RNAi提高家蚕对BmNPV的抗性及家蚕精细胞发育相关基因Achi功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究构建了基于piggyBac转座子、表达有BmNPV复制必需基因ie-1和lef-1短片段dsRNA和双筛选基因(gfp和neo基因)的转基因载体piggyantiIE-lef1-neo。转染有该载体的稳定转化细胞在接种病毒稀释度为10-9时,感染后2d天细胞中ie-1基因的转录表达量比对照组下降了97倍。采用精子介导并结合G418的筛选,我们获得了可稳定遗传的转基因家蚕。转基因家蚕在接种106/mL的BmNPV多角体时,感染11d后转基因家蚕的死亡率仍比对照组下降了40%。这些表明稳定转化细胞和转基因家蚕对BmNPV的抗性显著提高。
     本研究同时展开了对家蚕Bmachi基因功能的研究。研究发现:Bmachi主要在精巢和卵巢中表达,且精巢中表达有四种剪接体(FJ643616,FJ913885,FJ913886和GQ120180),卵巢中有两种剪接体表达存在(FJ502823和GQ120180)。对精巢中存在的四种剪接体进行qPCR,结果显示FJ913885剪接体的表达量最高。
     qPCR和RNA原位杂交显示了Bmachi基因在三龄时期的精巢大量表达,该时期是初级精母细胞大量形成时期。凝胶阻滞实验显示复性后的BmAchi蛋白和带有该蛋白结合位点的DNA序列有结合作用。BmAchi含有两个相邻的酸性结构域,荧光素酶的光子数检测提示这两个酸性结构域对报告基因的表达起转录激活作用。培养细胞免疫荧光检测结果显示BmAchi蛋白主要位于BmN细胞的细胞核内;家蚕精巢组织的免疫荧光检测显示BmAchi在初级精母细胞和游动的精子中均有表达。家蚕注射Bmachi-siRNA的实验显示出该基因为一个减数分裂阻滞基因,注射组家蚕的未受精率比对照组高出35%左右,且抑制Bmachi的表达可导致精巢中精细胞的发育减缓。免疫共沉淀的结果显示BmAchi与BmAly有相互作用,提示了他们可能和其他减数分裂阻滞因子一起形成了一个复合物,调节与减数分裂和精子形成有关基因的转录。
Our study successfullly constructed the transgenic vector congtaing short fragmentdsRNAs of two essential genes (ie-1and lef-1) of BmNPV and two screening genes(gfpand neo).The stale transformed cells exhibited obvious resistance to BmNPV wheninoculated10-9diluted wild type BmNPV; in addition, the identified transgenicsilkworms also showed high efficacy of RNAi while infected BmNPV hydropolyvirusat a concentration of106/mL as a result of the mortality of transgenic silkwormsdecreased40%compared to the control groups.
     In this study, we also investigated the characteristics and functions of BmAchi, aBombyx mori homolog of DmAchi. Like DmAchi, BmAchi is predominantly expressedin the testes and ovaries. Four alternatively spliced isoforms could be isolated fromtestes, and two isoforms from ovaries. Quantitative polymerase chain reaction indicatedthat Bmachi was abundantly expressed in the testis of3rd instar larvae, when the testisis almost full of primary spermatocytes. The results of luciferase assays indicated thatBmAchi contains two adjacent acidic domains that activate the transcription of reportergenes. Immunofluorescence assay in BmN cells showed that the BmAchi protein waslocated mainly in the nucleus, and paraffin sections of testis showed that BmAchi wasgrossly expressed in primary spermatocytes and motile sperms. Consistent with the roleof DmAchi in Drosophila development, BmAchi significantly affected spermatiddifferentiation, as indicated by both hematoxylin-eosin staining of paraffin sections oftestis from Bmachi-small interfering RNA (siRNA)-injected male silkworms, and by theincidence of unfertilized eggs produced by crossing Bmachi-siRNA-injected males withnormal females. Co-immunoprecipitation experiments suggested that BmAchiinteracted with BmAly, and that they may recruit other factors to form a complex toregulate the genes required for meiotic divisions and spermatid differentiation.
引文
1. FuLler MT.(1993). Spermatogenesis In The Development of Drosophila (ed.M.Bate and A. Martinez-Arias). Cold Spring Harbor Press, Cold Spring Harbor,New York. pp71-147.
    2. Lindsley D and Tokuyasu KT.(1980). Spermatogenesis In Genetics and Biologyof Drosophila (ed.M.A shburner and T.R.F.Wright), pp225-294. NewYork:AcademicPress.
    3. Hennig W.(1987). The Y chromosome lampbrush loops of Drosophila In:ResuLtsand Function of Eukaryotic Chromosome, Chromosome133-146.
    4. GouLd-Somero M and Holland L (1974). The timing of RNA synthesis forspermiogenesis in organ cuLtures of Drosophila melanogaster testes. WilhelmRoux’ Arch174:133-148
    5. Olivieri G and Olivieri A.(1965). Autoradiographic study of nucleic acidsynthesis during spermatogenesis in Drosophila melanogaster. Mutat. Res2:366-380.
    6. Sch fer M, Nayernia K, Engel W, et al.(1995). Translational control inspermatogenesis. Dev. Biol172:344-352.
    7. Margaret T and FuLler.(1998). Genetic control of cell proliferation anddifferentiation in Drosophila spermatogenesis. Cell and developmental biology9:433-444.
    8.向仲怀.(2005).蚕丝生物学[M].北京:中国林业出版社.
    9.冯家新.(2000).蚕种研究文集.杭州:浙江大学出版社:139-158.
    10.浙江农业大学.(1989).蚕体解剖生理学.第二版.北京:农业出版社:215-219.
    11. Eddy EM.(2002). Male germ cell gene expression. Recent Progress in HormoneResearch57:103-128.
    12. Edgar B and Farrell PO.(1990). The three postblastoderm cell cycles ofDrosophila embryogenesis are reguLated in G2by string. Cell62:469–480.
    13. Edgar B, Sprenger F, Duronio R, et al.(1994). Distinct molecuLarmechanisms time mitosis at four successive stages of Drosophilaembryogenesis,Genes Dev8:440–452.
    14. White-Cooper H, Schafer MA, Alphey LS, et al.(1998). Transcriptional andpost-transcriptional control mechanisms coordinate the onset of spermatiddifferentiation with meiosis I in Drosophila. Development125:125-134.
    15. White-Cooper H, Leroy D, MacQueen A, et al.(2000). Transcription of meioticcell cycle and terminal differentiation genes depends on a conserved chromatinassociated protein, whose nuclear localisation is regulated. Development127:5463-5473.
    16. Eddy EM.(1995). Chauvinist genes of male germ cells: gene expression duringmouse spermatogenesis. Reprod Fertil Dev7:695-704.
    17.张瑶瑶,曹广力,薛仁宇,等.(2011).家蚕同源异型结构域蛋白基因Bmvis的克隆及组织表达和亚细胞定位.蚕业科学[J]37:0606-0613.
    18. Sassone Corsi P.(2002). Unique chromatin remodeling and transcriptionalreguLation in spermatogenesis. Science296:2176-2178.
    19. Fimia GM, De Cesare D, Sassone Corsi P.(1999). CBP-independent activationof CREM and CREB by the LIM only protein ACT. Nature398:165-169.
    20. Hecht NB.(1998). MolecuLar mechanisms of male germ cell differentiation.BioEssays20:555-561.
    21. Zhang D, Penttila TL, Morris PL, et al.(2001). Spermatogenesis deficiency inmice lacking the Trf2gene. Science29:1153-1155.
    22. Martianov I, Fimia GM, Dierich A, et al.(2001). Late arrest of spermiogenesisand germ cell apoptosis in mice lacking the TBP like TLF/TRF2gene. Mol Cell7:509-515.
    23. Brown PR, Miki K, Harper DB, et al.(2003). A-kinase anchoring protein4binding proteins in the fibrous sheath of the spermflagellum. Biol Reprod68:2241-2248.
    24. Chowdhury K, GouLding M, Walther C, et al.(1992). The ubiquitoustransactivator Zfp-38is upreguLated during spermatogenesis with differentialtranscription. Mech Dev39:129-142.
    25. Eddy EM.(1999). Role of heat shock protein HSP70-2in spermatogenesis. RevReprod4:23-30.
    26. Wolgemuth DJ, Laurion E, Lele KM.(2002). ReguLation of the mitotic andmeiotic cell cycles in the male germ line. Recent Progress in HormoneResearch57:75-101.
    27. Kim JM, McGaughy JT, Bogle RK, et al.(2001). Meiotic expression of thecyclin H/Cdk7complex in male germ cells in the mouse. Biol Reprod64:1400-1408.
    28. Rossi P, Sette C, Dolci S, et al.(2000). Role of c-kit in mammalianspermatogenesis. J Endocrinol Invest23:609-615.
    29. Kharbanda S, Pandey P, Morris PL, et al.(1998). Functional role for the c-Abltyrosine kinase in meiosis I. Oncogene16:1773-1777.
    30. Nagao Y.(2002). Definitive expression of c-mos in late meiotic prophase leadsto phosphorylation of a34kda protein in cuLtured rat spermatocytes. Cell BiolInt26:193-201.
    31. Kodaira K, Takahashi R, Hirabayashi M, et al.(1996). Overexpression of c-mycinduces apoptosis at the prophase of meiosis of rat primary spermatocytes. MolReprod Dev45:403-410.
    32. Furuchi T, Masuko K, Nishimune Y, et al.(1996). Inhibition of testicuLar germcell apoptosis and differentiation in mice misexpressing Bcl-2in spermatogonia.Development122:1703-1709.
    33. Korsmeyer SJ.(1995). ReguLators of cell death. Trends Genet11:101-105.
    34. Knudson CM, Tung KSK, Tourtellotte WG, et al.(1995). Bax-deficient micewith lymphoid hyperplasia and male germ cell death. Science270:96-99.
    35. Ross AJ, Waymire KG, Moss JE, et al.(1998). TesticuLar degeneration inBclw-deficient mice. Nat Genet18:251-256.
    36. Fujisawa M, Shirakawa T, Fujioka H, et al.(2001). Adenovirus-mediated p53gene transfer to rat testis impairs spermatogenesis. Arch Androl46:223-331.
    37. Unni E, Zhang Y, KangasniemiM, et al.(1995). Stage-specific distribution of thespermatid-specific histone2B in the rat testis. Biol Reprod53:820-826.
    38. Jiang J and White-Cooper H.(2003). Transcriptional activation in Drosophilaspermatogenesis involves the mutually dependent function of aly and a novelmeiotic arrest gene cookie monster. Development.130:563–573.
    39. Ayyar S, Jiang JQ, Collu A, et al.(2003). Drosophila TGIF is essential fordevelopmentally regulated transcription in spermatogenesis. Development30:2841-2852.
    40. Hyman C, Bartholin L, Newfeld S, et al.(2003). Drosophila TGIF proteins aretranscriptional activators. Mol Cell Biol23:9262-9274.
    41. Wang ZH and Mann RS.(2003). Requirement for two nearly identicalTGIF-related homeobox genes in Drosophila spermatogensis. Development130:2853-2865.
    42. Perezgazga L, Jiang JQ, Bolival B, et al.(2004). Regulation of transcription ofmeiotic cell cycle and terminal differentiation genes by the testis-specific Znfinger protein matotopetli. Development131:1691-1702.
    43. Jiang JQ, Benson E, Bausek N, et al.(2007). tombola, a tesmin/TSO1familyprotein, regulates transcriptional activation in the Drosophila male germline andphysically interacts with Always early. Development134:1549-1559.
    44. Lin TY, Viswanathan S, Wood C, et al.(1996). Coordinate developmentalcontrol of the meiotic cell cycle and spermatid differentiation in Drosophilamales. Development122:1331-1341.
    45. Hiller MA, Lin TY, Wood C, et al.(2001). Developmental regulation oftranscription by a tissue-specific TAF homolog. Genes Dev15:1021-1030.
    46. Lu XW and Horvitz HR.(1998). lin-35and lin-53, two genes that antagonize aC-elegans Ras pathway, encode proteins similar to Rb and its binding proteinRbAp48. Cell95:981-991.
    47. Zhou Z, Luo M, Straesser K, et al.(2000). The protein Aly linkspre-messenger-RNA splicing to nuclear export in metazoans. Nature407:401-405.
    48. Wakimoto BT.(2000). Doubling the rewards: testis ESTs for Drosophila genediscovery and spermatogenesis expression profile analysis. Genome Res10:1841-1842.
    49. Bertolino E, Reimund B, Wildt-Perinic D, et al.(1995). A novel homeoboxprotein which recognizes a TGT core and functionally interferes with aretinoid-responsive motif. J Biol Chem270:31178-31188.
    50. Yang Y, Hwang CK, D’Souza UM, et al.(2000). Three-amino acid extensionloop homeodomain proteins Meis2and TGIF differentially regulate transcription.J Biol Chem275:20734-20741.
    51. Hackstein JH.(1991) Spermatogenesis in Drosophila: A genetic approach tocelluLar and subcelluLar differentiation. Eur J Cell Biol56:151-169.
    52. Sandler L, Lindsley DL, Nicoletti B, et al.(1968). Mutants affecting meiosis in naturalpopuLations of Drosophila melanogaster.Genetics60:525-558.
    53. Gehring WJ, Affolter M, Burglin T.(1994a). Homeodomain proteins. Annu RevBiochem63:487-526.
    54. McGinnis W, Garber RL, Wirz J, et al.(1984a). A homologous protein-codingsequence in Drosophila homeotic genes and its conservation in other metazoans.Cell37:403-408.
    55. McGinnis W, Levine MS, Hafen E, et al.(1984b). A conserved DNA sequencein homoeotic genes of the Drosophila Antennapedia and bithorax complexes.Nature308:428-433.
    56. Gehring WJ, Qian YQ, Billeter M, et al.(1994b) Homeodomain-DNArecognition. Cell78:211-223.
    57. Jacobs Y, Schnabel CA, Cleary ML (1999) Trimeric association of Hox andTALE homeodomain proteins mediates Hoxb2hindbrain enhancer activity. MolCell Biol19:5134-5142.
    58. Knoepfler PS, Lu Q, Kamps MP.(1996). Pbx-1Hox heterodimers bind DNA oninseparable half-sites that permit intrinsic DNA binding specificity of the Hoxpartner at nucleotides3to a TAAT motif. Nucleic Acids Res24:2288-2294.
    59. Mann RS and Chan SK.(1996). Extra specificity from extradenticle: thepartnership between HOX and PBX/EXD homeodomain proteins. Trends Genet12:258–262.(Erratum,12:328.)
    60. Passner JM, Ryoo HD, Shen L, et al.(1999). Structure of a DNA-boundUltrabithorax-Extradenticle homeodomain complex. Nature397:714-719.
    61. Piper DE, Batchelor AH, Chang CP, et al.(1999). Structure of a HoxB1-Pbx1heterodimer bound to DNA: role of the hexapeptide and a fourth homeodomainhelix in complex formation. Cell96:587-597.
    62. Burglin TR.(1997). Analysis of TALE superclass homeobox genes (MEIS,PBC,KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants andanimals. Nucleic Acids Res25:4173-4180.
    63. Mann RS and Affolter M.(1998). Hox proteins meet more partners. Curr OpinGenet Dev8:423-429.
    64. Ferretti E, Marshall H, Popperl H. et al.(2000). Segmental expression of Hoxb2in r4requires two separate sites that integrate cooperative interactions betweenPrep1, Pbx and Hox proteins. Development127:155-166.
    65. Ryoo HD, Marty T, Casares F. et al.(1999). ReguLation of Hox target genes bya DNA bound Homothorax/Hox/Extradenticle complex. Development126:5137-5148.
    66. Wotton D, Lo RS, Lee S, et al.(1999a). A Smad transcriptional corepressor.Cell97:29-39.
    67. Wang W, Koka V, Lan HY.(2005). Transforming growth factor beta and Smadsignaling in kidney diseases. Nephrology(Carlton)10:48-56.
    68. Wotton D, Lo RS, Swaby LA, et al.(1999b). Multiple modes of repression bythe Smad transcriptional corepressor TGIF. J Biol Chem274:37105-37110.
    69. Wotton D, Knoepfler PS, Laherty CD, et al.(2001). The Smad transcriptionalcorepressor TGIF recruits mSin3. Cell Growth Differ12:457-463.
    70. Wotton D, Massague J (2001) Smad transcriptional corepressors in TGF betafamily signaling. Curr Top Microbiol Immunol254:145-164.
    71. Imoto I, Pimkhaokham A, Watanabe T, et al.(2000). Amplification andoverexpression of TGIF2, a novel homeobox gene of the TALE superclass, inovarian cancer cell lines. Biochem Biophys Res Commun276:264-270.
    72. Melhuish TA, Gallo CM, Wotton D.(2001). TGIF2interacts with histonedeacetylase1and represses transcription. J Biol Chem276:32109-32114.
    73. Chen X, Rubock MJ, Whitman M.(1996). A transcriptional partner of MADproteins in TGF–β signalling. Nature383:691–696.
    74. Chen X, Weisberg E, Fridmacher V, et al.(1997). Smad4and FAST-1in theassembly of activin-responsive factor. Nature389:85–89.
    75. Gripp KW, Wotton D, Edwards M C. et al.(2000). Mutations in TGIF causeholoprosencephaly and link NODAL signalling to human neural axisdetermination. Nat. Genet25:205-208.
    76. Muenke M and Beachy PA.(2000). Genetics of ventral forebrain developmentand holoprosencephaly. Curr Opin Genet Dev10:262-269.
    77. Conlon FL, Lyons KM, Takaesu N, et al.(1994). A primary requirement fornodal in the formation and maintenance of the primitive streak in the mouse.Development120:1919-1928.
    78. Feldman B, Gates MA, Egan ES, et al.(1998). Zebrafish organizer developmentand germ-layer formation require nodal-related signals. Nature395:181-185.
    79. Nanni L, Croen LA, Lammer EJ, et al.(2000). Holoprosencephaly: molecuLarstudy of a California popuLation. Am J Med Genet90:315-319.
    80. Wallis D and Muenke M.(2000). Mutations in holoprosencephaly. Hum Mutat16:99-108.
    81. Murphy FA, Fauquet CM, Bishop DHL, et al.(1995). Sixth Report of theInternational Committee on Taxonomy of Virus. Springer Verlag Vienna.
    82. van Regenmortel MH, Fauquet CM, Bishop DHL.(2000). Seventh Report of theInternational Committee on Taxonomy of Viruses. Academic Press, San Diego,CA.
    83. Kondo A and Maeda S.(1991). Host range expansion by recombination of thebaculoviruses Bombyx mori nuclear polyhedrosis virus and Autographacalifornica nuclear polyhedrosis virus. J Virol65:3625–3632.
    84. Huh NE and Weaver RF.(1990a). Categorizing some early and late transcriptsdirected by the Autographa californica nuclear polyhedrosis virus. J Gen Virol71:2195–2200.
    85. Huh NE and Weaver RF.(1990b). Identifying the RNA polymerases that synthesize specifictranscripts of the Autographa californica nuclear polyhedrosis virus. J Gen Virol71:195–201.
    86. Hoopes RRJ and Rohrmann GF.(1991). In vitro transcription of baculovirusimmediate early genes: accurate mRNA initiation by nuclear extracts from bothinsect and human cells. Proc Natl Acad Sci USA88:4513–4517.
    87. Glocker B, Hoopes RRJ, Hodges L, et al.(1993). In vitro transcription frombaculovirus late gene promoters: accurate mRNA initiation by nuclear extractsprepared from infected Spodoptera frugiperda cells. J Virol67:3771–3776.
    88. Kool M, Ahrens CH, Goldbach RW, et al.(1994). Identification of genesinvolved in DNA replication of the Autographa californica baculovirus. ProcNatl Acad Sci USA91:11212–11216.
    89. Lu A and Miller LK.(1995). The roles of eighteen baculovirus late expressionfactor genes in transcription and DNA replication. J Virol69:975–982.
    90. Pathakamuri JA and Theilmann DA.(2002). The acidic activation domain of thebaculovirus transactivator IE1contains a virus-specific domain essential forDNA replication. J Virol76:5598–5604.
    91. Mikhailov VS and Rohrmann GF.(2002). Baculovirus replication factor LEF-1is a DNA primase. J Virol76:2287–2297.
    92. Evans JT, Leisy DJ, Rohrmann GF.(1997). Characterization of the interactionbetween the baculovirus replication factors LEF-1and LEF-2. J Virol71:3114–3119.
    93. Evans JT, Rosenblatt GS, Leisy DJ, et al.(1999). Characterization of theinteraction between the baculovirus ssDNA-binding protein (LEF-3) andputative helicase (P143). J Gen Virol80:493–500.
    94. McDougal VV and Guarino LA.(1999). Autographa californica nuclearpolyhedrosis virus DNA polymerase: measurements of processivity and stranddisplacement. J Virol73:4908–4918.
    95. McDougal VV and Guarino LA.(2000). The Autographa californica nuclearpolyhedrosis virus p143gene encodes a DNA helicase. J Virol74:5273–5279.
    96. Fire A, Xu S, MontgomeryM K, et al.(1998). Potent and specific geneticinterference by double2stranded RNA in Caenorhabdits elegans. J Nature391:806-811
    97. Bosher JM, Labouesse M.(2000). RNA interference: genetic wand and geneticwatchdog. Nature Cell Biology2:31-36.
    98.汤富酬,薛友纺.(2001). RNA干涉与基因沉默.遗传[J]23:167-172.
    99. Phillip A Sharp. RNA interference.(2001). Gene&Development15:485-490.
    100. G. J.汉农(美)主编,陈忠斌主译.(2004). RNAi—基因沉默指南[M].化学工业出版社,第一版,北京,1-235,266-289.
    101. Jinek M and Doudna JA.(2009). A three-dimensional view of the molecuLarmachinery of RNA interference. Nature457:405-412.
    102. Guo S and Komphuea KJ.(1995). par21, a gene required for eatablishingpolarity in C. elegans embryos, encodes a putative Sero Thrkinase that isasymmet rically distributed. Cell81:611-620.
    103.石勇,胡征,李华屏,等.(2007). RNAi的研究历史和现状.科技创业[J]1:112-113.
    104.杨正钦.(2004). RNAi技术的特征及应用前景.四川生理科学杂志[J]26:114-116.
    105.唐道林.(2004). RNAi及其实验技术进展.国外医学·生理、病理科学与临床分册[J]24:539-542.
    106. Kennerdell JR and Carthew RW.(1998). Use of dsRNA-mediated geneticinterference to demonstrate that f rizzled and f rizzled2act in the Winglesspathway. Cell95:1017-1026.
    107. Alvarado AS and Newmark PA.(1999). Double stranded RNA specificallydisrupts gene expression during planarian regeneration. Proc Natl Acad Sci USA96:5049-5054.
    108. Chuang C and Meyerowitz EM.(2000). Specific and heritable geneticinterference by double stranded RNA in Arabidopsis thaliana. Proc Natl AcadSci USA97:4985-5054.
    109. Lohmann JU, Endl I, Bosch TC.(1999). Silencing of developmental genes inHydra. Dev Biol214:211-214.
    110. Ngo H, Tschudi C, GuLl K, et al.(1998). Double stranded RNA induces mRNAdegradation in Trypanosoma brucei. Proc Natl Acad Sci USA95:14687-14692.
    111. Sharp PA and Zamore PD.(2000). RNA interference. Science287:2431-2433.
    112. Wargelius A, Ellingsen S, Fjose A.(1999). Double-stranded RNA inducesspecific developmental defects in zabrafish embryos. Biochem Biophys ResCommun263:156-161.
    113. Wianny F and Zernicka-Goetz M.(2000). Specific interference with genefunction by double stranded RNA in early mouse development. Nature CellBiology2:70-75.
    114. Sharp PA.(1999). RNAi and double-strand RNA.Genes Dev13:139-141.
    115. Meister G and Tuschl T.(2004). Mechanisms of gene silencing bydouble-stranded RNA. Nature431:343-349.
    116. Denli AM, Hannon GJ (2003). RNAi: an ever-growing puzzle. Trends BiochemSci28:196-201.
    117.张冰,何建国.(2007) RNAi技术及其在基因组学研究中的应用.内蒙古大学学报[J]38:109-116.
    118. Bass BL.(2000). Double stranded RNA as a template for gene silencing. Cell101:235-238.
    119. Gura T.(2000). A silence that speaks volumes. Nature404:804-808.
    120.夏庆友,帅小蓉,刘春,等.(2003). RNA干涉及其在蚕功能基因组研究中的应用.蚕业科学[J]29:213-216.
    121.彭辉兵,全制华.(2007). RNA干扰一种有力的基因沉默工具.医学综述[J]13:177-180.
    122.刘家云,贾林涛,王成济,等.(2004). RNAi—dsRNA介导的基因沉默,国外医学遗传学分册.27:4-10.
    123. Grishok A, Tabara H, Mello CC.(2000). Science287:2494-2497.
    124. Sioud M.(2004). Therapeutic siRNAs. Trends Pharmacol Sci25:22-28.
    125. Persengiev SP, Zhu X, Green MR.(2004). Nonspecific concentration dependentstimuLation and repression of mammalian gene expression by small interferingRNAs (siRNAs). RNA10:12-18.
    126. Brummelkamp TR, Bernards R, Agami R.(2002). A system for stableexpression of short interfering RNAs in mammalian cells. Science296:550-553.
    127. Dykxhoorn DM, Novina CD, Sharp PA.(2003). Killing the messenger: ShortRNAs that silence gene expression. Nature Reviews. MolecuLar Cell Biology4:457-467.
    128. Konet DS, Anderson J, Piper J, et al.(2007). Short-hairpin RNA expressed frompolymerase III promoters mediates RNA interference in mosquito cells. InsectMolecuLar Biology16:199-206.
    129. Wakiyama M, Matsumoto T, Yokoyama S.(2005). Drosophila U6promoter-driven short hairpin RNAs effectively induce RNA interference inSchneider2cells. Biochem Biophys Res Commun331:1163-1170.
    130. Li L, Lin X, Khvorova A, et al.(2007). Defining the optimal parameters forhairpin-based knockdown constructs. RNA13:1765-1774.
    131. Tanaka H, Fujita K, Sagisaka A, et al.(2009). shRNA Expression PlasmidsGenerated by aNovel Method Efficiently Induce Gene-Specific Knockdown in aSilkworm Cell Line. Mol Biotechnol41:173-179.
    132. Miyagishi M, Sumimoto H, Miyoshi H, et al.(2004). Optimization of ansiRNA-expression system with an improved hairpin and its significantsuppressive effects in mammalian cells. The Journal of Gene Medicine6:715-723.
    133. Quan GX, Kanada T, Tamura T.(2002). Induction of the white egg3mutantphenotype by injection of the double-stranded RNA of the silkworm white gene.Insect Molecular Biology11:217-222.
    134. Valdes VJ, Sampieri A, SepuLveda J, et a1.(2003). Using Double-strandedRNA to Prevent in Vitro and in Vivo Viral Infections by RecombinantBacuLovirus. The Journal of Biological Chemistry278:193l7-l9324.
    135.徐颖,朱成钢,金勇丰,等.(2004). dsRNA对家蚕核多角体病毒(BmNPV)复制的抑制作用.科学通报[J]49:1073-1078.
    136. Isobe R, Kojima K, Matsuyama T, et al. Use of RNAi technology to conferenhanced resistance to BmNPV on transgenic silkworms. Arch Virol149:1931-1940.
    137.夏定国,张国政,王文兵,等. dsRNA对家蚕核型多角体病毒复制增殖的抑制效果.蚕业科学[J]32:206-210.
    138.薛仁宇,曹广力,王崇龙,等.基于DNA载体的RNAi抑制家蚕核型多角体病毒复制.蚕业科学[J]32:362-367.
    139.张鹏杰,薛仁宇,曹广力,等.(2008).表达短ie-1dsRNA的转化细胞对家蚕核型多角体病毒的抑制作用.蚕业科学[J]34:459-465.
    140.鲁银松,薛仁宇,曹广力,等.(2009).表达短lef-1dsRNA的转化细胞对家蚕核型多角体病毒的抗性.生物化学与生物物理进展36:1356-1363.
    141. Kanginakudru S, Royer C, Edupalli SV, et al.(2007). Targeting ie-1gene byRNAi induces bacuLoviral resistance in lepidopteran cell lines and in transgenicsilkworms.Insect molecuLar biology16:635-644.
    142. Fujita K and Sagisaka A.(2006). DNA Vector-Based RNA Interference in CellLines Derived from Bombyx mori. Biosci Biotechnol Biochem73:2026-2031.
    143. Ge J, Guo H, Gao G, et al.(2011). Characterization of a late gene, ORF75from Bombyx mori nucleopolyhedrovirus. Mol Biol Rep38:2141–2149.
    144. Dai H, Jiang R, Wang J, et al.(2007). Development of a heat shock inducibleand inheritable RNAi system in silkworm. BiomolecuLar engineering.24:625-630.
    145. Liu W, Yang F, Jia S, et al.(2008). Cloning and characterization of Bmrunt fromthe silkworm Bombyx mori during embryonic development. Archives of InsectBiochemistry and Physiology69:47-59.
    146. Masumoto M, Yaginuma T, Niimi T.(2009). Functional analysis ofuLtrabithorax in the silkworm, Bombyx mori, using RNAi. Development Genesand Evolution219:437-444.
    147. Liu C, Yamamoto K, Cheng T, et al.(2010). Repression of tyrosine hydroxylaseis responsible for the sex-linked chocolate mutation of the silkworm,Bombyxmori. PNAS107:12980-12985.
    148.钟伯雄.转基因家蚕的研究现状和展望[C].
    149.徐俊良.蚕业发展与蚕丝研究(1927~1997).成都:成都科忮大学出版社1999:1-13.
    150. Palmiter RD, Brinster RL, Hammer RE, et al.(1992). Dramatic growth of micethat develop from eggs microinjected with metaVothionein-growth hormonefusion genes. Biotechnology24:429-433.
    151. Wright G.(1991). High level expression off active human antitrypain in the arilkof transgenic sheep. Hio/technology9:830-834.
    152. Hammer RE, Pursel VG, Rexroad CE, et al.(1985). Production of transgenicrabbits, sheep and Pigs by microinjection. Nature315:680-683.
    153.施履吉,等.(1993).家兔个体表达系统的建立.遗传学报[J]20:122-134.
    154. Wall RJ, et al.(1991). High level synthesis of a heterologous milk protein in themammary glands of transgenic swine. Proc. Natl. Acad. Sci USA88:1696-1700.
    155. Roschlau K, et al.(1989). Gene transfer experiments in cattle. J Reprod FertilSuppl38:153-160.
    156. Xia Q, Zhou Z, Lu C, et al.(2004). A draft sequence for the genome of thedomesticated silkworm (Bombyx mori). Science306:1937-1940.
    157. Xiang Z, Mita K, Xia Q, et al.(2008). The genome of a lepidopteran modelinsect, the silkworm Bombyx mori. Insect Biochem Mol Biol38:1036-1045.
    158.陈秀.(2000).外源基因在家蚕中的插入与表达研究[D].中国农业科学院研究生院,中国农业科学院蚕业所.
    159.周文林.(2006).家蚕丝腺生物反应器表达hGM-CSF转基因载体的构建及应用研究[D].苏州大学.
    160.田岛弥太郎.(1941).日本蚕系学摊志12:184-188.
    161. Nawa S, et al.(1971). Genetics67:221.
    162. Ninaki O, et al.(1985). hatchability of silkworm eggs injected with DNA atearly embryonic stage. J Seris Sci Jpn54:428-434.
    163.尼克拉耶夫AI等.(1991).重组DNA显微注射导入家蚕早期胚胎.国外农学——蚕业1:19-24.
    164. Tamura T and Kanda T.(1990). Transient expression of chimeric CAT genesinjected into early embryos of the domesticated silkworm Bombyx mori. Jpn JGenet65:401-410.
    165. Nagaraju J, et al.(1996). Apply entomal zool31:589.
    166.陈元霖等.(1993).厦门大学学报(自然科学版)32(增刊1):9.
    167. Nilalaev AI, et al.(1993). Mol boil (USSR)236:326),CouLon-BuLex(CouLon-BuLex M. Ravx’s Arch. Dev Bio202:123.)
    168. Tamura T, Thibert C, Royer C, et al.(2000). Germline transformation of thesilkworm Bombyx mori L. using a piggyBac transposon-derived vector. NatureBiotechnology18:81-84.
    169. Mirka U, Masako A, Lynn MR, et, al.(2002). Heat-inducible transgenicexpression in the silkmoth Bombyx mori. Dev Genes Evo1212:145-151.
    170.代红久,徐国江, Thomas,等.(2005).利用鳞翅目来源的转座子piggyBac建立高效稳定的转基因家蚕技术.科学通报[J]50:1470-1474.
    171. Uchino K, Sezutsu H, Imamura M, Kobayashi I, Tatematsu K, Iizuka T,Yonemura N, Mita K,Tamura T.2008. Construction of a piggyBac-basedenhancer trap system for the analysis of gene function in silkworm Bombyxmori. Insect Biochem Mol Biol38:1165–1173
    172.李春峰,夏庆友,周泽扬.(2006). GAL4/UAS系统在转基因技术中的应用研究进展.生物技术16:78.
    173. Imamura M, Nakai J, Quan GX. et al.(2003). Targeted gene expression usingthe GAL4/UAS system in the silkworm Bombyx mori. Genetics165:1329-1340.
    174. Tatematsu K, Kobayashi I, Uchino K, et al.(2010). Construction of a binarytransgenic gene expression system for recombinant protein production in themiddle silk gland of the silkworm Bombyx mori. Transgenic Res19:473-487.
    175. Kobayashi I and Kojima K.(2011). an efficient binary system for geneexpression in the silkworm, bombyx mori, using gal4variants. archives of insectbiochemistry and physiology76:195-210.
    176. Brackett BG, Baranska W, Sawicki W et al.(1971). Uptake of heterologousgenome by mammalian spermatozoa and its transfer to ova through fertilization.Proc Natl Acad Sci USA68:353-357.
    177. Labitrano M, Camaioni A, Fazio V, et al.(1989). Sperm cells as vectors forintroducing foreign DNA into eggs: genetic transformation of mice. Cell57:717-723.
    178.竹村洋子.神田俊男.田村俊樹.新保博.堀江保宏.家蚕の新しい人工授精法の開発...たネコインターフェロンの糖鎖の推定構造.年度.6.
    9.1994.1995.7.8.1996,1998
    179.代方银,陈智毅,陈元霖,等.(2000).家蚕白卵突变新系BT924的遗传学研究.遗传[J]22:229-232.
    180.赵越,李曦,曹广力,等.(2009).转基因家蚕丝腺组织和转化家蚕培养细胞表达hIGF-I.中国科学C辑[J]:生命科学39:677-684.
    181. Wang XJ, Cao GL, Xue RY, et al.(2011). Effects of BmKIT3gene transfer onthe development and survival of silkworm Bombyx mori. Journal of Bioscienceand Bioengineering.112:523-528.
    182. Liang C, Cao GL, Xue RY, et al.(2011). Reducing blood glucose level in TIDMmice by orally administering the silk glands of transgenic hIGF-I silkworms.Biochem Biophys Res Commun410:721-725.
    183. Xue RY, Chen HM, C LL, et al.(2012). Expression of hGM-CSF in silk glandsof transgenic silkworms using gene targeting vector. Transgenic Res21:101–111.
    184.薛仁宇.(2009).表达dsRNA转基因家蚕对BmNPV的抗性研究[D].苏州大学.
    185.孟智启,姚山麟,王为民,等.(1990).基因枪喷射技术在家蚕外源基因转移中的应用.浙江农业学报[J]2:1-6.
    186. Horard B, Mange A, Pelissie B, et al. Bombyx gene promoter analysis intransplanted silkgland transformed by particle delivery system. Insect Mol Biol3:261-265.
    187.陈秀,赵昀,张峰,等.(1993).新霉素抗性基因在家蚕中的插入和表达.生物化学与生物物理学报[J]31:90.
    188. Takahiro A, Masahiro T, Katsuhiko S, et al.(2006). Generation of hybridtransgenic silkworms that express Bombyx mori prolyl-hydroxylase a-subunitsand human collagens in posterior silk glands: Production of cocoons thatcontained collagens with hydroxylated praline residues. J Biotech126:205-219.
    189.赵昀,张峰,陈秀,等.(1999).用绿色荧光蛋白进行转基因蚕研究.高科技通讯[J]6:16-19.
    190.曹广力,薛仁宇,何泽,等.基于piggyBac转座子转hGM-CSF基因家蚕的研究.蚕业科学[J]32:324-327.
    191. Li ZG and Rong R.(1997). a new technique of transgenesis by PFGE.Sericologia37:429-435.
    192. Smith GE, Summers MD, Fraser MJ, et al.(1983). Production of human betainterferon in insect cells infected with a baculovirus expression vector. Mol CellBiol3:2156-2165.
    193. Mori H, Yamao M, Nakazawa H, et al.(1995). Transovarian transmission of aforeign gene in the silkworm, Bombyx mori, by Autographacaliformica nuclearhypolyhedrosisvirus. Biotechnology13:1005-1007.
    194. Ding S, Wu XH, Li G, et al. Efficient Transposition of the piggyBac (PB)Transposon in Mammalian Cells and Mice. Cell122:473-483.
    195. Rogers WA and Williams TM.(2011). Quantitative comparison ofcis-reguLatory element (CRE) activities in transgenic Drosophila melanogaster.J Vis Exp19:3791/3395.
    196. Khurana JS and Wang J.(2011). Adaptation to P element transposon invasion inDrosophila melanogaster. Cell147:1551-1563.
    197.缪云根.(2004).昆虫转座子及在家蚕中的应用.蚕桑通报[J]35:6-10.
    198. Uchino K, Imamura M, Shimizu K, et al.(2007). Germ line transformation ofthe silkworm, Bombyx mori, using the transposable element Minos.Mol GenetGenomics[J]277:213-220.
    199. Handler AM.(2002). Use of the piggyBac transposon for germ-linetransformation of insects. Insect Bioch Mol Biol32:1211-1220.
    200. Thomas JL, Da Rocha M, Besse A, et al.(2002).3×P3-EGFP marker facilitatesscreening of transgenic silkworm Bombyx mori L. from the embryonic stageonwards. Insect Biochem Mol Biol32:247-253.
    201.徐汉福,幸俊逸,王职峰,等.(2010).外源piggyBac转座元件在转基因家蚕中的整合位点分析.蚕学通讯[J]30:1-7.
    202. Franz G and Savakis C.(1991). Minos, a new transposable element fromDrosophila hydei, is a member of the Tc1-like family of transposons. NucleicAcids Res19:6646
    203. Franz G, Loukeris TG, Dialektaki G, et al.(1994). Mobile Minos elements fromDrosophila hydei encode a two-exon transposase with similarity to the pairedDNA-binding domain. Proc Natl Acad Sci USA91:4746-4750.
    204. Thomas KR and Capecchi MR.(1987). Site-directed mutagenesis by gonetargeting in mouse embryo-derived stem cells. Cel151:503-512.
    205. Koller BH and Smithies O.(1989). Inactivating the beta2-micrnglobin locus inmouse embryonic stem cells by homologous recombination. Prec Natl Acad SciUSA86:8932-8935.
    206. Marshall A.(1998). The insects are coming. Nature Biotech16:530-533.
    207. Yamao M, Katayama N, Nakazawa H, et al.(1999). Gene targeting in thesilkworm by use of a bacuLovirus. Genes Dev13:511-516.
    208. Wu XF and Cao CP.(2004). Targeting of human aFGF gene into silkworm,Bombyx mori L. through homologous recombination. J Zhejiang Univ SCI5:644-650.
    209. Suzuki MG, Funaguma S, Kanda T, et al. Analysis of the biological functions ofa doublesex homologue in Bombyx mori. Dev Genes Evol213:345-354.
    210. Dai H, Ma L, Wang J, et al.(2008). Knockdown of ecdysis-triggering hormonegene with a binary UAS/GAL4RNA interference system leads to lethal ecdysisdeficiency in silkworm. Acta biochirnica et biophysica Sinica.40:790-795.
    211. Ogawa S, Tomita M, Shimizu K, et al.(2007). Generation of transgenicsilkworm that secretes recombinant proteins in the sericin layer of cocoon:Production of recombinant human serum albumin. J Biotechmol128:531-544.
    212. Cavodeassi, F., Modolell, J., Gomez-Skarmeta, J.L.,2001. The Iroquois familyof genes: from body building to neural patterning. Development.128,2847-2855.
    213. Hobert O and Westphal H.(2000). Functions of LIM-homeobox genes. TrendsGenet16:75-83.
    214. Lawrence PA and Morata G.(1994). Homeobox genes: their function inDrosophila segmentation and pattern formation. Cell78:181-189.
    215. McGinnis W and Krumlauf R.(1992). Homeobox genes and axial patterning.Cell68:283-302.
    216. Panganiban G and Rubenstein JL.(2002). Developmental functions of theDistal-less/Dlx homeobox genes. Development.129:4371-4386.
    217. Trainor PA and Krumlauf R.(2001). Hox genes, neural crest cells and branchialarch patterning. Curr. Opin Cell Biol13:698-705.
    218. Gehring WJ, Qian YQ, Billeter M, et al.(1994). Homeodomain-DNArecognition. Cell78:211-223.
    219. Treismann J, Go¨nczy P, Vashishtha M, et al.(1989). A single amino acid candetermine the DNA binding specificity of homeodomain proteins. Cell59:553-562.
    220. Berthelsen J, Zappavigna V, Mavilio F, et al.(1998b). Prep1, a novel functionalpartner of Pbx proteins. EMBO J17:1423-1433.
    221. Asahara H, Dutta S, Kao HY, et al.(1999). Pbx-Hox heterodimers recruitcoactivator-corepressor complexes in an isoform-specific manner. Mol Cell Biol19:8219-8225.
    222. Berthelsen J, Zappavigna V, Ferretti E, et al.(1998). The novel homeoproteinPrep1moduLates Pbx-Hox protein cooperativity. EMBO J17:1434-1445.
    223. Kamps MP, Murre C, Sun XH, et al.(1990). A new homeobox gene contributesthe DNA binding domain of the t (1;19) translocation protein in pre-B ALL. Cell60:547-555.
    224. Moskow JJ, BuLlrich F, Huebner K, et al.(1995). Meis1, a PBX1-relatedhomeobox gene involved in myeloid leukemia in BXH-2mice. Mol Cell Biol15:54345443.
    225. Nourse J, Mellentin JD, Galili N, et al.(1990). Chromosomal translocation t(1;19) results in synthesis of a homeobox fusion mRNA that codes for apotential chimeric transcription factor. Cell60:535-545.
    226. Astell CR, Ahlstrom-Jonasson L, Smith M, et al.(1981). The sequence of theDNAs coding for the mating-type loci of Saccharomyces cerevisiae. Cell27:15-23.
    227. Vollbrecht E, Veit B, Sinha N, et al.(1991). The developmental gene Knotted-1is a member of a maize homeobox gene family. Nature350:241-243.
    228. Gómez-Skarmeta JL, Diez del Corral R, de la Calle-Mustienes E, et al.(1996).Araucan and caupolican, two members of the novel iroquois complex, encodehomeoproteins that control proneural and vein-forming genes. Cell85:95-105.
    229. Sharma M and Sun Z.(2001).5’TG3’ interacting factor interacts with Sin3Aand represses AR-mediated transcription. Mol Endocrinol15:1918-1928.
    230. Overhauser J, Mitchell HF, Zackai EH, et al.(1995). Physical mapping of theholoprosencephaly critical region in18p11.3. Am. J Hum Genet57:1080-1085.
    231. Kemphues KJ, Kaufman TC, Raff RA, et al.(1982). The testis-specificb-tubuLin subunit in Drosophila melanogaster has muLtiple functions inspermatogenesis. Cell31:655-670.
    232. Hales KG and FuLler MT.(1997). Developmentally reguLated mitochondrialfusion mediated by a conserved novel predicted GTPase. Cell90:121-129.
    233. SchuLz RA, Miksch JL, Xie XL, et al.(1990). Expression of the Drosophilagonadal gene: alternative promoters control the germ-line expression ofmonocistronic and bicistronic gene transcripts. Development108:613-622.
    234. Shimoda M, Kubo-Irie M, Ohta K, et al.(2007). Spermatogenesis in the testesof diapause and non-diapause pupae of the sweet potato hornworm, AgriusconvolvuLi (L.)(Lepidoptera: Sphingidae). Zoolog Sci24:1036-1044.
    235. Polanska M.A, Ciuk MA, Cymborowski B, et al.(2005). Germ cell death in thetestis and its relation to spermatogenesis in the wax moth, Galleria mellonella(Lepidoptera: Pyralidae), effects of facuLtative diapause. J Exp Zool A CompExp Biol303:1013-1029.
    236. Bartholin L, Powers SE, Melhuish TA, et al.(2006). TGIF inhibits retinoidsignaling. Mol Cell Biol26:990-1001.
    237. Melhuish TA and Wotton D.(2000). The interaction of C-terminal bindingprotein with the Smad corepressor TG-interacting factor is disrupted by aholoprosencephaly mutation in TGIF. J Biol Chem275:39762-39766.
    238. Melhuish TA and Wotton D.(2006). The Tgif2gene contains a retained intronwithin the coding sequence. BMC Mol Biol47,7:2.
    239. Miyagawa Y, Lee JM, Maeda T, et al.(2005). Differential expression of aBombyx mori AHA1homologue during spermatogenesis. Insect Mol Biol14:245-253.
    240. Hamid R, Patterson J, Brandt SJ.(2008). Genomic structure, alternative splicingand expression of TG-interacting factor, in human myeloid leukemia blasts andcell lines. Biochimica et Biophysica Acta1779:347-355.
    241. Ma J and Ptashne M.(1987). A new class of yeast transcriptional activators. Cell51:113-119.
    242.吕鸿声.(1998).昆虫病毒分子生物学[M].北京:中国农业科技出版社.
    243. Engelhard E, Kam-Morgan L, Washburn J, et al.(1994). The insect trachealsystem: a conduit for the systemic spread of Autographa californica M nuclearpolyhedrosis virus. Proc Natl Acad Sci USA91:3224-3227.
    244. Guarino LA and Summers MD.(1986). Functional mapping of a trans-activatinggene required for expression of a bacuLovirus delayed-early gene. J Virol57:563-571.
    245. Nissen MS and Friesen PD.(1989). MolecuLar analysis of the transcriptionalregulatory region of an early bacuLovirus gene. J Virol63:493-503.
    246. Carson D, Summers M, Guarino L, et al.(1991). MolecuLar analysis of abacuLovirus reguLatory gene. Virology182:279-286.
    247. Olson VA, Wetter JA, Friesen PD.(2002). Baculovirus Transregulator IE1Requires a dimeric nuclear localization element for nuclear import and promoteractivation. J Virol76:9505-9515.
    248. Okano K, Mikhailov VS, Maeda S.(1999). Colocalization of baculovirus IE-1and two DNA-Binding Proteins, DBP and LEF-3, to viral replication factories. JVirol73:110-119.
    249.刘德立,齐义鹏.(2001).杆状病毒lef基因家族及其功能.病毒学报[J]17:188-191.
    250. Catalanotto C, Azzalin G, Macino G, et al.(2000). Gene silencing in worms andfungi. Nature404:245.
    251. Dernburg AF, Zalevsky J, Colaiacovo MP, et al.(2000). Transgene-mediatedcosuppression in the C. elegans germ line. Genes Dev14:1578-1583.
    252. Ketting RF and Plasterk RH.(2000). A genetic link between co-suppression andRNA interference in C. elegans. Nature404:296-298.
    253. Montgomery MK, Xu S, Fire A.(1998). RNA as a target of double-strandedRNA mediated genetic interference in Caenorhabditis elegans. Proc Natl AcadSci USA95:15502-15507.
    254. Riu L, Li H, Li WX, et al.(2004). RNA-based immunity in insects. In SGMSymposium63: Microbe–vector Interactions in Vector-borne Diseases pp.63–74.Cambridge University Press.
    255.张鹏杰.(2008).利用RNAi及转基因技术抑制BmNPV增殖的研究[D].苏州大学.
    256.刘世咛,朱明生,董震.(2008).彼得异蝎蝎毒的毒力测定.大理学院学报[J]4:7-8.
    257.叶秋霞,薛仁宇,曹广力,等.(2011).表达短lef-1dsRNA转基因家蚕对BmNPV的抵抗能力与主要经济性状.蚕业科学[J]37:0825-0831.
    258. Yamamoto M, Yamao M, Nishiyama H.(2004). New and highly efficientmethod for silkworm transgenesis using Autographa californicanucleopolyhedrovirus and piggyBac transposable elements. Biotechnol Bioeng88:849-853.
    259. Flores-Jasso CF, Valdes VJ, Sampieri A, et al.(2004). Silencing structural andnonstructural genes in bacuLovirus by RNA interference.Virus Research102:75-84.
    260. Terenius O, Papanicolaou A, Garbutt JS, et al.(2011). RNA interference inLepidoptera: An overview of successfuL and unsuccessfuL studies andimplications for experimental design. J Insect Physiol57:231-245.
    261. Yamaguchi J, Mizoguchi T, Fujiwara H.(2011). siRNAs induce efficient RNAiresponse in Bombyx mori embryos. PLoS One6(9): e25469.
    262. Swevers L, Liu J, Huvenne H, et al.(2011). Search for limiting factors in theRNAi pathway in silkmoth tissues and the Bm5cell line: the RNA-bindingproteins R2D2and Translin. PLoS One6(5): e20250.
    263. Leonard JN and Schaffer DV.(2005). Computational design of antiviral RNAinterference strategies that resist human immunodeficiency virus escape.Virol79:1645-1654.
    264. Tautz D and Pfeifle C.(1989). A non-radioactive in situ hybridization methodfor the localization of specific RNAs in Drosophila embryos revealstranslational control of the segmentation gene hunchback. Chromosoma98:81-85.
    265.盛洁.(2009).家蚕生殖发育相关基因Bmvlg、Bmachi的研究[D].苏州大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700