HMGB1在肺纤维化中作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景与目的:
     特发性肺纤维化(IPF)是特发性间质性肺疾病最常见的类型,其预后差,生存中位时间仅为3至4年。虽然目前对IPF的发病机制有一定的认识,但对其可能的病因及确切的细胞分子机制还未明了,迄今为止尚无有效的治疗手段。IPF最显著的病理特征是成纤维细胞灶的存在。成纤维细胞灶数目的增多与IPF病程的进展和预后不良相关。成纤维细胞灶的关键效应细胞是肌纤维母细胞。表达α平滑肌肌动蛋白(α-SMA)是肌纤维母细胞区别于成纤维细胞的一个标志性特征。它能促进纤维形成,是生成细胞外基质和促纤维化相关细胞因子的重要来源。因此,阐明炎症损伤与异常修复过程中α-SMA基因的转录调控机制,对于揭示特发性纤维化发病的细胞分子机制具有重要的意义。在前期工作中,我们应用α-SMA启动子为钓饵,在博莱霉素(BLM)诱导肺纤维化的小鼠肺组织中筛选到一个高迁移率组蛋白B1家族(HMGB1)成员,分子量约20KDa,较之经典的HMGB1缺失C端的30个酸性氨基酸残基序列(GenBank登陆号:BAC34367, HMGB34367),是HMGB1的截断分子形式。HMGB1作为核蛋白存在于几乎所有的真核细胞中,它能够稳定核小体形状,作为转录调控因子具有调节某些基因转录活化的作用。最近的研究表明HMGB1是一种晚期炎症因子,能被免疫细胞主动分泌或被损伤和坏死的细胞释放到细胞外环境,触发炎症反应。基于这些已有的发现,我们推测HMGB1可能是联系IPF病理过程中肺损伤和异常修复的关键信号分子。为了证实这一推测,在本研究中,我们探讨了HMGB1以及它的截断分子HMGB34367,在博来霉素诱导的肺纤维化病理过程中的作用,并着重探讨了HMGB34367在IPF的上皮-间充质转分化发生发展中的地位。
     研究内容和方法:
     第一部分:HMGB1在BLM诱导的肺纤维化小鼠模型肺组织和IPF患者肺组织中的表达。
     对BLM诱导的肺纤维化小鼠模型肺组织和IPF患者肺组织予以常规病理学检测,观察病理学改变。应用免疫组化、免疫荧光染色和western blot检测肺组织HMGB1和SMA的蛋白表达情况,检测HMGB1在肺纤维化病理过程中的作用。
     第二部分:HMGB34367 RNAi对小鼠肺纤维化病理过程的影响
     给予HMGB34367 siRNA干预其在BLM诱导肺纤维化模型小鼠肺组织中的表达,探讨HMGB1的截断分子形式HMGB34367蛋白是否参与了诱导肌纤维母细胞活化过程。首先经气管灌注BLM构建肺纤维化小鼠模型,然后于实验第2、5、8天经鼻滴入HMGB34367 siRNA或siRNA阴性对照。实验第10天处死小鼠留取肺组织进行常规病理学检测,观察病理学改变。应用免疫组化、免疫荧光染色和western blot检测肺组织HMGB1和SMA的蛋白表达变化,探讨HMGB1的高表达对肌纤维母细胞活化的影响。
     第三部分:HMGB1对上皮细胞转分化的诱导作用
     将HMGB34367真核表达载体pcDNA3.0-HMGB34367转染到上皮细胞16HBE中,提取细胞核蛋白,用EMSA和超迁移(Super shift)实验检测HMGB34367蛋白与α-SMA启动子CArGB基序特异性的结合。将α-SMA启动子红色荧光报告质粒和绿色荧光标记的HMGB34367真核表达载体质粒( pDsRed-SMA +pEGFP-N2-HMGB34367)共转染到上皮细胞中,通过流式细胞仪检测细胞表达红色荧光和绿色荧光强度,探讨过量表达HMGB34367对α-SMA启动子活化的影响。培养人肺泡上皮细胞株A549,予细胞因子混合刺激剂Mix(TGF-β1+IL-1β+IFN-γ)孵育,转染HMGB34367 siRNA干扰其在细胞中的表达,RT-PCR和免疫荧光检测α-SMA和HMGB1基因和蛋白水平的表达。阐明炎症微环境诱导内源性HMGB1对肺纤维化病理过程的影响。
     结果:
     第一部分:HMGB1在BLM诱导的肺纤维化小鼠模型肺组织和IPF患者肺组织中的的表达。
     病理学观察可见:BLM诱导了小鼠肺组织局灶性纤维化病变,在胸膜下区域可见肺泡间隔增厚,肺泡腔破坏,上皮脱落,肺间质大量炎症细胞浸润。Masson胶原染色显示BLM组小鼠肺组织中胶原沉积明显增多,免疫组化检测可见肺组织HMGB1和α-SMA表达增强。IPF患者肺组织中也观察到同样的结果。IPF患者肺组织双重免疫荧光染色揭示肺细支气管的一些上皮细胞同时表达α-SMA和HMGB1,两者可共定位在细胞内同一区域。
     第二部分:HMGB34367 RNAi对小鼠肺纤维化病理过程的影响
     组织病理学观察表明,与BLM组和siRNA阴性对照组相比, HMGB34367 siRNA显著减轻了BLM诱导的小鼠肺纤维化损害;相应的免疫组化结果证实肺组织中HMGB1的表达明显下调;与此同时HMGB34367 siRNA组小鼠损伤的上皮细胞和上皮下细胞的α-SMA表达也明显减少。Western-Blot的结果和免疫组化类似。
     第三部分:HMGB1对气道上皮细胞转分化的诱导作用
     EMSA和超迁移(super shif)结果显示HMGB34367蛋白可与α-SMA启动子CArGA基序特异性结合。流式细胞仪检测结果显示共转染质粒pDsRed-SMA+pEGFP-N2-HMGB34367组红/绿色荧光相对值较对照组明显升高。在TGF-β1刺激的条件下,前者红/绿色荧光相对值较对照组增强更为明显。混合刺激剂诱导A549细胞表型向间充质样细胞转化,细胞内HMGB1的表达量增多。RT-PCR结果表明,加入混合刺激剂Mix作用后刺激了A549细胞α-SMA和HMGB34367基因的表达。免疫荧光结果揭示混合刺激剂处理48小时后,一些上皮细胞出现α-SMA的阳性表达。HMGB34367RNAi能有效降低HMGB1的表达,与此同时可见α-SMA的基因和蛋白水平的表达也相应降低。HMGB34367 RNAi具有特异性地阻断α-SMA的诱导表达能力。
     结论:
     1、HMGB1的诱导表达在肺纤维化发病过程中发挥了重要的作用。
     2、HMGB34367蛋白作为HMGB1蛋白的截断分子形式,能够与α-SMA启动子特异性结合,作为α-SMA基因启动子的特异性转录激活子,诱导α-SMA基因的转录活化,在上皮-间质转分化过程中发挥作用。
     3、HMGB1可能是联系IPF病理过程中肺损伤和异常修复的关键信号分子
Rationale:
     Idiopathic pulmonary fibrosis (IPF), which is the most common idiopathic interstitial lung disease, has the worse prognosis, with a median survival of only 3 to 4 years. Although much has been learned recently about the pathogenesis of IPF, the etiology and precise cellular and molecular mechanisms involved are not established. So far, no specific therapy has been proven unequivocally effective in IPF. The most notable characteristic feature of IPF is presence of fibroblastic foci. Increased numbers of fibroblastic foci are associated with disease progression and a worse prognosis in IPF. The key effector cell in fibroblastic foci is the myofibroblast. Myofibroblasts, with their characteristicα-smooth muscle actin (α-SMA) expression, arise de novo in fibrosis, and they are thought to be the primary source of heightened matrix and profibrogenic cytokine expression. Hence, understanding the mechanism responsible for abnormal activation and transcriptional regulation ofα-SMA gene is important to uncover the fibrotic pathogenesis. We have previously identified a 20Kda nuclear protein (GenBank number:BAC34367) that is a C-terminal truncated form of high mobility group B-1(HMGB1) in the lung of bleomycin-treated mice, with an increased binding toα-SMA promoter. HMGB1 is a nuclear protein that is present in almost all eukaryotic cells, and it functions to stabilize nucleosome formation and acts as a transcription-factor like protein that regulates the expression of several genes. Recent studies identify HMGB1 as a delayed mediator of inflammation, damaged or necrotic cells can release HMGB1 into the extracellular milieu, where it triggers inflammatory responses. Based on these findings described as above, we hypothesize that HMGB1 may function as a key signal molecular that links lung injury to abnormal repair in the development of IPF. To validate the contribution of HMGB1 to the pathogenesis of the disease, we evaluated the role of HMGB34367, a C-terminal truncated form of HMGB1, in the initiation and progression of lung fibrosis induced by BLM, especially clarified its role in epithelial-myofibroblast transdifferentiation underlying the pathogenesis of IPF.
     Methods
     The first part:
     Investigation of the expression of HMGB1 on the lung tissues of mice with pulmonary fibrosis induced by BLM and IPF patients.
     The lung tissues sections were prepared from BLM-treated mice and IPF patients according to routine protocols for pathological examination, where immunostainings toα-SMA and HMGB1 were performed on determination of the role of HMGB1 in the lung fibrotic process.
     The second part:
     Effects of HMGB34367 RNAi on the pathological process of pulmonary fibrosis To validate if the truncated form of HMGB1 is involved in activation of myofibroblasts, the BLM-treated mice were administered intranasally with either HMGB34367 siRNA or control siRNA (20μl /per time )on day 2, 5, 8 after BLM addition. The lung tissues were isolated for pathological examination. Immunostaining toα-SMA and HMGB1 and western blot were performed for determination of effect of the increased level of HMGB1 on activation of myofibroblasts.
     The third part:
     The role of HMGB1 in the transdifferentiation of pulmonary epithelial cells into myofibroblasts
     The 16HBE cells transfected with pcDNA3.0-HMGB34367 were subjected to performance of Electrophoretic Mobility Shift Assay(EMSA) and Super shift for detection of the binding activity of HMGB34367 withα-SMA promoter CarGB motif. The flowcytometry assay for measurement of the ratio of red fluorescence (RFP protein expressed under guidance ofα-SMA promoter) to green fluorescence of GPF-HMGB34367 fusion protein .was performed on qualification ofα-SMA promoter’s activation in response to over-expression of HMGB34367 in the cells after co-transfected with pGPF-HMGB34367 and pDsRed-SMA . To elucidate endogenous induction of HMGB1 by inflammatory micro-environment in lung fibrotic process,the A549 cells were cultured with cytokines-mix (TGF-β1+TNF-α+ IFN-γ) in absence or presence of HMGB34367-RNAi followed by RT-PCR and immunofluorescent staining to test expression ofα-SMA and HMGB1,
     Result
     The first part:
     Investigation of the expression of HMGB1 on the lung tissues of BLM-induced pulmonary fibrosis mice and IPF.
     Pathological examination demonstrated that BLM administration induced focal fibrotic lesions in mice lungs, primarily in the subpleural regions with thickened or thickening interalveolar septa with obvious alveolar destruction, mesenchyma infiltration with inflammatory cells and epithelial shedding. By Masson's trichrome staining, it was demonstrated an increased level of collagen synthesis. .Immunostaining displayed expression of both HMGB1 andα-SMA with a significant elevated level on the lung tissues of BLM-treated mice. In the pulmonary tissue of patients with IPF, we observed the same as above. Using double immunofluorescent staining, with antibodies againstα-SMA and HMGB1, we further observed certain cells located at bronchiolar epithelium of the pulmonary tissue of IPF with double staining ofα-SMA and HMGB1.
     The second part:
     Effects of HMGB34367 RNAi on the pathological process of pulmonary fibrosis
     Treatment of HMGB34367 siRNA significantly attenuated the lung fibrotic lesion in the mice induced by BLM. Correspondingly, immunohistochemistry examination demonstrated that compare with the mice with challenge by BLM alone or plus with siRNA control, the expression of HMGB1 were obviously decreased in the BLM-induced mice with the treatment of HMGB34367 siRNA .,α-SMA expression in the injured epithelial cells and subepithelial cells was correspondingly down-regulated .The same results were also detected by Western-Blot.
     The third part:
     The role of HMGB1 in the transdifferentiation of airway epithelial cells into myofibroblasts
     EMSA and super shif revealed that the truncated form of HMGB1 can specifically bind to CArG B motif. By Flow cytometry, without and with TGFβ1, RFP/GFP signal ratio was detected with a higher level in the cells co-transfected with pDsRed-SMA+pEGFP-N2-HMGB34367 plasmids than those co-transfected with control plasmids. Following with treatment of cytokines-mix, the A549 cells appeared myofibroblastic morphology concomitant with highly expressed intracellular HMGB1. As shown by the results of RT-PCR and immunofluorescent staining, transcriptional induction ofα-SMA and HMGB34367 genes were detected in the A549 cells after treatment of the Mix .α-SMA positive staining were observed in some of the treated A549 cells. It was shown that HMGB34367RNAi has an ability to specifically block the induction ofα-SMA at protein or gene level.
     Conclusion
     1、Induction of HMGB1 plays an important role in the process of lung fibrosis
     2、The truncated form of HMGB1, HMGB34367, can act as a transcriptional factor for up-regulation of expression ofα-SMA.gene, contributing to epithelial cell to myofibroblast transdifferentiation.
     3. HMGB1 may function as a key signal molecular that links lung injury to abnormal repair in the development of IPF.
引文
1. American Thoracic Society. Idiopathic pulmonary fibrosis: diagnosis and treatment. International Consensus Statement. American Thoracic Society and the European Respiratory Society. Am J Respir Crit Care Med, 2000, 161:646–664
    2.中华结核呼吸病学分会.特发性(间质)肺纤维化诊断和治疗指南(草案).中华结核和呼吸杂志, 2002;25(7):387-389.
    3. Gross TJ, Hunninghake GW. Idiopathic pulmonary fibrosis. N Engl J Med 2001, 345:517–525
    4. Bjoraker JA, Ryu JH, Edwin MK, et al. Prognostic significance of histopathologic subsets in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 1998, 157:199–203
    5. Douglas WW, Ryu JH, Schroeder DR. Idiopathic pulmonary fibrosis: impact of oxygen and colchicine, prednisone, or no therapy on survival. Am J Respir Crit Care Med 2000, 161:1172–1178
    6. Mason RJ, Schwartz MI, Hunninghake GW, et al. Pharmacological therapy for idiopathic pulmonary fibrosis: past, present, and future. Am J Respir Crit Care Med 1999, 160:1771-7.
    7. Katzenstein A-L, Myers JL. Idiopathic pulmonary fibrosis: clinical relevance of pathologic classification. Am J Respir Crit Care Med 1998, 157: 1301-15.
    8. Keogh BA, Crystal RG. Alveolitis: the key to the interstitial lung disorders. Thorax 1982; 37:1–10
    9. Keane MP, Strieter RM. The importance of balanced proinflammatory and anti-inflammatory mechanisms in diffuse lung disease. Respir Res 2002; 3:5–13
    10. Piguet PF, Ribaux C, Karpuz V, et al. Expression and localization of tumor necrosis factor-αand its mRNA in idiopathic pulmonary fibrosis. Am J Pathol 1993; 143:651–655
    11. Furuie H, Yamasaki H, Suga M, Ando M. Altered accessory cell function ofalveolar macrophages: a possible mechanism for induction of Th2 secretory profile in idiopathic pulmonary fibrosis. Eur Respir J 1997;10: 787-94.
    12. Hancock A, Armstrong L, Gama R, Millar A. Production of interleukin 13 by alveolar macrophages from normal and fibrotic lung. Am J Respir Cell Mol Biol 1998;18:60-5.
    13. Kunkel SL, Lukacs NW, Strieter RM, Chensue SW. Th1 and Th2 responses regulate experimental lung granuloma development. Sarcoidosis Vasc Diffuse Lung Dis 1996;13:120-8.
    14. Martinez JA, King TE Jr, Brown K, et al. Increased expression of the interleukin-10 gene by alveolar macrophages in interstitial lung disease. Am J Physiol 1997;273:L676-L683.
    15. Romagnani S. Th1/Th2 cells. Inflamm Bowel Dis 1999;5:285-94.
    16. Strieter RM. Pathogenesis and natural history of usual interstitial pneumonia: the whole story or the last chapter of a long novel. Chest, 2005;128:526S-532S
    17. Meneghin A, Hogaboam CM. Infectious disease, the innate immune response, and fibrosis.J Clin Invest. 2007 Mar;117(3):530-8.
    18. Ziesche R, Hofbauer E, Wittman K, Petkov V, Block L-H. A preliminary study of long-term treatment with interferon gamma-1b and lowdose prednisolone in patients with idiopathic pulmonary fibrosis. N Engl J Med 1999;341:1264-9.
    19. Strieter RM, Starko KM, Enelow RI, et al. Effects of interferon-gamma 1b on biomarker expression in patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2004; 170:133–140
    20. Zuo F, Kaminski N, Eugui E, et al. Gene expression analysis reveals matrilysin as a key regulator of pulmonary fibrosis in mice and humans. Proc Natl Acad Sci U S A 2002; 99:6292–6297。
    21. Katzenstein A-L, Myers JL. Idiopathic pulmonary fibrosis: clinical relevance of pathologic classification. Am J Respir Crit Care Med, 1998; 157: 1301-15.
    22. Kuhn C III, Boldt J, King TE Jr,et al. An immunohistochemical study of architectural remodeling and connective tissue synthesis in pulmonary fibrosis. Am Rev Respir Dis 1989;140:1693- 703.
    23. Fukada Y, Basset F, Ferrans VJ, et al. Significance of early intraalveolar fibrotic lesions and integrin expression in lung biopsy specimens from patients with idiopathic pulmonary fibrosis. Hum Pathol 1995; 26:53- 61.
    24. Kasper M, Haroske G. Alterations in the alveolar epithelium after injury leading to pulmonary fibrosis. Histol Histopathol 1996; 11:463-83.
    25. Broekelmann TJ, Limper AH, Colby TV, et al. Transforming growth factor beta 1 is present at sites of extracellular matrix gene expression in human pulmonary fibrosis. Proc Natl Acad Sci USA 1991; 88: 6642-6.
    26. Allen JT, Knight RA, Bloor CA, et al. Enhanced insulin-like growth factor binding protein-related protein 2 (connective tissue growth factor) expression in patients with idiopathic pulmonary fibrosis and pulmonary sarcoidosis. Am J Respir Cell Mol Biol 1999; 21:693-700.
    27. Selman M, King TE, Pardo A. Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med 2001; 134:136–151
    28. Sheppard D. Pulmonary fibrosis: a cellular overreaction or a failure of communication? J Clin Invest 2001; 107:1501–1502
    29. Gauldie J. Inflammatory mechanisms are a minor component of the pathogenesis of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2002; 165:1205–1208
    30. Sem H Phan. The Myofibroblast in Pulmonary Fibrosis. Chest 2002; 122; 286-289
    31. Zhang H, Gharaee-Kermani M, Zhang K, et al. Lung fibroblast contractile and -smooth muscle actin phenotypic alterations in bleomycin-induced pulmonary fibrosis. Am J Pathol 1996; 148:527–537
    32. Darby I, Skalli O , Gabbiani G.α- smooth muscle actin is transiently exp ressed bymyofibroblasts during experimentalwound healing. Lab Invest, 1990, 63: 21
    33. Wu Z, Yang L, Cai L,et al. Detection of epithelial to mesenchymal transition in airways of a bleomycin induced pulmonary fibrosis model derived from an alpha-smooth muscle actin-Cre transgenic mouse. Respir Res. 2007, 7; 8:1.
    34. Carlini LE, Getz MJ, Strauch AR, et al. Cryptic MCAT enhancer regulation in fibroblasts and smooth muscle cells. Suppression of TEF-1 mediated activation by the single-stranded DNA-binding proteins, Pur , Purβ, and MSY1. J Biol Chem 2002, 277: 8682–8692.
    35. Cogan JG, Subramanian SV, Polikandriotis JA, et al. Vascular smooth muscle -actin gene transcription during myofibroblast differentiation requires Sp1/3 protein binding proximal to the MCAT enhancer. J Biol Chem, 2002, 277: 36433–36442.
    36. 36. Wang Z, Wang DZ, Hockemeyer D, et al. Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression. Nature 2004, 428: 185–189.
    37. Nishida W, Nakamura M, Mori S, et al.A triad of serum response factor and the GATA and NK families governs the transcription of smooth and cardiac muscle genes. J Biol Chem 2002, 277(9):7308-7317.
    38. Sepulveda JL, Vlahopoulos S, Iyer D, et al. Combinatorial expression of GATA4, Nkx2-5, and serum response factor directs early cardiac gene activity. J Biol Chem 2002, 277(28):25775-25782.
    39. Goodwin GH, Sanders C, Johns EW. A new group of chromatinassociated proteins with a high content of acidic and basic amino acids. Eur J Biochem 1973; 38: 14–19.
    40. Bustin M. Regulation of DNA-dependent activities by the functional motifs of the high-mobility-group chromosomal proteins. Mol Cell Biol. 1999, 19(8):5237-46.
    41. Falciola, L, A. I. Murchie, D. M. Lilley, et al.. Mutational analysis of the DNA binding domain A of chromosomal protein HMG1. Nucleic Acids Res. 1994, 22:285–292.
    42. Wang, H. et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science. 1999, 9;285(5425):248-51.
    43. Yang, H. et al. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc. Natl Acad. Sci. U S A, 2004,101:296–301.
    44. Wang, H., Czura, C. J. & Tracey, K. J. Lipid unites disparate syndromes of sepsis. Nature Med. 2004, 10: 124–125.
    45. Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol, 2005, 5(4):331-42.
    46. Yang D, Chen Q, Yang H,et al. High mobility group box-1 protein induces the migration and activation of human dendritic cells and acts as an alarmin. J Leukoc Biol. 2007 Jan;81(1):59-66. Epub 2006 Sep 11.
    47. Bonaldi T, Talamo F, Scaffidi P, et al. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J. 2003; 22: 5551–5560.
    48. Mitola S, Belleri M, Urbinati C, et al. Cutting edge: extracellular high mobility group box-1 protein is a proangiogenic cytokine. J Immunol. 2006;176(1):12-5.
    49. Kim KK, Kugler MC, Wolters PJ. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci U S A. 2006;103(35):13180-5. Epub 2006 Aug 21.
    50. Willis BC, Borok Z. TGF-beta-induced EMT: mechanisms and implications for fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol. 2007; 293(3): L525-34. Epub 2007 Jul 13.
    51. Willis BC, Liebler JM, Luby-Phelps K. Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-beta1: potential role in idiopathic pulmonary fibrosis. Am J Pathol. 2005;166(5):1321-32.
    52. Yao HW, Xie QM, Chen JQ. TGF-beta1 induces alveolar epithelial to mesenchymal transition in vitro. Life Sci. 2004;76(1):29-37
    53. He M, Kubo H, Ishizawa K et.The role of the receptor for advanced glycation end-products in lung fibrosis. Am J Physiol Lung Cell Mol Physiol. 2007; 293(6):L1427-36.
    54. Wang, H., O. Bloom, M. Zhang, et al. 1999. HMG-1 as a late mediator of endotoxin lethality in mice. Science 285: 248–251.
    55. Sundén-Cullberg J, Norrby-Teglund A, Rouhiainen A,et al. Persistent elevationof high mobility group box-1 protein (HMGB1) in patients with severe sepsis and septic shock. Crit. Care Med. 2005, 33: 564–573.
    56. Ombrellino, M., H. Wang, M. S. Ajemian, A. Talhouk, et al. Increased serum concentrations of high-mobility- group protein 1 in haemorrhagic shock. Lancet. 1999, 354: 1446–1447.
    57. Bonaldi, T., F. Talamo, P. Scaffidi, et al. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J. 2003, 22:5551–5560.
    58. Semino, C., G. Angelini, A. Poggi,et al. 2005. NK/iDC interaction results in IL-18 secretion by DCs at the synaptic cleft followed by NK cell activation and release of the DC maturation factor HMGB1. Blood 106: 609–616.
    59. Gardella, S., C. Andrei, D. Ferrera, L. V. Lotti,et al. The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep. 2002 3: 995–1001.
    60. Rubartelli A, Sitia R. Entry of exogenous polypeptides into the nucleus of living cells: facts and speculations. Trends Cell Biol. 1995; 5, 409–412 (1995).
    61. Mack CP, Owens GK. Regulation of smooth muscle alpha-actin expression in vivo is dependent on CArG elements within the 5' and first intron promoter regions. Circ Res, 1999, 84: 852-861.
    62. Mack CP, Thompson MM, Lawrenz-Smith S,et al: Smooth muscle alpha-actin CArG elements coordinate formation of a smooth muscle cell-selective, serum response factor-containing activation complex. Circ Res 2000, 86:221–232
    63. Du KL, Ip HS, Li J,et al: Myocardin is a critical serum response factor cofactor in the transcriptional program regulating smooth muscle cell differentiation. Mol Cell Biol 2003, 23:2425–2437
    64. Bonaldi T, Talamo F, Scaffidi P. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J.2003, 22: 5551–5560.
    65. van Beijnum JR, Buurman WA, Griffioen AW. Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1).Angiogenesis. 2008;11(1):91-9
    66. Hori O, Brett J, Slattery T et al. The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. J Biol Chem, 1995, 270:25752–25761
    67. Park JS, Gamboni-Robertson F, He Q et al (2006) High mobility group box 1 protein interacts with multiple Toll-like receptors. Am J Physiol Cell Physiol 290:C917–C924
    68. Park JS, Svetkauskaite D, He Q et al (2004) Involvement of toll like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 279:7370–7377
    69. Yu M, Wang H, Ding A et al (2006) HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock 26:174–179
    70.卫张蕊,周国锋,田琼。炎症细胞和细胞因子在肺纤维化中作用的研究进展,细胞与分子免疫学杂志
    71.唐道林,肖献忠.高迁移率族蛋白1与脓毒症.中国危重病急救医学, 2004, 16: 113 116.
    72. ncreased expression of the DNA-binding cytokine HMGB1 in human atherosclerotic lesions: role of activated macrophages and cytokines. Arterioscler Thromb Vasc Biol. 2004 Dec;24(12):2320-5. Epub 2004 Sep 16.
    73. Thomsen MS, Franssen L, Launholt D,et al. Interactions of the basic N-terminal and the acidic C-terminal domains of the maize chromosomal HMGB1 protein. Biochemistry,2004, 29;43(25):8029-37
    74. Pasheva E, Sarov M, Bidjekov K, et al. In vitro acetylation of HMGB-1 and -2 proteins by CBP: the role of the acidic tail. Biochemistry, 2004, 16; 43(10):2935-40
    1、Katzenstein AL , Mayers J . Idiopathic pulmonary fibrosis : clinical relevance of pathologic classification. AmJ Respir Crit Care Med ,1998 ,157 :130121315.
    2、Douglas WW, Ryu JH , Schroeder DR. Idiopathic pulmonary fibrosis: impact of oxygen and colchicines ,prednisone ,or no therapy on survival .AmJ Respir Crit Care Med ,2000 ,161 :117221178.
    3、刘涛,宋良文.肺纤维化发生的分子机制和早期防治研究进展.军事医学科学院院刊,2003 ,27 (4) :3122316.
    4、陈兴无,徐军,钟南山.上皮损伤和肺纤维化.国外医学呼吸系统分册,2002 , (2) :57259.
    5、Fine A , Janssen2Heininger Y, Soultanakis RP ,et al . Apoptosis in lung pathophysiology. AmJ Physiol Lung Cell Mol Physiol , 2000 ,279 :L4232-427.
    6、WangR,Ibarra-SungaO, LubaV,etal. A brogation of bleomycin-induced epithelial apoptosis and lung fibrosis by captopril or by acaspase inhibitor.Am J Physiol Lung Cell Mo Physiol, 2000, 279:L143-L151.
    7、Barbas-FilhoJV, Ferreira MA,SeddoA,et al. Evidence of typeII pneumocyte apoptosis in the pathogenesis of idiopathic Pulmonary fibrosis(IFP)/usual interstitial pneumonia(UIP).J Clin Pathol,2001,54:132-138.
    8、TanakaT,YoshimiM,MaeyamaT,et al. Resistance to Fas-Mediated apoptosis in human lung fibroblast. Eur Respir J, 2002,20:359-368.
    9、CarlosR, MarthaM, Garcia-AlvarezJ, et al. Fibroblasts from Idiopathic pulmonary fibrosis and normal lungs differ from Growth rate, apoptosis, and tissue inhibitorof metalloproteinases expression. Am J Respir Cell Mol Biol, 2001,24:591-598.
    10、李惠萍,李霞,何国均,等.地塞米松对博莱霉素致肺间质纤维化大鼠肺内炎性细胞增殖/凋亡状态的影响.中华结核和呼吸杂志,2002,9:551-552.
    11、Serini G, Gabbiani G .Mechanisms of myofibroblast activity and phenotypic modulation. Exp Cell Res, 1999; 250:273-283
    12、Zhang K, Rekhter MD, Gordon D, et al. Co-expression of -smooth muscle actin and type I collagen in fibroblast-like cells of rat lungs with bleomycin-induced pulmonary fibrosis: a combined immunohistochemical and in situ hybridizationstudy. Am J Pathol 1994; 145:114–125
    13.、Desmoulie` re A, Rubbia-Brandt L, Abdiu A, et al.–Smooth muscle actin is expressed in a subpopulation of cultured and cloned fibroblasts and is modulated by -interferon. Exp Cell Res 1992; 201:64–73
    14、Desmoulie` re A, Rubbia-Brandt L, Grau G, et al. Heparin induces -smooth muscle actin expression in cultured fibroblasts and in granulation tissue myofibroblasts. Lab Invest 1992; 67:716–725
    15.、Oda D, Gown AM, Berg JSV, et al. The fibroblast-like nature of myofibroblasts. Exp Mol Pathol 1988; 49:316–329
    16、Adler KB, Low RB, Leslie KO, et al. Biology of disease:contractile cells in normal and fibrotic lung. Lab Invest 1989;60:473–485
    17、Mitchell J, Woodcock-Mitchell J, Reynolds S, et al.α–smooth muscle actin in parenchymal cells of bleomycin-injured rat lung. Lab Invest 1989; 60:643–650
    18、Kuhn C, McDonald JA. The roles of the myofibroblast in idiopathic pulmonary fibrosis: ultrastructural and immunohistochemical features of sites of active extracellular matrix synthesis. Am J Pathol 1991; 138:1257–1265
    19、Pache JC, Christakos PG, Gannon DE, et al. Myofibroblasts in diffuse alveolar damage of the lung. Mod Pathol 1998; 11:1064–1070
    20、Zhang K, Flanders KC, Phan SH. Cellular localization of transforming growth factor _ expression in bleomycininduced pulmonary fibrosis. Am J Pathol 1995; 147:352–361
    21、Zhang K, Gharaee-Kermani M, Jones ML, et al. Monocyte chemoattractant protein-1 gene expression in bleomycininduced pulmonary fibrosis. J Immunol 1994; 153:4733–4741
    22、Sem H Phan, The Myofibroblast in Pulmonary Fibrosis. Chest 2002;122;286-289
    23、Zhang H, Gharaee-Kermani M, Zhang K, et al. Lung fibroblast contractile andα-smooth muscle actin phenotypic alterations in bleomycin-induced pulmonary fibrosis. Am J Pathol 1996; 148:527–537
    24、Zaleskas JM, Kinner B , Freyman TM, et al . Growth factor regulation of smooth muscle actin expression and contraction of human artieular chondrocytes and meniscal cells in a collagen gag matrix. Exp Cell Res, 2001;270:21-31
    25、Darby I, Skalli O , Gabbiani G. A-smooth muscle actin is transiently expressed bymyofibroblasts during experimental wound healing. Lab Invest, 1990, 63: 21
    26、Eddy RJ , Petro JA , Tomasek JJ. Evidenxe fo r the nonmuscle nature of the“myofibroblast”of granulation tissue and hypertrop icscar. A m J Pathol, 1998, 130(2): 252
    27、佟振月,侯立新,马跃文,等.肺纤维化细胞间粘附分子1基因产物表达的作用.中华结核和呼吸杂志,2002,23(6):363-3641
    28、Kuhn C , McDonald JA. The roles of the myofibroblast in idiopathic pulmonary fibrosis. Ultrastructural and immunohistochemical features of sites of active extracellular matrix synthesis. Am J Pat hol,1991,138 (5):1257-1265.
    29、Zhang K,Rekhter MD ,Gordon D ,et al. Myofibroblasts and their role in lung collagen gene expression during pulmonary fibrosis. A combined immunohistochemical and in situ hybridization study. Am J Pat hol, 1994, 145(1):114-125.
    30、Coker RK,Laurent GJ. Pulmonary fibrosis: cytokines in the balance. Eur Respir J,1998,11:1218-1221.
    31、Zhang L , Keane MP , Zhu LX , et al. IL-7 and TGF-beta play Counter -regulatory roles in PKC-delta-dependent control of fibroblast collagen synthesis in pulmonary fibrosis. J Biol Chem ,2004 ,279 (27):28315228319.
    32、徐晓峰,王辰,代华平,等.大鼠肺纤维化过程中转化生长因子β1及其受体的同相表达.中华结核和呼吸杂志,2002,25 (9):550-551.
    33、Cao Y, Tao JQ ,Bates SR ,et al . IL-4 induces production of t he lung collectin surfactant protein-D. J Allergy Clin Immunol,2004 ,113 (3):439-444.
    34、马靖,何冰,李楠,等.白细胞介素-18在肺纤维化大鼠肺组织中的表达.北京大学学报(医学版),2002,34(4):376-383.
    35、王耀勇,徐启勇,叶燕青,等. IL-10在博莱霉素诱导大鼠所致肺纤维化中的作用.武汉大学学报(医学版),2004,25(2):159-165.
    36、李学军,崔社怀.三七总甙对大鼠肺纤维化过程中血浆MIP-α、MCP1含量的影响.第三军医大学学报,2003,25(6),522-524.
    37、Strieter RM. Pathogenesis and natural history of usual interstitial pneumonia: the whole story or the last chapter of a long novel. Chest. 2005 Nov; 128(5 Suppl 1):526S-532S
    38、Meneghin A, Hogaboam CM. Infectious disease, the innate immune response, and fibrosis.J Clin Invest. 2007;117(3):530-8.
    39、Strieter RM, Starko KM, Enelow RI, et al. Effects of interferon-gamma 1b on biomarker expression in patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care, 2004; 170:133–140
    40、Rojanasakul Y, Ye J , Chen F ,et al . Dependence of NF-kappa B activation and free radical generation on silica-induced TNF-alpha production in macrophage. Mol Cell Biochem, 1999 ,200:119-125.
    41、Zhang XY, Shimura S , Masuda T ,et al . Antisense oligonucleotides to NF-kappaB improve survival in bleomycin induced pneumopathy of the mouse. AmJ Respir Crit Care Med,2000,162 (4 Pt 1) :1561-1568.
    42、Gurujeyalakshmi G, Wang Y, Giri SN. Taurine and niacin block lung injury and fibrosis by down-regulating bleomycin-induced activation of transcription nuclear factor-kappaB in mice. J Pharmacol Exp Ther, 2000 ;293(1):82-90
    43、DemedtsM, Behr J. Idiopathic pulmonary fibrosis international group exploring N-acetylcysteine I annual. New Engl J Med, 2005, 353: 2229 - 2242.
    44、Antoniou KM, Nicholson AG, Dimadi M. Long-term clinical effects of interferon gamma-1b and colchicine in idiopathic pulmonary fibrosis.Eur Respir J 2006; 28:496-504.
    45、Raghu G. Idiopathic pulmonary fibrosis: treatment options in pursuit of evidence-based approaches. Eur Respir J,2006,28:463- 465.
    46、Azuma A, Nukiwa T, Tsuboi E, et al. Double-blind, Placebo-controlled Trial of Pirfenidone in Patients with Idiopathic Pulmonary Fibrosis. Am J Resp ir Crit Care Med, 2005,171: 1040 - 1047.
    47、Reed A, Snell GI, McLean C, et al. Outcomes of patients with interstitial lung disease referred for lung transplant assessment. Intern Med J, 2006, 36: 423-430.
    48、Abdelaziz MM, Samman YS, Wali SO, et al. Treatment of idiopathic pulmonary fibrosis: is there anything new?. 2005;10:284-9.
    49、Albelda SM. Pulmonary genetics, genomics,and gene therapy. Chest, 2002,121:105s-110s.
    50、Yaekashiwa M,Nakayama S ,Ohnuma K,et al.Simultaneous or delayed administration of hepatocyte growth factor equally represses the fibrotic changes in murine lung injury induced by bleomycin. Am J Respir Crit Care Med,1997,156:1937-1944.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700