蛭石膨胀特性以及膨胀率测定方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膨胀蛭石是一种优良的保温耐火、吸音隔热、耐冻蚀的环保节能材料,应用领域十分广泛。我国蛭石矿产资源丰富,但膨胀机理不明确,没有相应的膨胀率测定方法,开发利用与国外相比存在着产品品种少、膨胀工艺简单、细粒蛭石的利用率低等问题。
     为了研究膨胀机理,以河北灵寿县工业蛭石为实验样品,分别进行了X射线能谱分析、红外光谱分析以及X射线衍射分析,研究了该矿蛭石的结构特征以及膨胀特性,发现样品中主要含有蛭石和水黑云母成分,随着温度升高逐渐失水,500℃时蛭石完全脱去层间水,整个结构成为“滑石层”的形式,蛭石的体积发生明显的膨胀。但温度过高达到900℃时,蛭石中的Si-O四面体结构被破坏,反而影响蛭石的膨胀性能。
     利用X射线能谱仪分析了工业蛭石所含的阳离子类型,并采用氯化铵-乙醇法测定了蛭石的阳离子交换容量为55.6mmol/100g。分别采用不同浓度的硫酸、碳酸钠和十六烷基三甲基溴化铵对蛭石精矿进行了改性,发现酸化、钠化和有机改性后蛭石样品的阳离子交换容量分别提高到了73.5mmol/100g,60.2mmol/100g和68.8mmol/100g。
     针对我国对蛭石膨胀率的测定没有统一标准的现状,分别从单片蛭石的体积膨胀率和集合膨胀率两方面对蛭石膨胀率的测定方法进行了探讨,对比分析了现有测定蛭石膨胀率方法的优势和局限性。最后提出从蛭石的微观形貌来表征膨胀蛭石的品质,通过比表面积及孔隙分析仪测定蛭石的比表面积及孔径来确定蛭石的膨胀率。
     传统的蛭石膨胀工艺是燃料加热法和电加热法,随着蛭石膨胀工艺发展,目前主要还有微波膨胀和化学膨胀等方法。本文研究了片径、加热温度、加热时间和改性条件等单因素对蛭石膨胀率的影响,正交实验结果表明,片径为1-2mm,20%的双氧水改性,700℃下加热时间60s,是蛭石膨胀的最佳工艺条件。随着对蛭石膨胀工艺的深入研究,可进一步促进蛭石环保节能材料的开发与应用。
Exfoliated vermiculite is an excellent thermal and acoustic insulated environment-friendly and energy-saving material, with the characters of fire-resistant, corrosion-resistant and freeze-resistant, which can be applied very widely. There’s abundant of vermiculite mineral resources in our country, but the expansion mechanism of vermiculite is not clear, without a corresponding expansion rate determination, the development and utilization has many problems such as less product variety, simple rough expansion process, low utilization of fine particle vermiculite compared with foreign countries.
     To study the mechanism of expansion, using the industrial vermiculite from lingshou of hebei as experimental material, characterized it with X-ray spectrum analysis, infrared spectroscopy and X-ray diffraction analysis, and studied the structural feature and expansion characteristics of vermiculite. It revealed that the raw material mainly composed of vermiculite and hydrobiotite, dehydrating as the temperature increases gradually. Vermiculite lost interlayer water forming a“talc layer”structure till 500℃, and the volume of vermiculite expanded apparently. However, when the temperature reached 900℃, the Si-O tetrahedron structure was destroyed, thereby affecting the expansion property of vermiculite.
     Analyzing the tapies of cation in industrial vermiculite by X-ray energy dispersive spectrometer, the cation exchange capacity(CEC) of vermiculite was 55.6mmol/100g measured by ammonium chloride-ethanol method. The vermiculite was modified by different concentrations of sulfuric acid, sodium carbonate, and hexadecyl trimethyl ammonium bromide. The results indicated that the CEC of acidized vermiculite、Na-modified vermiculite、organo-intercalated vermiculite increased to 73.5mmol/100g,60.2mmol/100g and 68.8mmol/100g, respectively.
     Aiming at the current situation that there is no uniform standard for the determination of vermiculite expansion ratio, the measuring methods were discussed respectively from individual and cumulative volume expansion ratios, according to the comparison and analysis, we got the advantages and limitations of existing measuring methods of vermiculite expansion ratio. Finally, based on microstructure of vermiculite, this paper put forward a new method to characterize quality of expanded vermiculite, using the BET specific area and pore radius of vermiculite tested by Accelerated Surface Area and Porosimetry (ASAP) to ascertained the vermiculite expansion ratio.
     The traditional vermiculite expansion process was thermal exfoliated by fuel or electricity. With the development of vermiculite technology, the main process at present was microwave exfoliated and chemical exfoliated. The main factors affecting vermiculite expansion ratio were size, heating temperature, heating time and modified condition, the orthogonal experiment indicated that the optimum processing conditions were: the size was 1-2mm, hydrogen peroxide was 20%, heating temperature was 700℃, heating time was 60s. It could further accelerate the exploitation and application of the environment-friendly and energy-saving materials with the in-depth study of vermiculite processing.
引文
[1]刘福生,彭同江,张宝述.膨胀蛭石的利用及其新进展[J].非金属矿, 2001, 24(4): 5 -7.
    [2]彭同江,万朴,潘兆橹等.新疆尉犁蛭石矿中金云母-蛭石的间层结构研究[J].岩石矿物学杂志, 1996, 15(3): 250-258.
    [3]邹宁宇,鹿成滨,张德信.绝热材料应用技术[M].北京:中国石化出版社, 2005. 152-153.
    [4]刘勇.新疆尉犁蛭石结构及其吸附金属离子和磷酸盐机理研究[D].四川大学, 2007: 11-13.
    [5]刘曙光,李伟基.蛭石的膨胀机理,生产工艺及在保温材料中的应用[J].建材新科技, 1996, 2: 1-4.
    [6]张焜,程胜高.膨胀蛭石的性质及其应用前景[J].矿物岩石地球化学通报, 26(增刊): 584-585.
    [7]应文绍,胡钟灵.蛭石膨胀度影响因素简析[J].非金属矿, 1994, (4): 31-33.
    [8]刘福生,彭同江,张宝述等.我国工业蛭石矿床地质特征及其成因类型探讨[J].中国非金属矿工业导刊, 2004, 3.
    [9]郑延力,樊素兰.非金属矿产开发应用指南[M].陕西:陕西科学技术出版社, 1992. 76-83.
    [10]彭同江,刘福生, John Huang等.含蛭石晶层间层矿物的可交换性阳离子及交换容量研究[J].岩石矿物学杂质, 2003, 22(4): 391-396.
    [11]徐惠忠,周明.绝热材料生产及应用[M].北京:中国建材工业出版社, 2001. 95.
    [12]王文学,常宝巨等.河北省非金属矿产资源[M].北京:地质出版社, 2006. 135.
    [13]马文山.蛭石的最佳膨胀条件[J].地质实验室, 1989, 5(2): 118-119.
    [14]杜彦召,陈朝阳,范艳伟等.高膨胀率蛭石制备新工艺研究[J].矿产保护与利用, 2008, 6(3): 13-17.
    [15]裴守屏,马小南.膨胀蛭石及其制品[M].北京:中国建筑工业出版社, 1974. 51-53.
    [16]刘鹏,郭东,胡新忠等.蛭石电加热膨胀新工艺[J].保温材料与建筑节能, 2004, 8: 57-58.
    [17]郭东.蛭石电加热膨胀试验研究[J]. IM&P化工矿物与加工, 2005, 5: 16-34.
    [18]胡光锁,朱永平,李政一.高膨胀率高质量蛭石粉体研制-I.热膨胀机理初探[J].过程工程学报, 2006, 6(2): 205-209.
    [19]赵双盟,彭同江,孙红娟.新疆尉犁蛭石矿工业蛭石化学法膨胀的实验研究[J].矿物岩石, 2006, 2(26): 30-34.
    [20] Suquet H. Chevalier S, Marcilly C, et al. Preparation of porous materials by chemical activation of the Llano vermiculite[J]. Clay Minerals, 1991, 26: 49-60.
    [21] Ucgul E, Girgin I. Chemical exfoliation characteristics of Karakoc phlogopite in hydrogen peroxide solution [J]. Turkish Journal of Chemistry, 2002, 26: 431-439.
    [22] Mamina A Kh, Kotelnikova E N, Muromtsev V A. Influence of the structural perfection of phlogopite crystals on their cleavability by hydrogen peroxide[J]. Inorganic Materials, 1990, 26: 2104-2107.
    [23] Obut A, Girgin I. Hydrogen peroxide exfoliation of vermiculite and phlogopite[J]. Minerals Engineering, 2002, 15: 683-687.
    [24]杜彦召,陈朝阳,陈运法等.尉犁蛭石微波膨胀试验研究[J].非金属矿, 2007, 5(30): 4-6.
    [25] Obut A, Girgin I. Microwave exfoliation of vermiculite and phlogopite[J]. Clays and Clay minerals, 2003, 4: 452-456.
    [26]杨荣兴,阎国东,龙飞等.蛭石膨胀新工艺研究[A].绝热材料的前景与施工[C]. 2002:200-202.
    [27]郑天亮,宇波.蛭石改性提高蛭石膨胀度的研究[J].矿产综合利用, 2004, 4(2): 3-5.
    [28]王少南.新型节能建材[M].北京:中国建材工业出版社, 1992. 176-178.
    [29]刘俊利.蛭石极具开发前景建筑应用广泛[J].非矿资源利用, 2003, 6: 79 -80.
    [30]陈志坤,刘文涛,何素芹等.聚合物/蛭石复合材料的研究进展[J].工程塑料应用, 2009, 2 (37): 84-87.
    [31]雅重庆.酚醛树酯/蛭石纳米复合材料及其在刹车片中的应用研究[D].武汉理工大学, 2008: 58.
    [32]韩炜,刘炜,吴驰飞.纳米有机蛭石/天然橡胶复合材料的制备及性能[J].复合材料学报, 2006, 2 (23): 18-97.
    [33]唐群委,林建明,吴季怀等.膨胀蛭石/聚(丙烯酸钾-丙烯酰胺)高吸水性复合材料的制备性能及表征[J].功能材料, 2006, 9(37): 1510-1513.
    [34]李刚,刘开平,成信东等.蛭石/有机复合高吸水保水复合材料的研究[J].化学工程与装备, 2009, 6: 19-21.
    [35]励敏华,陈玉华.蛭石在非传统领域的应用现状及发展前景[J].非金属矿, 1989, 5: 33-35.
    [36]彭同江,刘福生.蛭石的应用矿物学研究和开发利用现状[J].西南工学院学报, 1995, 4: 26-29.
    [37]胡光锁,李政一.废水处理中蛭石的应用研究进展[J].北京工商大学学报(自然科学版), 2006, 3 (24): 13-16.
    [38]陈富坤,雷金勇,苏杰南.膨胀蛭石吸附氨氮的研究[J].河南师范大学学报(自然科学版), 2007, 1(35): 133-136.
    [39]刘勇,肖丹,郭灵虹等.天然蛭石对金属离子的吸附性能研究[J].四川大学学报(工程科学版), 2006, 3 (38): 92-96.
    [40]朱亮,刘钢,苗伟红等.膨胀蛭石用于人工湿地去除氮磷的研究[J].河海大学学报(自然科学版), 2008, 2(36): 147-151.
    [41]张宝述,宋海明,孙红娟等.工业蛭石在电镀废水处理中的应用研究[J].非金属矿, 2008, 1(31): 53-55.
    [42] Das N C, Bandyopadhyay M. Selectivity sequence of adsorption of heavy metal by vermiculite[J]. Asian Environ, 1991, 13(3): 13-20.
    [43] Tomas Undabeytia. Adsorption-desorption of chlordimeform on vermiculite: Effect of clay aggregation and competitive adsorption with cadmium[J]. Environ Sci Technol, 1999, 33: 864-874.
    [44] G Sposito. The Surface Chemistry of Soils[M]. Oxford Press, New York, 1984.
    [45] Xinhua Wen, Hongxiao Tang. Surface complexion model for the heave metal adsorption on natural sediment[J]. Sci Techno, 1998, 32: 870-874.
    [46]郭亚平,胡日利,吴晓芙.钠改型蛭石的铵离子交换平衡[J].离子交换与吸附, 2005, 2(21): 137-142.
    [47]乔冬平,魏军光,王利.蛭石粉对橡胶吸声件性能影响[J].热固性树脂, 2004, 6(19): 22-23.
    [48]李金洪,鲁安怀,陈从喜等.蛭石尾砂在燃煤固硫除尘中的利用[J].岩石矿物学杂志, 2001, 4(20): 615-915.
    [49] H.Suquet, R.Franck. Catalytic properties of two pre-cracking matrices: a leached vermiculite and a Al-pillared saponite[J]. Applied Clay Science, 1994, 8: 349-364.
    [50]覃祥敏,马少健,阮久行.非金属矿物在环保中的应用[J].有色矿冶, 2006, 8(22): 107-111.
    [51]王海莉,高亚峰.蛭石资源概况及开发利用[J].河北地质矿产信息, 2002, 1: 19-21.
    [52]潘兆橹,万朴.应用矿物学[M].湖北:武汉工业大学出版社, 1993. 266.
    [53]陶维屏,苏德辰.中国非金属矿产资源及其利用与开发[M].北京:地震出版社, 2002. 42-43.
    [54]漆璇,戎觶华. X射线衍射与电子显微分析[M].上海:上海交通大学出版社, 1992. 142-143.
    [55]马咸尧. X射线衍射与电子显微分析基础[M].湖北:华中理工大学出版社, 1993. 159.
    [56]王英姿,侯宪钦.带能谱分析的扫描电子显微镜在材料分析中的应用[J].工艺与检测, 2007, (9): 80-83.
    [57]陈允魁.红外吸收光谱法及其应用[M].上海:上海交通大学出版社, 1993. 2, 122-126.
    [58]冉红艳,张惠芬,曹俊臣.尉犁水黑云母的间层结构和层间域性质研究[D].广东:中国科学院广州地球化学研究所, 1998: 13.
    [59]吴瑾光.近代傅立叶变换红外光谱技术及应用(上卷)[M].北京:科学技术文献出版社, 1994. 639-642; 634.
    [60]李树棠. X射线衍射实验方法[M].北京:冶金工业出版社, 1993. 33.
    [61]左演声,陈文哲,梁伟.材料现代分析方法[M].北京:北京工业大学出版社, 2003. 68.
    [62]孙维林.粘土理化性能[M].北京:地质出版社, 1992. 140-145.
    [63]应平,于宏东.合成能谱在非常见矿物鉴定和检索中的应用[J].矿冶, 2005, 14(3): 83-86.
    [64]张乃娴.粘土矿物研究方法[M].北京:科学出版社, 1990. 64-65.
    [65]赵爱醒,潘铁虹.矿物晶体化学[M].武汉:中国地质大学出版社, 1993. 103.
    [66]廖立兵,李国武. X射线衍射方法与应用[M].北京:地质出版社, 2008. 12,137.
    [67]李雪梅,廖立兵,李瑞等.氯化铵-乙醇法测定蛭石的阳离子交换容量[J].岩矿测试. 2008, 27(3): 204-206.
    [68]陈志坤,何素芹,辛建泉.蛭石的钠化和有机插层蛭石的制备与表征[J].非金属矿, 2009, 32(1): 18-21.
    [69]刘福生,彭同江,张建洪.蛭石改性处理研究现状评述[J].矿物综合利用, 2002, (2): 24-27.
    [70]温淑瑶.硫酸对膨润土孔径的影响[J].矿物岩石, 2002, 22(2): 91-93.
    [71]孙金梅,彭同江,孙红娟.有机蛭石的制备与应用研究现状[J].材料导报, 2007, 21(3): 50-53.
    [72]李雪梅,廖立兵,谷勤等.蛭石精矿的有机改性试验[J].岩矿测试, 2008, 27(1): 63-66.
    [73]马小隆,刘心悦,刘晓明.改性蛭石吸附性能初探[J].能源环境保护, 2004, 18(5): 46-48.
    [74]宫雪,李政.载纳米银蛭石的制备和表征及其抗菌性能[J].硅酸盐通报, 2009, 28(3): 506-520.
    [75]宋海明,张宝述.钠化蛭石阳离子交换容量的实验研究[J].中国粉体技术, 2007, 2: 1-4.
    [76]宋海明,张宝述,彭同江等.提高新疆蛭石粉体阳离子交换容量的方法研究[J].中国非金属矿工业导刊, 2007, 1: 40-49.
    [77]徐景华,张丹君.改性蛭石对对硝基苯酚吸附特性的研究[J].中南林业科技大学学报, 2008, 28(3): 88-92.
    [78]陈文怡.滑石超细粉末颗粒群特性的定量体视学分析与测量[J].现代仪器, 2000, (4): 39-40.
    [79]胡松青,李琳,郭祀远.现代颗粒粒度测量技术[J].现代化工, 2000, 22(1): 58-61.
    [80]张学礼,贾瑞强.矿物粒度测定方法的比较及发展前瞻[J].矿业工程, 2006, 4(4): 50-52.
    [81]张松榆,刘祥顺.建筑材料质量检测与评定[M].湖北:武汉工业大学出版社, 2008, 48-50.
    [82]邵丽芳.蜡封法测定沥青混合料压实试件毛体积密度的研讨[J].辽宁省交通高等专科学校学报, 2004, 6(4): 7-8.
    [83]刘培生,马晓明.多孔材料检测方法[M].北京:冶金工业出版社, 2006, 13.
    [84]陈金妹,张健. ASAP2020比表面积及孔隙分析仪的应用[J].分析仪器, 2009, (3): 61-64.
    [85]王坚,赵健.膨胀蛭石性能与生产工艺的关系[J].非金属矿, 2005, 28 (2): 29-31.
    [86] Justo A, Maqueda C, Perez-Rodriguez J L, et al. Expansibility of some vermiculites[J]. Applied Clay Science, 1987, 4: 509-519.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700