾广霞,安树林,后交联型聚丙烯酸系吸水树脂的研究,天津工业大学学报,2004,23(1):11~14
    [127] N. A. Peppas, P. Bures, W. Leobandung, et al, Hydrogels in pharmaceutical formulations, Eur. J. Pharm. Biopharm, 2000, 50: 27~46
    [128] 肖为维,合成纤维改性原理和方法,四川:成都科技大学出版社,1992:14~15
    [129] I. M. Ward, D. W. Hadley, An introduction to the mechanical properties of solid polymers, Wiley & Sons: New York, 1993
    [130] 何天白,胡汉杰,功能高分子与新技术,北京:化学工业出版社,2001
    [131] 龚国芳,杨华勇,傅新等,UHMWPE/Kaolin复合材料的物性研究—机械性能、耐磨性及其相关关系,浙江大学学报(工学版),2003,37(3):209~302
    [132] C. Y. Wan, Y. Zhang, Y. X. Zhang, Effect of different organic modifiers on the tensile properties PVC/EVA/montmorillonite composites, Chinese Chemical Letters, 2004, 15(1): 77~78
    [133] A. Sun, J. Delacaillerie, J. J. Fripiat, A new microporous materialaluminated sepiolite, Microporous Materials, 1995, 5(3): 135~142
    [134] 石彪,海泡石填充LDPE的研究,塑料加工,2002,37(4):33~35
    [135] 石彪,郦华兴,陈卫丰等,海泡石填充硬质聚氯乙烯的研究,现代塑料加工应用,2002,14(4):6~8
    [136] 刘开平,周敬恩,海泡石粘土/不饱和聚酯复合材料试验研究,非金属矿,2003,26(4):22~24
    [137] 周勇,海泡石高填充丁苯橡胶的性能初探,特种橡胶制品,1991,(3):13~18
    [138] 暨雄卓,海泡石原矿加工与橡胶应用研究,中国矿业,1998,7(6):79~81
    [139] 罗北平,海泡石的表面有机改性及其对橡胶性能的研究,长沙大学学报,1999,13(2):27~31
    [140] A. Askin, D. T. Yazici, Surface characterization of sepiolite by inverse gas chromatography, Chromatographia, 2005, 61 (11-12): 625~631
    [141] S. S. Zarei, Characteristics and origin of sepiolite (meerschaum) from central Somalia, Clay Minerals, 1998, 33(2): 349~362
    [142] K. Brauner, A. Preisinger, Struktur und Entstehung des sepioliths, Tsch. Mineral. Petrogr. Mitt, 1956 (6): 120~140
    [143] M. A. Kojdecki, J. Bastida, P. Pardo, et al, Crystalline microstructure of sepiolite influenced by grinding, Journal of Applied Crystallography, 2005, 38(Part 6): 888~899
    [144] D. Miroslava, M. Milan, M. Miljenko, Sorption characteristics of paper produced from sepiolite, J.Serb.Chem.Soc. 2001, 66(6): 385~396
    [145] Y. Kitayama, K. Shimizu, To Kodama, et al, Role of intracrystalline tunnels of sepiolite for catalytic activity, Studies in Surface Science and Catalysis, 2002, 142 (Part A&B): 675~682
    [146] C. Serna, T. Fernandez, Adsorption of hydrocarbons onto sepiolite. 1. intracrystalline penetration, Anales de Quimica, 1974, 70(11): 760~764
    [147] Del Rio MS, Suarez M, Romero EG, et al, MgK-edge XANES of sepiolite and palygorskite, Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 2005, 238 (1-4): 55~60
    [148] G. A. F acey, W. Kuang, C. Detellier, Multinuclear magnetic resonance spectroscopy studies of the structuration of the tunnels of sepiolite in the presence ofintracrystalline pyridine molecules, Journal of Physics & Chemistry, part B., 2005, 109(47): 22359~22365
    [149] W. Kuang, G. A. Facey, C. Detellier, et al, Nanostructured hybrid materials formed by sequestration of pyridine molecules in the tunnels of sepiolite, Chemical Material, 2003, 15(26): 4956~4967
    [150] A. Corma, J. Perezpariente, V. Fornes, et al, Surface-acidity and catalytic activity of a modified sepiolite, Clay Minerals, 1984, 19 (4): 673~676
    [151] B. Armagan, O. Ozdemir, M. Turan, et al, Adsorption of negatively charged azo dyes onto surfactant-modified sepiolite, Journal of Environmental Engineering, 2003, 129 (8): 709~715
    [152] M. Dojcinovic, M. Mitrovic, M. Martic, et al. Sorption characteristics of paper produced from sepiolite, Journal of Serbian Chemistry Society, 2001, 66(6): 385~396
    [153] K. Esmer, Electrical conductivity and dielectric behaviour of modified sepiolite clay, Applied Clay Science, 2004, 25 (1-2): 17~22
    [154] G. Sandi, R. E. Winans, S. Seifert, et al, In situ SAXS studies of the structural changes of sepiolite clay and sepiolite-carbon composites with temperature, Chemical Material, 2002, 14(2): 739~742
    [155] M. A. Pereira, M. M. Alves, J. Azeredo, et al, Influence of physico-chemical properties of porous microcarriers on the adhesion of an anaerobic consortium, Journal of Industrial Microbiology & Biotechnology, 2000, 24: 181~186
    [156] S. Martinez-Ramirez, M. T. Blanco-Varela, Stability of sepiolite in neutral and alkaline media at room temperature, Clay Minerals, 1995, 31(2): 225~232
    [157] A. Akbulut, S. Kadir, The geology and origin of sepiolite, palygorskite and saponite in Neogene lacustrine sediments of the Serinhisar-Acipayam Basin, Denizli, SW Turkey, Clays and Clay Minerals;2003, 51 (3): 279~292
    [158] 韩炜,陈敬中,刘霞等,纳米粘土矿物海泡石,矿产保护与利用,2003,(6):19~25
    [159] M. Alkan, S. Celikcapa, O. Demirbas, et al, Removal of reactive blue 221 and acid blue 62 anionic dyes from aqueous solutions by sepiolite, Yes and Pigments, 2005, 65 (3): 251~259
    [160] Gunay E, Ozkan TO, The rheological behaviour of Turkish sepiolite, Industrial Ceramics, 2002, 22 (3): 165~168
    [161] S. M. Jin, G. Z. Qiu, M. T. Tang, et al, Sepiolite supported catalyst multicomponent metal oxide for ammoxidation of propane, Journal of Central South University of Technology, 2004, 11 (4): 395 ~ 399
    [162] J.W. Gilman, T. Kashiwagi, A.B. Morgan, et al, Recent advances in flame retardant polymer nanocomposites, International SAMPE Symposium and Exhibition (Proceedings), 2001, 46 (II): 2147~2158
    [163] E. Galan, Properties and applications of palygorskite-sepiolite clays, Clay Minerals, 1996, 31(4): 443 ~ 453
    [164] Y. Guney, H. V. Ozdemir, The utilization of sepiolite in landfill liners, Environmental Technology, 2005, 26 (5): 561 ~ 569
    [165] Z. H. Li, C. A. Willms, K. Kniola, Removal of anionic contaminants using surfactant-modified palygorskite and sepiolite, Clays and Clay Minerals, 2003, 51 (4): 445 ~ 451
    [166] A. Ozcan, M. Sahin, Adsorption of nitrate ions onto sepiolite and surfactant-modified sepiolite, Adsorption science & technology, 2005, 23(4): 323~333
    [167] M. Ugurlu, A. Gurses, M. Yalcin, et al, Removal of phenolic and lignin compounds from bleached kraft mill effluent by fly ash and sepiolite, Adsorption-Journal of the International Adsorption Society, 2005, 11 (1): 87~97
    [168] M. R. Weir, E. Rutinduka, C. Detellier, et al, Fabrication, characterization and preliminary testing of all-inorganic ultrafiltration membranes composed entirely of a naturally occurring sepiolite clay mineral, Journal of Membrane Science, 2001, 182(1-2): 41~50
    [169] Q. K. Wang, T. Matsuura, C. Y. Feng, et al, The sepiolite membrane for ultrafiltration, Journal of Membrane Science, 2001, 184(2): 153~ 163
    [170] S. Akyuz, T. Akyuz, Study on the interaction of nicotinamide with sepiolite, loughlinite and palygorskite by IR spectroscopy, Journal of Molecular Structure, 2005,744: 47 ~ 52
    [171] Z. Gerstl, A. Nasser, U. Mingelgrin, Controlled release of pesticides into soils from clay-polymer formulations, Journal of Agriculture and Food Chemistry, 1998, 46: 3797 ~ 3802
    [172] A. Ozcan, A. S. Ozcan, Adsorption of acid red 57 from aqueous solutions onto surfactant-modified sepiolite, Journal of Hazardous Materials, 2005, 125 (1-3): 252 ~ 259
    [173] Z. P. Le, J. X. Lin, X. J. Yu, et al, Lanthanum-promoted Ru /sepiolite in ammonia synthesis, Journal of Rare Earths, 2005, 23 (3): 386 ~ 388
    [174] X. L. Zhai, M. Y. Jia, Y. S. Shen, Structure and properties of Ni/sepiolite catalyst, Chinese Journal of Chemistry, 2005, 23 (5): 557 ~561
    [175] K. Shimizu, R. Maruyama, S. Komai, et al, Pd-sepiolite catalyst for Suzuki coupling reaction in water: Structural and catalytic investigations, Journal of Catalysis, 2004, 227 (1): 202 ~ 209
    [176] X. H. Yang, Z. Q. Hu, Y. C. Zhang, et al, Remediation of Cu2+ contaminated soil with sepiolite, Rare Metal Materials and Engineering, 2004, 33: 96 ~ 98
    [177] N. Ozturk, D. Kavak, Boron removal from aqueous solutions by adsorption on waste sepiolite and activated waste sepiolite using full factorial design, Journal of the International Adsorption Aociety, 2004, 10(3): 245~257
    [178] S. Kocaoba, T. Akyuz, Effects of conditioning of sepiolite prior to cobalt and nickel removal, Desalination, 2005, 181 (1-3): 313 ~ 318
    [179] M. Turan, U. Mart, B. Yuksel, et al, Lead removal in fixed-bed columns by zeolite and sepiolite, Chemosphere, 2005, 60 (10): 1487 ~ 1492
    [180] R. Celis, M. C. Hermosin, J. Cornejo, Heavy metal adsorption by functionalized clays, Environment Science Technology, 2000, 34: 4593 ~ 4599
    [181] L. Ma, G. Sainero, A. Corte' s, et al, Hydrodechlorination of carbon tetrachloride to chloroform in the liquid phase with metal-supported catalysts, effect of the catalyst components, Indian English Chemistry Research, 2000, 39: 2849 ~ 2854
    [182] S. Damyanova, J. L. Fierro, Surface properties of titania-supported 12-molybdophosphoric acid hydrodesulphurization catalysts, Applied Catalysis A:General, 1996, 144(1/2): 59 ~ 61
    [183] J. B. Despinose, J. J. Fripiat, Al modified sepiolite as catalyst or catalyst support, Abstracts of Papers of the American Chemical Society, 1991,202(Part 2): 15~16
    [184] A Corma, V Fornes, A Mifsud, et al, Aluminum exchanged sepiolite as catalyst for gas-oil cracking, Abstracts of Papers of the American Chemical Society, 1990, 200 (Part 2): 87 ~ 88
    [185] Z. H. Guo, J. S. Liang, J. Z. Wang, et al, The study on the ammonia nitrogen adsorption and ion-exchange removal by sepiolite, Rare Metal Materials and Engineering, 2004, 33: 119 ~ 124
    [186] G. Sandi, H. Joachin, H. Yang, et al, Electrochemical performance of lithium ion batteries prepared with sepiolite-derived carbons and lithium transition metal oxide positive electrodes, Journal of New Materials for Electrochemical Systems, 2003, 6 (3): 175~179
    [187] G. Sandi, K. A. Carrado, R. E. Winans, et al, Carbons for lithium battery applications prepared using sepiolite as an inorganic template, Journal of the Electrochemical Society, 1999, 146(10): 3644~3648
    [188] R. Fernandez-Saavedra, P. Aranda, E. Ruiz-Hitzky, Templated synthesis of carbon nanofibers from polyacrylonitrile using sepiolite, Advanced Functional Materials, 2004, 14 (1): 77~ 82
    [189] L. Bokobza, J. P. Chauvin, Reinforcement of natural rubber: use of in situ generated silicas and nanofibres of sepiolite, Polymer, 2005, 46 (12): 4144~4151
    [190] A. O. Kurt, T. J. Davies, Synthesis of Si_3N_4 using sepiolite and various sources of carbon, Journal of Materials Science, 2001, 36 (24): 5895 ~ 5901
    [191] A. A. Kose, Y. Karabagli, M. Kurkcuoglu, et al, Alpha sepiolite: An old clay mineral a new dressing material, Wounds-a Compendium of Clinical Research and Practice, 2005, 17 (5): 114~121
    [192] M. V. Baldovi, H. Garcia, M. A. Miranda, et al, Modification of the photochemical reactivity of alpha, beta-diacetoxystilbene by adsorption onto a Fe~3+-doped sepiolite - Comparison with the direct and 2,4,6-triphenylpyrylium- sensitized photolyses, Tetrahedron, 1995, 51 (29): 8113~8120
    [193] A. L. Galindo, J. T. Ruiz, J. M. Lopez, Mineral quantification in sepiolite- palygorskite deposits using X-ray diffraction and chemical data, Clay Minerals, 1996, 31 (2): 217 ~ 224
    [194] T. Hibino, A. Tsunashima, A. Yamazaki, et al, Model calculation of sepiolite surface-areas, Clays and Clay Minerals, 1995, 43 (4): 391 ~ 396
    [195] M. Radojevic, V. Jovic, D. Vitorovic, Study of sepiolite from Goles (Kosovo, Yugoslavia). I. Sorption capacity, Journal of the Serbian Chemical Society, 2002, 67 (7): 489 ~ 497
    [196] H. Shariatmadari, A. R. Mermut, M. B. Benke, Sorption of selected cationic and neutral organic molecules on palygorskite and sepiolite, Clays and Clay Minerals, 1999, 47 (1): 44 ~ 53
    [197] M. Molina-Sabio, J. C. Gonzalez, F. Rodriguez-Reinoso, Adsorption of NH_3 and H_2S on activated carbon and activated carbon-sepiolite pellets, Carbon, 2004, 42 (2): 448 ~ 450
    [198] J. Z. Wang, X. M. Zhang, Z. H. Guo, et al, Research on humidity control and thermal activating treatment of sepiolite, Rare Metal Materials and Engineering, 2004, 33: 51~54
    [199] A. Corma, V. Fornes, A. Mifsud, et al, Aluminum-exchanged sepiolite as a component of fluid cracking catalysts, Acs Symposium Series, 1991,452: 293~307
    [200] A. TorroPalau, J. C. FernandezGarcia, A. C. OrgilesBarcelo, et al, Structural modification of sepiolite (natural magnesium silicate) by thermal treatment: Effect on the properties of polyurethane adhesives, International Journal of Adhesion and Adhesives, 1997, 17 (2): 111 ~119
    [201] G. Sandy, R. E. Winans, S. Seifert, et al, In situ SAXS studies of the structural changes of sepiolite clay and sepiolite-carbon composites with temperature, Chemical Material, 2002, 14: 739 ~ 742
    [202] F. Rodriguezreinoso, A. Ramirezsaenz, J. D. Lopezgonzalez, et al, Activation of a sepiolite with dilute-solutions of HNO_3 and subsequent heat-treatments .3. Development of porosity, Clay Minerals, 1981, 16 (4): 315~323
    [203] T. Mizutani, Y. Fukushima, A. Okada, et al, Hydrothermal Synthesis of Sepiolite, Clay Minerals, 1991, 26 (3): 441~445
    [204] M. A. Rodriguez, J. D. Gonzalez, M. A. Munoz, et al. Acid activation of a Spanish sepiolite.2. Consideration of kinetics and physicochemical modifications generated, Clay Minerals, 1995, 30 (4): 315~323
    [205] L. G. Tang, Z. X. Weng, Z. R. Pan, Kinetic studies on emulsion copolymerization of vinyl acetate and acrylics in the batch process, Europe Polymer Journal, 1996, 32(9): 1139~1143
    [206] 刘德镒,低品位海泡石粘土矿直接利用新工艺,非金属矿(Non-Metallic Mines), 2001, 24 (2): 27~28
    [207] T. Mizutani, Y. Fukushima, A. Okada, et al. Hydrothermal synthesis of sepiolite, Clay Minerals, 1991, 26 (3): 441~445
    [208] H. Cetisli, T. Gedikbey, Dissolution kinetics of sepiolite from eskisehir (turkey) in hydrochloric and nitric-acids. Clay Minerals, 1990, 25 (2): 207~215
    [209] M. S. Barrios, L.V. Gonzalez, M. A. V. Rodriguez, et al, Acid activation of a palygorskite with HCI: Development of physico-chemical, textural and surface properties, Applied Clay Science, 1995, 10(3): 247~253
    [210] M. Myriam, M. Suarez, J. M. Martin-Pozas, Structural and textural modifications of palygorskite and sepiolite under acid treatment, Clays and Clay Minerals, 1998, 46 (3): 225~231
    [211] M. Radojevic, V. Jovic, D. Karaulic, et al, Study of sepiolite from Goles (Kosovo, Yugoslavia). Ⅱ. Acid activation, Journal of the Serbian Chemical Society, 2002, 67 (7): 499~506
    [212] M. Ozdemir, I. Kipcak, Dissolution kinetics of sepiolite in hydrochloric acid and nitric acid, Clays and Clay Minerals, 2004, 52 (6): 714~720
    [213] S. Balci, M. Suarez, Effect of heating and acid pre-treatment on pore size distribution of sepiolite, Clay Minerals, 1999, 34(4): 647~655
    [214] J. J. Beaudoin, P. E. Grattanbellew, Collapse of structure in sepiolite and other layered silicate systems, Cement and Concrete Research, 1980, 10(3): 347~359
    [215] A. Yebra-Rodriguez, J. D. Martin-Ramos, del F. Rey, et al, Effect of acid treatment on the structure of sepiolite, Clay minerals, 2003, 38 (3): 353~360
    [216] D. Vucelic, D. Simic, O. Kovacevic, et al, The effects of grinding on the physicochemical characteristics of white sepiolite from Golesh, Journal of the Serbian Chemical Society, 2002, 67 (3): 197~211
    [217] T. J. Dines, L. D. Mac, Gregor, et al, IR spectroscopic investigation of the interaction of quinoline with acidic sites on oxide surfaces, Langmuir, 2002, 18: 2300~2308
    [218] M. Alkan, G. Tekin, H. Namli, FTIR and zeta potential measurements of sepiolite treated with some organosilanes, Microporous and Mesoporous Materials, 2005, 84 (1-3): 75~83
    [219] Y. Nakajima, T. Watanabe, T. Sudo, Fourier analysis of the line profiles of talc synthesized from sepiolite, Applied Crystal, 1972, 5: 275~278
    [220] H. Omidian, M. J. Zohuriaan-Mehr, DSC studies on synthesis of superabsorbent hydrogels, Polymer, 2002, 43: 269~277
    [221] J. Barriosneira, L. Rodrique, E. Ruizhitzky, Observations of unsaturated organic groups grafted on sepiolite, Journal of Microscopy-Oxford, 1974, 20 (3): 295~231
    [222] S. Inagaki, Y. Fukushima, M. Miyata, Inclusion polymerization of isoprene in the channels of sepiolite, Research on Chemical Intermediates, 1995, 21(2): 167~180
    [223] E. Ruiz-Hitzky, Molecular access to intracrystalline tunnels of sepiolite. Journal of Materials Chemistry, 2001, 11(1): 86~91
    [224] 陈雪萍,邹胜林,黄志明,高分子量聚丙烯酸钠聚合动力学的研究,合成树脂及塑料,2004,21(2):14~15
    [225] C. Briens, J. M. Le Ble'vec, A. Lermite, Development of an ultra-rapid reactor for superabsorbent polymer, Indian English Chemistry Research, 2001, 40: 5386~5390
    [226] 刘瑞凤,李安,王爱勤,PAA—atta有机无机复合保水剂保水性能研究,干旱地区农业研究,2005,23(4):73~77
    [227] 刘永兵,蒲万芬,杨小松,耐盐性AM/AA/MMT复合吸水材料合成条件改进研究,采钻工艺,2004,27(4):88~89,93
    [228] J. C. Gonzalez, M. Molina-Sabio, F. Rodriguez-Reinoso, Sepiolitebased adsorbents as humidity controller, Applied clay science, 2001, 20(3): 111~118
    [229] I. Dekany, L. Turi, A.Fonseca, et al, The structure of acid treated sepiolites: small-angle X-ray scattering and multi MAS-NMR investigations, Applied Clay Science, 1999, (14): 141~160
    [230] A. Torro-Palau, J. C. Fernandez-Garcia, A. C. Orgiles-Barcelo, et al, Comparison of the properties of polyurethane adhesives containing fumed silica or sepiolite as filler, Journal of Adhesion, 1997, 61 (1-4): 195~211
    [231] L. Bokobza, A. Burr, G. Garnaud, et al, Fibre reinforcement of elastomers: nanocomposites based on sepiolite and poly(hydroxyethyl acrylate), Polymer International, 2004, 53 (8): 1060~1065
    [232] E. Morales, J. R. White, Injection-Molded Sepiolite-filled polypropylene-mechanical-properties and dimensional stability, Journal of Materials Science, 1988, 23 (12): 4525~4533
    [233] E. Morales, C. R. Herrero, J. L. Acosta, Thermodynamic compatibility of sepiolite-filled poly(vinylidene fluoride)-polystyrene blends, Polymer Bulletin, 1992, 29 (3-4): 401~406
    [234] M. Wang, T. C. Chung, J. W. Gilman, et al, Melt-processable syndiotactic polystyrene/montmorillonite nanocomposites, Journal of Polymer Science, Part B: Polymer Physics, 2003, 41(24): 3173~3187
    [235] L. Gonzalez, A. Rodriguez, A. Marcos-Fernandez, et al, Reinforcing effect and electrical properties of ethylene-propylene rubber filled with calcined sepiolite, Journal of Applied Polymer Science, 2001, 79 (4): 714~718
    [236] 高绪珊,吴大诚,纤维应用物理学,北京:中国纺织出版社,2001
    [237] J. J. Heyward, K.P. Ghiggino, Fluorescence polarization study of the poly (acrylic acid)/poly (ethylene oxide) interpolymer complex in aqueous solution, Macromolecules, 1989, 22: 1159~1165
    [238] I. Soutar, L. Swanson, R.E. Imhof, G. Rumbles, Synchroton-generated time-resolved fluorescence anisotropy studies of the segmental relaxation of poly (acrylic acid) and poly (methacrylic acid) in dilute methanolic solutions, Macromolecules, 1992, 25: 4399~4405
    [239] G. Ponchel, F. ouchard, D. Duchene, N.A. Peppas, Bioadhesive analysis of controlled-release systems. Ⅰ. Fracture and interpenetration analysis in poly (acrylic acid)-containing systems, J. Contr. Rel, 1987, 5: 129~141
    [240] H. H. Winter, F. Chambon, Analysis of linear viscoelasticity of a crosslinking polymer at the gel point, Journal of Rheology, 1986, 30: 367~382
    [241] X. Lopez, P. H. Valvatne, M. J. Blunt, Predictive network modeling of single-phase non-Newtonian flow in porous media, Journal of Colloid and Interface Science, 2003, 264(1): 256~265
    [242] L. G. Patruyo, A. J. Muller, A. E. Saez, Shear and extensional rheology of solutions of modified hydroxyethyl celluloses and sodium dodecyl sulfate, Polymer, 2002, 43(24): 6481~6493
    [243] K. C. Tam, L. Guo, R. D. Jenkins, et al, Viscoelastic properties of hydrophobically modified alkali-soluble emulsion in salt solutions, Polymer, 1999, 40(23): 6369~6379
    [244] E. E. Hassan, J. M. Gallo, Simple rheological method for the in vitro assessment of mucin-polymer bioadhesive bond strength, Pharm. Research, 1990, 7: 491~495
    [245] A. Zupancic, R. Lapasin, A. Kristoffersson, Influence of particle concentration on rheological properties of aqueous α-Al_2O_3 suspensions, Journal of the European Ceramic Society, 1998, 18: 467~477
    [246] C. Kugge, J. Daicic, Shear response of concentrated calcium carbonate suspensions, Journal of Colloid and Interface Science, 2004, 271: 241~248
    [247] Q. Wang, P.R. Ellis, S.B. Ross-Murphy, et al. Solution characteristics of the xyloglucan extracted from Detarium senegalense Gmelin, Carbohydrate Polymers, 1997, 33: 115~124
    [248] 吴其晔,巫静安,高分子材料流变学,北京:高等教育出版社,2002
    [249] S. Hussain, C. Keary, D. Q. M. Craig, A thermorheological investigation into the gelation and phase separation of hydroxypropyl methylcellulose aqueous systems, Polymer, 2002, 43(21): 5623~5628
    [250] Y. Otsubo, Rheological Behavior of suspensions flocculated by weak bridging of polymer coils, Journal of Colloid and Interface Science, 1999, 215(1): 99~105
    [251] A. Zupancic, R. Lapasin, M. Zumer, Rheological characterization of shear thickening TiO_2 suspensions in low molecular polymer solution, Progress Organic Coating, 1997, 30: 67~78
    [252] V. N. Kislenkol, R. M.Verlinskaya, Rheological behavior of kaolin and montmorillonite suspensions at low concentrations, Journal of Colloid and Interface Science, 2001, 244: 405~409
    [253] A. J. Szeri, A deformation tensor model for nonlinear rheology of FENE polymer solutions, Journal of Non-Newtonian Fluid Mechanics, 2000, 92(1): 1~25
    [254] L. C. Guo, Y. Zhang, N. Uchida, et al, Adsorption effects on the rheological properties of aqueous alumina suspensions with polyelectrolyte, Journal of American Ceram Society, 1998, 81: 549~556
    [255] S. R. Suprakas, M. Okamoto, Polymer/layered silicate nanocomposites: a review from preparation to processing, Progress in Polymer Science, 2003, 28(11): 1539~1641
    [256] H. M. Yang, Q. Zheng, The dynamic viscoelasticity of polyethylene based montmorillonite intercalated nanocomposites, Chinese Chemical Letters, 2004, 15(1): 74~76
    [257] A. Goransson, P. Hansson, Shrinking kinetics of polyacrylate gels in surfactant solution, Journal of Physics & Chemistry, part B, 2003, 107(35): 9203~9213
    [258] R. Schweins, P. Lindner, K. Huber, Calcium induced shrinking of napa chains: a sans investigation of single chain behavior, Macromolecules, 2003, 36(25): 9564~9573
    [259] 赵家祥,医用功能纤维,北京:中国石化出版社,1996
    [260] I. Shepherd, H. N. Xiao, The role of surfactants as rewetting agents in enhancing paper absorbancy, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 157: 235~244
    [261] I. M. Wienk, T. H. Boogaard Van den, C. A. Smolders, Formation of nodular structures in the top layer of ultrafiltration membranes, Journal of Applied Polymer Science, 1994, 53(8): 1011~1023
    [262] C. F. Xiao, Z. F. Liu, Microvoid formation of acrylic copolymer(PAC)/cellulose acetate (CA) blend fibers, Journal of Applied Polymer Science, 1990, 41: 439~444
    [263] P. Hansson, S. Schneider, B. Lindman, Phase separation in polyelectrolyte gels interacting with surfactants of opposite charge, Journal of Physics & Chemistry, part B, , 2002, 106(38): 9777~9793
    [264] 薛奇,高分子结构研究中的光谱方法,北京:高等教育出版社,1995
    [265] 崔永芳,实用有机波谱分析,北京:中国纺织出版社,1994
    [266] X. R. Xia, R. E. Baynes, N. A. Monteiro-Riviere, et al, Characterization of polyacrylate membrane-coated fibers used in chemical absorption studies with programmed thermal treatment and FT-IR microscopy, Analysis of Chemistry, 2004, 76: 4245~4250
    [267] S. K. Jornwong, P. Phunchareon, Influence of reaction parameters on water absorption of neutralized poly(acrylic-co-acrylamide) synthesized by inverse suspension polymerization, Journal of Applied Polymer Science, 1999, 72: 1349~1366
    [268] W. Zhou, K. Yao, M. J. Kurth, Synthesis and water absorbency of the polymer of acrylamide with anionic monomers, Journal of Applied Polymer Science, 1994, 53: 1533~1538
    [269] L. J. Kirwan, P. D. Fawell, W. van Bronswijk, An in situ FTIR-ATR study of polyacrylate adsorbed onto hematite at high ph and high ionic strength, Langmuir, 2004, 20(10): 4093~4100
    [270] Storage modulus changes with temperature in poly(vinyl alcohol), PVA/poly(acrylic acid), PAA, blends, Polymer Bulletin, 1999, 42: 449~456
    [271] R. J. H. Stenekes, S. C. De Smedt, J. Demeester, et al, Pore sizes in hydrated dextran microspheres, Biomacromolecules, 2000, 1: 696~703
    [272] E. Morales, M. C. Ojeda, A. Linares, et al, Dynamic mechanical analysis of polypropylene composites based on surface-treated sepiolite, Polymer Engineering and Science, 1992, 32 (12): 769~772
    [273] E. Morales, C. R. Herrero, J. L. Acosta, Effect of sepiolite on glasstransition temperature and melting behavior of semicrystalline polymer blends, Polymer Bulletin, 1991, 25 (3): 391~396
    [274] L. F. Gudeman, N. A. Peppas, Preparation and characterization of pH-sensitive, interpenetrating networks of poly(vinyl alcohol) and poly(acrylic acid), Journal of Applied Polymer Science, 1995, 55: 919~923
    [275] C. A. Fyfe, M. S. McKinnon, Investigation of the thermal degradation of poly(acrylic acid) and poly(methacrylic acid) by high-resolution carbon-13 CP/MAS NMR spectroscopy, Macromolecules, 1986, 19: 1909~1912
    [276] D. J. Arriola, S. S. Cutie, D. E. Henton, et al, Crosslinker reactivity and the structure of superabsorbent gels, Journal of Applied Polymer Science, 1997, 63(4): 439~451
    [277] A. Torro Palau, J. C. FernandezGarcia, A. C. Orgiles Barcelo, et al, Characterization of solvent-based polyurethane adhesives containing sepiolite as a filler. Rheological, mechanical, surface, and adhesion properties, Journal of Adhesion Science and Technology, 1997, 11(2): 247~262
    [278] W. F. Lee, C. H. Hsu, Superabsorbent polymeric materials. Ⅴ. Synthesis and swelling behavior of sodium acrylate and sodium 2-acryamido-2-methylpropanesulfonate copolymeric gels, Journal of Applied Polymer Science, 1998, 69: 229~237
    [279] A. Martinez-Ruiz, A. M. Torro-Palau, A. C. Orgiles-Barcelo, et al, Effect of using sepiolite silicate plus fumed silica mixtures as fillers on the characteristics of solvent-based polyurethane adhesives, Journal of Adhesion Science and Technology, 2000, 14 (6): 833~849
    [280] 吴礼光,刘茉娥,朱长乐,PVA-CS共混体系相容性的研究,高分子材料科学与工程,1996,12(1):74~79
    [281] C. Kim, P. Lee, Composite poly(vinyl alcohol) beads for controlled drug delivery, Pharm. Res, 1992, 9: 10~16
    [282] J. A. Cade'e, M. J. A. van Luyn, L. A. Brouwer, et al, In vivo biocompatibility of dextran-based hydrogels. J. Biomed. Mater. Res., 2000, 50: 397~404
    [283] J.W. Rhim, M.Y. Sohn, H.J. Joo, et al, Pervaporation separation of binary organic aqueous liquid mixtures using crosslinked PVA membranes, Journal of Applied Polymer Science, 1993, 50: 679~684
    [284] Z. H. Ping, Q. T. Nguyen, E. Azouz, et al, High-performance membranes for pervaporation, Polymer for Advanced Technology, 1994, 5: 320~326
    [285] W. H. Philipp, T. Olmsted, Ion exchange polymers and method for making, USA, USP 5, 371, 110(1994.10.6)
    [286] 吴洪,王宇新,王世昌,聚乙烯醇—聚丙烯酸共混膜的阻醇及质子导电性能研究,膜科学与技术,2002,22(6):1~3
    [287] 李侃社,邵水源,闫兰英等,聚丙烯酸钠吸水树脂/聚乙烯醇/高氯酸锂聚电解质的制备与性能,高分子材料科学与工程,2003,19(5):101~104
    [288] 白渝平,陈莹,杨荣杰等,聚乙烯醇/聚丙烯酸水凝胶的电刺激响应性研究,高分子材料科学与工程,2002,18(2):74~77
    [289] 骆强,孙玉山,王玥等,超吸水纤维成纤共聚物聚合工艺的研究,纺织科学研究,1999,10(3):5~8
    [290] 孙玉山,徐纪纲,骆强,超吸水成纤共聚共混物的研究,天津工业大学学报,2001,20(9):18~20
    [291] 姚海霞,赵庆章,邓新华,静电纺丝法制备超吸水纤维的研究,纺织科学研究,2003,(4):1~5
    [292] L. Daniluc, C. David, Intermolecular interactions in blends of poly(vinyl alcohol) with poly(acrylic acid): 2. Correlation between the states of sorbed water and the interactions in homopolymers and their blends, Polymer, 1996, 37: 5219~5223
    [293] S.K. Mallapragada, N.A. Peppas, Dissolution mechanism of semicrystalline poly(vinyl alcohol) in water, Journal of Polymer Science: Part B: Polymer Physics, 1995, 34: 1339~1342
    [294] X. R. Xia, R. E. Baynes, N. A. Monteiro-Riviere, et al. Characterization of Polyacrylate Membrane-Coated Fibers Used in Chemical Absorption Studies with Programmed Thermal Treatment and FT-IR Microscopy, Anal. Chem, 2004, 76: 4245~4250
    [295] S. K. Jornwong, P. Phunchareon, Influence of reaction parameters on water absorption of neutralized poly(acrylic-co-acrylamide) synthesized by inverse suspension polymerization, Journal of Applied Polymer Science, 1999, 72: 1349~1366
    [296] W. Zhou, K. Yao, M. J. Kurth, Synthesis and water absorbency of the polymer of acrylamide with anionic monomers, Journal of Applied Polymer Science, 1994, 53: 1533~1538
    [297] W. R. Hertler, D. Y. Sogah, O. W. Webster, et al, Group transfer polymerization. 3. Lewis acid catalysis, Macromolecules, 1984, 17: 1415~1417
    [298] Ding Yuanrong, Xiao Changfa, An Shulin, Jia Guangxia. Research on Water-absorptive Blend Fibers of Copoly (acrylic acid-acrylamide)/Poly(vinyl alcohol). Journal of Applied Polymer Science, 2006, in press
    [299] 武荣瑞,张天骄,成纤聚合物的合成与改性,北京:中国石化出版社,2003
    [300] N. A.Peppas, E. W. Merrill, Poly(vinyl Alcohol) hydrogels: Reinforcement of radiation-cross-linked networks by crystallisation. Journal of Polymer Science, Part A: Polymer Chemistry, 1976, 14: 441~457
    [301] Z. S. Liu, G. L. Rempel, Preparation of Superabsorbent Polymers by Crosslinking Acrylic Acid and Acrylamide Copolymers, Journal of Applied Polymer Science, 1997, 64: 1345~1353
    [302] I. V. Blagodatskikh, O. V. Vasil'eva, E. M. Ivanova, et al, New approach to the molecular characterization of hydrophobically modified polyacrylamide, Polymer, 2004, 45: 5897~5904
    [303] Y. Li, J. C. T. Kwak, Rheology and binding studies in aqueous systems of hydrophobically modified acrylamide and acrylic acid copolymers and surfactants, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 225(1-3): 169~180
    [304] Tadaaki Inoue, Guohua Chen, Katsuhiko Nakamae, et al., A hydrophobically-modified bioadhesive polyelectrolyte hydrogel for drug delivery, Journal of Controlled Release, 1997, 49: 167~176
    [305] 马俊涛,疏水缔合型聚丙烯酰胺的合成与性能及其与离子型表面活性剂的相互作用,四川大学博士学位论文,2002,3
    [306] M. Vamvakaki, C. S. Patrickios, Polyelectrolytic amphiphilic model networksin water: a molecular thermodynamic theory for their microphase separation, Journal of Physics & Chemistry, part B, 2001, 105: 4979~4986
    [307] Costas S. Patrickios, Theoni K. Georgiou, Covalent amphiphilic polymer networks, Current Opinion in Colloid and Interface Science, 2003, 8: 76~85
    [308] S. R. Lustig, N.A. Peppas, Solute diffusion in swollen membranes. Ⅸ. Scaling lows for solute diffusion in gels, Journal of Applied Polymer Science, 1988, 36: 735~747
    [309] A. H. Muhr, J.M.V. Blansard, Diffusion in gels, Polymer, 1982, 23: 1012~1026
    [310] N.A. Peppas, C.T. Reinhart, Solute diffusions in swollen membranes. Ⅰ. A new theory, Journal of Membrane Science, 1983, 15: 275~287
    [311] H. Okuzaki, Y. Eguchi, Y. O. sada, Size effect of the alkyl chain of the surfactant on the chemomechanical motion of a polymer gel, Chemical Material, 1994, 6(10): 1651~1653
    [312] M. Nichifor, X. X. Zhu, D. Cristea, et al, Interaction of hydrophobically modified cationic dextran hydrogels with biological surfactants, Journal of Physics & Chemistry, part B, 2001, 105: 2314~2321
    [313] Blaakmeer, J., BoE hmer, M. R., Cohen Stuart, M. A. and Fleer, G. J., Adsorption of weak polyelectrolytes on highly charged surfaces. Poly(acrylic acid) on polystyrene latex with strong cationic groups. Macromolecules, 1990, 23: 2301~2309
    [314] D. Langevin, Polyelectrolyte and surfactant mixed solutions. Behavior at surfaces and in thin films, Advances in Colloid and Interface Science, 2001, 89-90: 467 ~ 484
    [315] L. Karlson, K. Thuresson, B. Lindman, A rheological investigation of the complex formation between hydrophobically modified ethyl (hydroxyl ethyl) cellulose and cyclodextrin, Carbohydrat Polymers,2002, 50: 219~226

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700