新型核壳结构的智能纳米水凝胶的合成与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
智能水凝胶具有非常独特的刺激响应性,被广泛应用于药物控制释放、生物物质分离、化学传感器等各个领域,而具有温度响应性、pH响应性和pH/温度双重响应性的水凝胶是应用最为广泛、研究者最感兴趣的智能水凝胶。聚N-异丙基丙烯酰胺是最常用的温敏性高分子,它的低临界溶解温度(lower critical solution temperature, LCST)为32℃;聚甲基丙烯酸是一种具有pH响应性的水溶性高分子。本文首先采用无皂乳液聚合的方法,以天然高分子羟丙基纤维素为模板,合成了具有pH敏感性的PMAA纳米水凝胶,再以PMAA纳米水凝胶为模板,制备了以PMAA纳米水凝胶为核层,PNIPAM为壳层的具有核壳结构的水凝胶,论文主要取得了以下研究成果:
     (1)研究了不同MAA浓度对HPC溶液和PNIPAM纳米水凝胶的相转变温度的影响。紫外可见分光光度计,测定了不同MAA浓度时HPC溶液浊度的变化。在HPC水溶液中加入少量MAA后,HPC的相转变温度发生了很大程度的降低,并且随着MAA浓度的增加而下降。DLS测定了MAA对PNIPAM纳米水凝胶相转变温度的影响,结果表明弱酸性单体MAA的加入,会影响PNIPAM纳米水凝胶的体积相转变温度,并随着MAA浓度的增加,PNIPAM纳米水凝胶的相转变温度降低。
     (2)以MAA为单体,采用水相无皂乳液聚合的方法,避免了传统反相微乳液聚合体系中含有大量难以清除的有机溶剂和乳化剂,在不同的温度、HPC浓度、MAA浓度和BIS浓度下,制备了一系列PMAA纳米水凝胶。制备的PMAA纳米水凝胶的粒径从100 nm到240 nm不等,分散性也不等。结果发现随着HPC浓度、BIS浓度的增加,PMAA纳米水凝胶的粒径减小,而随着单体MAA浓度的增加,PMAA纳米水凝胶的粒径增加。综合以上结果,温度为24℃,HPC浓度为0.20 wt%, MAA单体浓度为0.30 wt%, BIS浓度为0.10 wt%的条件下,制备的PMAA纳米水凝胶的粒径是149.8 nm,多分散指数是0.119,分散性能良好。利用这一条件下合成的PMAA纳米水凝胶作为下一步合成核壳结构水凝胶的核层。在AFM以及TEM下观察了水凝胶的表面形貌,采用FTIR对其结构进行了表征,DLS以及紫外可见分光光度计对PMAA纳米水凝胶的环境敏感性进行了表征,合成的水凝胶具有良好的pH敏感性。
     (3)以PMAA纳米水凝胶为模板,以N-异丙基丙烯酰胺为单体,制备了具有pH和温度双重敏感性的具有核壳结构的PMAA/PNIPAM水凝胶。在不同的NIPAM单体浓度和BIS浓度下,制备了一系列的粒径在200 nm到658.3 nm的PMAA/PNIPAM水凝胶。结果表明随着NIPAM单体浓度的增加,PMAA/PNIPAM纳米水凝胶的粒径增加,而随着交联剂含量的增加,粒径降低。当BIS的质量分数为0.267 wt%,1.50g (1 wt%) NIPAM,0.30g (0.267 wt%)APS引发剂和0.10g(0.1 wt%)加速剂TMEDA时,合成的PMAA/PNIPAM水凝胶的粒径较小为338.8 nm,多分散指数为0.164,分散性较好。DLS测试了纳米水凝胶粒径的变化,FTIR和NMR表征了纳米水凝胶的结构特点。AFM对形貌进行了表征,TEM表征了核壳结构的形成,紫外可见分光光度计以及DLS的测试表明合成以PMAA纳米水凝胶为核、PNIPAM纳米水凝胶为壳的PMAA/PNIPAM水凝胶,具有良好的pH响应性和温度敏感性。
Smart hydrogels comprising environmentally responsive polymers continue to attract attention due to their potential applications in numerous fields, including drug delivery, chemical separations, sensors and catalysis. Perhaps the most widely study class of responsive nanohydrogel are pH-, temperature-, or both responsive hydrogels. Poly(N-isopropylacrylamide) (PNIPAM) is the most representative temperature-responsive poymer. Poly(methacrylic acid) (PMAA) is a pH-respensive water soluble polymer. We have successfully synthesized the surfactant-free poly(methacrylic acid) (PMAA) nanogels using a natural polymer hydroxypropylcellulose (HPC) as a template in aqueous solution. Finally, pH- and temperature-sensitive PMAA core/PNIPAM shell nanogels using PMAA nanogels as a template were synthesized in aqueous solution. The main achievements are as follows:
     (1)Different MAA concentrations affected the phase transition temperature of HPC solution and PNIPAM nanohydrogel. UV-Vis spectrophotometer measured absorbance of HPC solution at different MAA concentrations. After adding a small amount of MAA, the phase transition temperature of HPC decreased quickly. It is noted that an increase in MAA concentration resulted in the decreasing phase transition temperature of the HPC solution.
     (2) A series of pH-sensitive PMAA nanohydrogels were prepared by surfactant-free emulsion polymerization(SFEP) with different temperatures, HPC concentrations, MAA concentrations, BIS concentrations. The size of the resulting PMAA nanohydrogel ranged from 100 nm and 240nm. An increase in BIS and HPC concentration resulted in a decrease in the particle size. As monomer MAA concentration was increased, the size of the PMAA nanogels became larger. Specifically, As the PMAA nanogels were prepared at 24℃,0.20 wt% HPC,0.30 wt% MAA,0.1 wt% BIS, the size of the nanogels is 149.8 nm and its polydispersion index (PDI) is 0.119. Using the PMAA nanohydrogel as a template, monomer NIPAM in the PMAA nanogel dispersion was polymerized to form PMAA/PNIPAM core/shell nanohydrogel. The morphology of the nanodydrogels was characterized by atomic force microscope (AFM) and transmission electron microscope (TEM). The structure of PMAA nanohydrogels was studied by fourier trandform infrared spectrometer (FTIR). Dynamic light scattering (DLS) and UV-vis spectrophotometer indicate that PMAA nanohydrogels had good pH sensitivity.
     (3) Smart PMAA core/PNIPAM shell nanohydrogels with pH- and temperature- sensitivity were synthesized by using PMAA nanohydrogels as templet and N-isopropylacrylamide as monomer. The size of the resulting PMAA/PNIPAM nanohydrogels ranged from 200 nm to 658.3 nm were prepared with different NIPAM and BIS concentrations. The results showed that the size of PMAA/PNIPAM nanohydrogels increased with an increasing NIPAM monomer concentration but decreased as increasing crosslinker concentration. The size of PMAA/PNIPAM nanohydrogels synthesized with 0.267wt% BIS,1 wt% NIPAM,0.267 wt% APS initiator and 0.10 wt% accelerator TMEDA is 338.8 nm. The narrow dispersivity of PMAA/PNIPAM nanohydrogels is 0.164. The size variation of PMAA/PNIPAM nanohydrogels was measured by dynamic light scattering (DLS) and inner structure was characterized by fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). The morphology of PMAA/PNIPAM nanohydrogels was characterized by atomic force microscope (AFM) and the formation of core/shell was characterized by transmission electron microscopy (TEM). Ultraviolet/visible spectrophotometer (UV) and DLS show that PMAA/PNIPAM nanohydrogels have been synthesized in which PMAA nanohydrogels are core and PNIPAM nanohydrogels are shell. PMAA/PNIPAM nanohydrogels demonstrated excellent pH responsiveness and temperature sensitivity.
引文
[1]Griffith L G. Polymeric Biomaterials[J]. Acta Metallurgica, 2000,48(1):263-277.
    [2]Omathanu P, Ramesh P. Polymers in drug delivery [J]. Current Opinion in Chemical Biology, 2001,5(4):447-451.
    [3]Motoichi K, Minoru T, NobuhioY. Double stimui-responsive degradable hydrogels for drug delivery:Interpenetrating polymer networks composed of oligopeptideterminatedpoly(ethylene glycol) and dextran[J]. Macromolecular Rapid Communications,1995,16(9):663-666.
    [4]Ko J A, Park H J, Hwang S J, et al. Preparation and characterization of chitosan microparticles intended for controlled drug delivery[J]. International Journal of Pharmaceutics, 2002,249(1):165-174.
    [5]Vanessa C L, Raghavan S L, Snowden M J. Colloidal microgels as transdermal delivery systems[J]. Reactive and Functional Polymers,2004,58(3):175-185.
    [6]Morris G E, Vincent B, Snowden M J. Adsorption of lead ions onto N-isopropylacrylamide and acrylic acid copolymer microgels[J]. Journal of Colloid and Interface Science, 1997,190(1):198-205.
    [7]Kayaman N, Kazan D, Erarslan A, et al. Structure and protein separation efficiency of poly(N-isopropylacrylamide) gels:effect of synthesis conditions[J]. Journal of Applied Polymer Science,1998,67(5):805-814.
    [8]Takashi M, Noriko A, Tadashi U. Preparation of an antigen-antibody bindings[J]. Macromolecules,1999,32(6):2082-2084.
    [9]Holtz J H, Holtz J W, Calum H, et al. Intelligent polymerized crystalline colloidal arrays:novel chemical sensor materials[J]. Analytical Chemistry,1998,70(4):780-791.
    [10]Holtz J H, Asher S A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials[J]. Nature,1997,389(1):829-832.
    [11]Ouali L, Stoll S, Pefferkorn E, et al. Coagulation of antibody-sensitized latexes in the presence of antigen[J]. Polymers for Advanced Technologies,1995,6(7):541-546.
    [12]Bergbreiter D E, Case B L, Liu Y S, et al. Poly(N-isopropylacrylamide) soluble polymer supports in catalysis and synthesis[J]. Macromolecules,1998,31 (18):6053-6062.
    [13]Hitomi N, Yasushi M, Choichiro S, et al. Catalytic properties of enzymes modified with temperature-responsive polymer chains[J]. Macromolecular Chemistry and Physics, 1995.196(2):611-620.
    [14]罗建斌,方国芳,谢兴益等.水凝胶烧伤敷料研究进展[J].生物医学工程学杂志,2004,21(1):156-159.
    [15]Sumaru K, Ohi K, Takagi T, et al. Photoresponsive properties of poly(N-isopropylacrylamide) hydrogel partly modified with spirobenzopyran[J]. Langmuir,2006,22(9):4353-4356.
    [16]冯霞,陈莉,周军杰.AMPS/AAM凝胶响应性能的研究[J].化工新型材料,2005,33(2):39-42.
    [17]Liu T Y, Hu S H, Liu T Y, et al. Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug[J]. Langmuir,2006,22(14):5974-5978.
    [18]Corr S A, Rakovich Y P, Gunko Y K. Multifunctional magnetic-fluorescent nanocomposites for biomedical applications[J]. Nanoscale Research Letters,2008,3(3):87-104.
    [19]Tuncer C, Simin K, Gokhan D, et al. Temperature-responsive characteristics of poly(N-isopropylacrylamide) hydrogels with macroporous structure[J]. Polymer International, 2007,56 (2):275-282.
    [20]Zhang X Z, Yang Y Y, Chung T S, et al. Preparation and characterization of fast response macroporous poly(N-isopropylacrylamide) hydrogels[J]. Langmuir,2001,17(20):6094-6099.
    [21]张景效,陆彬.脉冲式给药系统的研究进展[C].国外医药-合成药、生化药、制剂分册,1998,19(5):317-320.
    [22]郭启雷.温敏水凝胶在智能给药系统中的应用[C].国外医药-合成药、生化药、制剂分册,2002,23(1):41-44.
    [23]Mohdy H L, Agnes S. Preparation of fast response superabsorbent hydrogels by radiation polymerization and crosslinking of N-isopropylacrylamide in solution[J]. Radiation Physics and Chemistry,2008,77(3):273-279.
    [24]Bromberg L E, Ron E S. Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery[J]. Advanced Drug Delivery Reviews,1998,31(3):197-221.
    [25]Tan B H, Ravi P, Tan L N, et al. Synthesis and aqueous solution properties of sterically stabilized pH-responsive polyampholyte microgels[J]. Journal of Colloid and Interface Science, 2007,309(2):453-463.
    [26]Zhao Y, Kang J, Tan T W. Salt-, pH-and temperature-responsive semi-interpenetrating polymer network hydrogel based on poly(aspartic acid) and poly(acrylic acid)[J]. Polymer, 2006,47(22):7702-7710.
    [27]刘晓华,唐黎明,戴或等.含聚氨酯型温度和pH双敏性水凝胶的合成及性能研究[J].高分子材料科学与工程.2003,19(1):49-52.
    [28]Hu X B, Xiong L J, Wang T, et al. Synthesis and dual response of ionic nanocomposite hydrogels with ultrahigh tensibility and transparence[J]. Polymer,2009,50(8):1933-1938.
    [29]Li X L, Ji J, Shen J C. Synthesis of hydroxy-capped comb-like poly(ethylene glycol) to dvelop shell cross-linkable micelles[J]. Polymer,2006,47(6):1987-1994.
    [30]陈清瑞,刘畅,姜国庆,等.高机械性能的聚(丙烯酸-co-甲基丙烯酸十八酯)疏水缔合凝胶的溶胀行为研究[J].高分子学报,2010,1(6):797-802.
    [31]Chan Y N, Bulmus V, Hadi Z M, et al. Acid-cleavable polymeric core-shell particles for delivery of hydrophobic drugs[J]. Controlled Release,2006,115(2):197-207.
    [32]Li X W, Huang Y S, Xiao J, et al. pH responsive PAIAm-g-PNIPA microspheres:preparation and drug release[J]. Journal of Applied Polymer Science,1995,55(13):1779-1785.
    [33]Chen G H, Hoffman A S. Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH[J]. Nature,1995,373(6509):49-52.
    [34]齐旺顺,王晓琳,黄健等.N-异丙基丙烯酰胺接枝聚乙烯微孔膜的结构形态和动电现象[J].膜科学与技术,2003,23(1):1-6.
    [35]Ren J, Zhang Y Q, Li J Q, et al. Radiation synthesis and characteristic of IPN hydrogels composed of poly(diallyldimethylammonium chloride) and kappa-carrageenan[J]. Radiation Physics and Chemistry,2001,62(2-3):277-281.
    [36]Muniz E C, Geuskens G. Compressive elastic modulus of polyacrylamide hydrogels and semi-IPNs with poly(N-isopropylacrylamide)[J]. Macromolecules,2001,34(13):4480-4484.
    [37]Zhang J, Peppas N A. Synthesis and characterization of pH- and temperature-sensitive poly(methacrylic acid)/poly(N-isopropylacrylamide) interpenetrating polymeric networks[J]. Macromolecules,2000,33(1):102-107.
    [38]卓仁禧,张先正.温度及pH敏感聚(丙烯酸)/聚(N-异丙基丙烯酰胺)互穿聚合物网络水凝胶的合成及性能研究[J].高分子学报,1998,1(1):39-42.
    [39]李志菊,梁江华,李玮等.具有温度和pH敏感性微凝胶的制备与表征[J],合成橡胶工业,2008,,31(1):46-49.
    [40]Harmon M E, Kuckling D, Frank C W. Photo-cross-linkable PNIPAM copolymers mechanical properties of hydrogels layers[J].Langmuir,2003,19(26):10660-10665.
    [41]Matzelle T R, Geuskens G, Kruse N. Elastic properties of poly(N-isopropylacrylamide) and poly(acrylamide) hydrogels studied by scanning force microscopy[J]. Macromolecules,2003,36(8):2926-2931.
    [42]Kazakov S, Kaholek M, Kudasheva D, et al. Poly(N-isopropylacrylamide-co-l-vinylimidazole) hydrogel nanoparticles prepared and hydrophobically modified in liposome reactors:atomic force microscopy and dynamic light scattering study[J]. Langmuir,2003,19(19):8086-8093.
    [43]李亚娜,霍东霞,王红英等.AFM在N-异丙基丙烯酰胺-丙烯酸共聚物微凝胶粒子性能研究中的应用[J].高分子材料科学与工程,2008,24(9):100-103.
    [44]赵祯霞,李忠,徐金方等.聚(N-异丙基丙烯酰胺-co-丙烯酸)水凝胶对铜离子的体积响应动力学[J].化工学报,2008,59(11):2805-2811.
    [45]唐群委,孙慧,敖海勇等.温度敏感聚丙烯酸盐/聚乙二醇互穿网络水凝胶的合成及重金属离子吸收[J].功能材料,2008,1(39):86-90.
    [46]Freitas R F, Cussler E L. Temperature sensitive gels as extraetion solvents[J].Chemical Engineering Science,1987,42(1):97-103.
    [47]田昀,冯刚.亚硝酸根离子在P(DMAEMA/HEMA)水凝胶中的吸附和扩散性能[J].环境化学,2009,28(1):69-71.
    [48]唐青,胡艾希,谭英等.聚N-异丙基丙烯酰胺类温敏凝胶的制备及其对萘普生钠的缓释作用[J].药学进展,2005,4(30):171-174.
    [49]Kazuya S, Takeshi S, Yuko T, et al. Fabrication and control of honeyomb structure prepared from amphilic graft copolymers[J]. Journal of Controled Release,2001,75(2):183-184.
    [50]殷以华,舒凯凯,季兴敏等.(NIPAAm-co-MAA)环境敏感性[J],武汉理工大学学报,2011,33(1):1-5.
    [51]Hoshino K, Taniguchi M, Katagiri M, et al. Properties of amylase immobilized on a new reversibly soluble-insoluble polymer and its application to prepared hyorolysis of soluble starch[J]. Journal of Chemical Engineering of Japan,1992,25(5):569-574.
    [52]张婷,庹新林,袁俊.聚(苯乙烯-co-甲基丙烯酸)胶体晶体原位反转制备孔阵列研究[J].高分子学报,2010,1(1):74-78.
    [53]罗巧芳,关英,张拥军.铅离子敏感N-异丙基丙烯酰胺共聚物微凝胶的制备[J].高分子学报,2010,6(6):793-796.
    [54]Zhou H Y, Chen X G, Kong M, et al. Effect of molecular weight and degree of chitosan deacetylation on the preparation and characteristics of chitosan thermosensitive hydrogel as a delivery system[J]. Carbohydrate Polymers,2008,73(2):265-273.
    [55]Leenaporn Jongpaiboonkit, William J K, Lyons G E, et al. An adaptable hydrogel array format for 3-dimensional cell culture and analysis[J]. Biomaterials,2008,29(23):3346-3356.
    [56]Mehyar G F, Liu Z Q, Han J H. Dynamics of antimicrobial hydrogels in physiological saline[J]. Carbohydrate Polymers,2008,74(1):92-98.
    [57]Peng G, Xu S M, Peng Y, et al. A new amphoteric superabsorbent hydrogel based on sodium starch sulfate[J]. Bioresource Technology,2008,99(2):444-447.
    [58]Chauhan G S, Chauhan S, Kumar S, et al. A study in the adsorption of Fe2+and NO3- on pine needles based hydrogels[J]. Bioresource Technology,2008,99(14):6464-6470.
    [59]Yi J Z, Ma Y Q, Zhang L M. Synthesis and decoloring properties of sodium humate poly(N-isopropylacrylamide) hydrogels [J]. Bioresource Technology,2008,99(13):5362-5367.
    [60]Loh X J, Sng K C, Li J. Synthesis and water-swelling of thermo-responsive poly(ester-urethane) containing poly(ε-caprolactone), poly(ethylene glycol) and poly(propylene glycol) [J]. Biomaterials,2008,29(22):3185-3194.
    [61]Tang Q W, Wu J H, Sun H, et al. Superabsorbent conducting hydrogel from poly(acrylamide-aniline) with thermo-sensitivity and release properties[J]. Carbohydrate Polymers, 2008,73(3):473-481.
    [62]宋江莉,王秀芬.LCST类水凝胶开关效应的研究进展[J].化学进展,2004,16(1):56-60.
    [63]Berndt I, Richtering W. Doubly temperature sensitive core-shell microgels[J]. Macromolecules,2003,36(23):8780-8785.
    [64]Hellweg T, Dewhurst C D, Eimer W, et al. PNIPAM-co-polystyrene core-shell microgels: structure, swelling behavior, and crystallization[J]. Langmuir,2004,20(11):4330-4335.
    [65]Clinton D Jones, L Andrew Lyon. Dependence of shell thickness on core compression in acrylic acid modified poly(N-isopropylacrylamide) core/shell microgels[J]. Langmuir, 2003,19(11):4544-4547.
    [66]Kimiko M, Satoshi Y, Keiji F, et al. Surface structure of latex particles covered with temperature-sensitive hydrogel layers[J]. Journal of Colloid and Interface Science, 1994,166(1):251-258.
    [67]Pelton R H, Chibante P. Preparation of aqueous latices with N-isopropylacrylamide[J]. Colloids and Surfaces,1986,20(3):247-256.
    [68]Juodkazis S, Mukai N, Wakaki R, et al. Reversible phase transitions in polymer gels induced by radiation forces[J]. Nature,2000,408(6809):178-181.
    [69]Tang S J, Hu Z B, Cheng Z D, et al. Crystallization kinetics of thermosensitive colloids probed by transmission spectroscopy[J]. Langmuir,2004,20(20):8858-8864.
    [70]Makino K, Yamamoto S, Keiji F, et al. Surface structure of latex particles covered with temperature-sensitive hydrogel layers[J]. Journal of Colloid and Interface Science, 1994,166(1):251-258.
    [71]Zhu P W, Napper D H. Physical review E[J], Colloids and Surfaces,1994,50(2):1360-1366.
    [72]Zhu P W, Napper D H. The effect of different electrolytes on the fractal aggregation of polystyrene latexes coated by polymers[J]. Colloids and Surfaces,1995,A98:93-106.
    [73]Hu Z B, Lu X H, Gao J. Hydrogels opals[J]. Advanced Materials.2001,13(22):1708-1712.
    [74]Chi C L, Cai T, Hu Z B. Oligo(ethylene glycol)-based thermoresponsive core-shell microgels[J]. Langmuir,2009,25(6):3814-3819.
    [75]Duracher D, Sauzedde F, Elaissari A, et al. Cationic amino-containing N-isopropylacrylamide-styrene copolymer latex particles:1-particle size and morphology vs. polymerization process[J]. Colloid and Polymer Science,1998,276(3):219-231.
    [76]Duracher D, Sauzedde F, Elaissari A, et al. Cationic amino-containing N-isopropylacrylamide-styrene copolymer latex particles:2-surface and colloid characteristics[J]. Colloid and Polymer Science,1998,276(10):920-929.
    [77]Shigeya T, Mitsuru O, Christoph K, et al. Microspheres prepared with a temperature-responsive macromonomer[J]. Die Makromolekulare Chemie, 1993,194(2):551-558.
    [78]Chen C W, Chen M Q, Serizawa T, et al. In situ synthesis and the catalytic properties of platinum colloids on polystyrene microspheres with surface-grafted poly(N-isopropylacrylamide)[J]. Chemical Communications,1998,7:831-832.
    [79]Li X, Zuo J, Guo Y L, et al. Preparation and characterization of narrowly sistributed nanogels with temperature-responsive core and pH-responsive shell[J]. Macromolecules, 2004,37(26),10042-10046.
    [80]刘维俊,黄永民,刘洪来.温度、pH敏感性核壳结构微凝胶的制备及性质[J].化学学报,2007,65(2):91-94.
    [81]王晓霞,魏小飞,鹿浩等.聚N-异丙基丙烯酰胺-聚乙二醇核壳结构微凝胶的制备与表征[J].中国组织工程研究与临床康复,2008,12(32):6261-6264.
    [82]牛忠伟,李丹,杨振忠.核壳结构三维有序水凝胶的制备[J].高分子学报,2002,(6):850-853.
    [83]费翔,徐世美,王吉德.新型核壳结构纳米复合双网络水凝胶的合成及其机械性能研究[A].2009年全国高分子学术论文报告会论文摘要集(下册)(C),2009.
    [84]Jones C D, Lyon L A. Synthesis and characterization of multiresponsive core-shell microgels[J]. Macromolecules,2000,33(22):8301-8306.
    [85]Jones C D, Lyon L A. Shell-restricted swelling and core compression in poly(N-isopropylacrylamide) core-shell microgels[J]. Macromolecules, 2003,36(6):1988-1993.
    [86]Gan D J, Lyon L A. Tunable swelling kinetics in core-shell hydrogel nanoparticles[J]. Journal of the American Chemical Society,2001,123(31):7511-7517.
    [87]Wu W T, Zhou T, Berliner A, et al. Smart core-shell hybrid nanogels with Ag nanoparticle core for cancer cell imaging and gel shell for pH-regulated drug delivery[J]. Chemistry of Matericals,2010,22(6):1966-1976.
    [88]Hu X B, Tong Z, Lyon L A. Control of poly(N-isopropylacrylamide) microgel network structure by precipitation polymerization near the lower critical solution temperature[J]. Langmuir, 2011,27(7):4142-4148.
    [89]Yu Y L, Xie R, Zhang M J, et al. Monodisperse microspheres with poly(N-isopropylacrylamide) core and poly(2-hydroxyethyl methacrylate) shell[J]. Journal of Colloid and Interface Science,2010,346(2):361-369.
    [90]Hu X B, Tong Z, Lyon L A. Multicompartment core/shell microgels[J]. Journal of the American Chemical Society,2010,132(33):11470-11472.
    [91]刘继承,胡剑青,王锋等.耐水性室温自交联核壳结构丙烯酸酯乳液的合成及表征[C].新型建筑材料,2010,1(1),70-74.
    [92]程祥胜,马晓梅,邢雅成等.双重响应N-乙烯基己内酰胺、甲基丙烯酸共聚微凝胶的研究[J].青岛大学学报:工程技术版,2010,25(1):60-64.
    [93]Imaz A, Forcada J. N-vinylcaprolactam-based microgels:synthesis and characterization[J]. Journal of Polymer Science Part A:Polymer Chemistry,2008,46(7):2510-2524.
    [94]Imaz A, Forcada J. N-vinylcaprolactam-based microgels:effect of the concentration and type of cross-linker[J]. Journal of Polymer Science Part A:Polymer Chemistr y,2008,46(8):2766-2775.
    [95]Suzuki D, McGrath J G, Kawaguchi H, et al. Colloidal crystals of thermosensitive, core/shell hybrid microgels[J]. Journal of Physical Chemistry C,2007,111(15):5667-5672.
    [96]单连海,张志斌,魏靖明等.pH敏感聚甲基丙烯酸水凝胶的合成及性能研究[J],西南民族大学学报:自然科学版,2008,34(3):518-521.
    [97]孙桂香,张明祖,许杨等.pH响应性阳离子型微凝胶的制备及性质研究[J],化学学报,2009,67(14):1685-1690.
    [98]Chu B. Laser light scattering,2nd ed., New York:Academic Press,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700