犬新孢子虫“警报素”介导的宿主Th1型免疫应答的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
犬新孢子虫(Neospora caninum )是一种细胞内专性寄生的原虫,主要引起牛的流产。宿主和病原之间的免疫学的相互作用,在宿主防御和病原逃逸中起关键作用,可以刺激机体产生强烈的Th1型免疫应答。已有研究证明犬新孢子虫感染常会刺激机体细胞产生IFN-γ和IL-12等炎症因子,从而诱导机体Th1型免疫应答,然而,犬新孢子虫引起机体免疫应答的机制尚不清楚。本研究通过犬新孢子虫虫体抗原及其衍生的一组“警报素”-高迁移率组蛋白1来初步探讨引起机体Th1型免疫应答的机制,本研究有助于理解寄生虫和宿主的相互关系,为探讨犬新孢子虫致病机制及疫苗研制提供新的线索。
     犬新孢子虫促进Th1型免疫应答反应研究:犬新孢子虫可以刺激机体产生Th1型免疫应答,可以诱导小鼠脾细胞和树突状细胞产生IL-12和IFN-γ;还可以诱导小鼠的巨噬细胞产生一氧化氮,但与细菌的LPS并没有协同作用,这说明犬新孢子虫可能与LPS的受体TLR4作用很小。有趣的是,犬新孢子虫活虫以及冻死、热死、超声破碎处理的虫体都可以大大提高CpG激活TLR9的能力,但是虫体自身对TLR9的作用却非常小,说明犬新孢子虫滋养体中存在某种组分参与激活TLR9,从而介导机体Th1型免疫应答,为下一步研究打下基础。
     犬新孢子虫“警报素”基因的鉴定及定位的研究:众所周知,能结合DNA的蛋白除了核内的组蛋白外,就数“警报素”高迁移率组蛋白1家族(HMGB1)。犬新孢子虫全基因组有7个高迁移率组蛋白1(NcHMGB1)开放阅读框,其中只有NcHMGB1a、NcHMGB1b和NcHMGB1c三个蛋白包含HMGB B-box功能区。通过氨基酸序列比对,找到3个与人源HMGB1 B-box同源性为45%-54%的NcHMGB1蛋白,三个蛋白自身的同源性为43%-52%,与其他寄生性原虫如:疟原虫、巴贝斯虫、弓形虫同源性大约为48-50%、40-47%、43-96%,且都具有“TNF-a信号多肽区”。通过PCR扩增、原核表达,得到高纯度的重组蛋白,经鉴定这三个蛋白存在于虫体的可溶性组分中,并且只有NcHMGB1a是可分泌蛋白。因此,NcHMGB1是既可以存在细胞内又可以释放到细胞外的蛋白。对NcHMGB1蛋白的鉴定及纯化为下一步研究其功能提供了保障。
     犬新孢子虫“警报素”体外致炎作用研究:NcHMGB1的重组蛋白为可溶性蛋白,它可以诱导小鼠的巨噬细胞产生TNF-α;三种NcHMGB1蛋白都可以刺激小鼠的树突状细胞产生IL-12,证明NcHMGB1的“TNF-α信号多肽区”具有跟哺乳动物细胞相同的功能,都可以刺激致炎细胞因子的生成,NcHMGB1是犬新孢子虫引起机体Th1型免疫应答的重要成员之一。
     犬新孢子虫“警报素”介导Th1型免疫应答反应研究:NcHMGB1由于富含赖氨酸,可以绑定DNA。本试验证明NcHMGB1绑定DNA的比率为1.7±0.2,绑定的DNA分子量约为200-350bp,DNA测序表明,这些DNA覆盖整个E. coli基因组。含有细菌DNA的NcHMGB1不能协同CpG激活TLR9,但是经过DNase处理了的NcHMGB1蛋白可以协同CpG激活TLR9,其中蛋白和CpG的最佳浓度分别为1μg/mL和0.5μg/mL。抗NcHMGB1的抗体具有阻止其协同CpG的作用。在体外和体内NcHMGB1可以刺激机体产生IL-6、IL-12和CCL2等细胞炎症因子。因此,NcHMGB1参与了激活TLR9而介导机体Th1型免疫应答,进一步证明NcHMGB1是犬新孢子虫引起机体Th1型免疫应答的重要成员之一。
     本研究证明犬新孢子虫介导的宿主先天性免疫应答的途径之一是通过激活TLR9途径。研究表明NcHMGB1是参与此免疫应答的PAMP重要成员之一。这表示NcHMGB1作为一种“警报素”,可以自由穿梭于细胞内外,在犬新孢子虫自身感染或与其他非特异性感染如细菌感染过程中,NcHMGB1可以绑定具有免疫原性的的DNA如CpG,从而大大激活CpG的受体TLR9,引起机体Th1型免疫反应,导致炎症的产生。对“警报素”的进一步的研究将有助于深入的了解宿主与寄生虫的相互关系,为防预与感染相关的免疫病理性疾病奠定了分子免疫学基础。
The intracellular parasite Neospora caninum has been known as a major cause of reproductive failure in cattle. It is indispensable that the host system is biased in favor of a type 1 immune response prior to initiation and generation of an effective acquired immunity. It has been documented that N. caninum (Nc) elicits a strong type 1 immune response, however, the mechanisms by which this parasite induces type 1 immune responses and associated immunopathology remain to be elucidated. The studies presented in this dissertation characterized the underlying mechanisms fostering a Th1 immune response by a group of Nc-derived "alarmins”, the high-mobility group box-1 (HMGB1) proteins.
     Upregulation of type 1 immune responses and activation of TLR9 by N. caninum in the presence of CpG: Our studies showed that the Nc tachyzoites (NcTz) induced production of nitric oxide (NO) by macrophages and there was no synergistic effect between the parasite and bacterial lipopolysaccharide (LPS). Interestingly, live or killed NcTz or Nc lysate drastically enhanced the ability of CpG to activate the Toll-like receptor 9 (TLR9), although by themselves had little effect. This suggest that there is some compentent in NcTz to activation of TLR9 and induce type 1 immune responses.
     Identification, cloning, expression, purification and localization of N. caninum high mobility group box 1 proteins : An Nc genome-wide search revealed 7 genes encoding proteins containing the HMGB motif, 3 of which, designated NcHMGB1a, NcHMGB1b and NcHMGB1c, code for the HMGB1 box B with moderate sequence homology among themselves. Cloning, expression, immunoblotting, and immunohistochemistry confirmed the presence of these proteins in the parasite with an apparent molecular mass of 5 to 18KDa. Only NcHMGB1a appeared to be secreted. So NcHMGB1 can present in intracellular and extraceller.
     Upregulation of inflammatory cytokines by recombinant N. caninum HMGB1: Recombinant NcHMGB1 (rNcHMGB1) induced production of tumor-necrosis factor alpha (TNF-alpha) in a dose-dependent manner and all 3 isoforms stimulated interleukine-12 (IL-12) by dendritic cells. This suggest NcHMGB1 can induce type 1 immune responses.
     Characterization of N.caninum HMGB1s as parasitic alarmins responsible for CpG- associated activation of TLR9 and regulation of inflammatory cytokine production: Due to their high content in lysine, NcHMGB1 bound to DNA efficiently at 1.7±0.2μg/μg recombinant protein, which was shown by the Hoechst DNA assay and gel shift assay. Next generation DNA sequencing of the bacterial DNA fragment isolated from rNcHMGB1 showed that NcHMGB1 bound to the entire E. coli genome. rNcHMGB1 alone or rNcHMGB1 plus CpG did not activate TLR9. However, DNase treatment to remove bacterial DNA fragment from rNcHMGB1 prior to addition of nuclease resistant CpG significantly augmented activation of TLR9. All 3 isofoms of NcHMGB1 were similarly potent in enhancing CpG activity with an optimal dose ratio of 1μg NcHMGB1 to 0.5μg CpG. Anti-rNcHMGB1 sera partially blocked the ability of NcHMGB1 to assist CpG in activating TLR9. rNcHMGB1+CpG also stimulated high level production of IL-6 by dendritic cells in a dose-dependent fashion. In vivo, rNcHMGB1a plus CpG stimulated high levels of IL-6 production 2h post injection and CCL2 6h post injection. The result showed that NcHMGB1 is the important compentent in NcTz to activation of TLR9 and induce type 1 immune responses.
     These studies demonstrated that NcHMGB1 in part mediates activation of host innate immune responses by N. caninum through activation of TLR9. The results suggest that the unbound ("empty") NcHMGB1 may act as an¨alarmin〃during infection by itself or by non-specifically binding to immunogenic DNA such as CpG, activating host TLR9 and promoting an overall type 1 immunity. Further studies of this class of alarmins may facilitate in-depth understanding of the host-parasite interaction and aid in development of counter-measures for the control of infection-associated immunopathology.
引文
[1]. Bjerk?s I, Mohn SF, Presthus J (1984) Unidentified cystforming sporozoon causing encephalomyelitis and myositis in dogs. Z Parasitenk 70: 271-274.
    [2]. Dubey JP, Carpenter JL, Speer CA, Topper MJ, Uggla A (1988a) Newly recognized fatal protozoan disease of dogs. J Am Vet Med Assoc 192: 1269-1285.
    [3]. Dubey, J. P. 1999. Neosporosis in cattle: biology and economic impact. J. Am. Vet. Med. Assoc. 214:1160–1163.
    [4]. Dubey, J. P., and D. S. Lindsay. 1996. A review of Neospora caninum and neosporosis. Vet. Parasitol. 67:1–59.
    [5]. Dubey, J. P., and G. Schares. 2006. Diagnosis of bovine neosporosis. Vet. Parasitol. 141:1–34.
    [6]. Dubey, J. P., D. Buxton, and W. Wouda. 2006. Pathogenesis of bovine neosporosis. J. Comp. Pathol. 134:267–289.
    [7]. Ortega-Mora, L. M., A. Ferna′ndez-Garc?′a, and M. Go′mez-Bautista. 2006. Diagnosis of bovine neosporosis: recent advances and perspectives. Acta Parasitol. 51:1–14.
    [8]. Lobato, J., D. A. O. Silva, T. W. P. Mineo, J. D. H. F. Amaral, G. R. S. Segundo, J. M. Costa-Cruz, M. S. Ferreira, A. S. Borges, and J. R. Mineo. 2006. Detection of immunoglobulin G antibodies to Neospora caninum in humans: high seropositivity rates in patients who are infected by human immunodeficiency virus or have neurological disorders. Clin. Vaccine Immunol. 13:84–89.
    [9]. Tranas, J., R. A. Heinzen, L. M. Weiss, and M. M. McAllister. 1999. Serological evidence of human infection with the protozoan Neospora caninum. Clin. Diagn. Lab. Immunol. 6:765–767.
    [10]. Marsh, A. E., B. C. Barr, A. E. Packham, and P. A. Conrad. 1998. Description of a new Neospora species (Protozoa: Apicomplexa: Sarcocystidae). J. Parasitol. 84:983–991.
    [11]. Lindsay DS, Dubey JP, Duncan RB (1999a) Confirmation that the dog is a definitive host for Neospora caninum. Vet Parasitol 82: 327-333.
    [12]. Lindsay DS, Upton SJ, Dubey JP (1999b) A structural study of the Neospora caninum oocyst. Int J Parasitol 29: 1521-1523.
    [13]. Lindsay DS, Ritter DM, Brake D (2001a) Oocyst excretion in dogs fed mouse brains containing tissue cysts of a cloned line of Neospora caninum. J Parasitol 87: 909-911.
    [14]. Basso W, Venturini L, Venturini MC, et al. (2001a) First isolation of Neospora caninumfrom the feces of a naturally infected dog. J Parasitol 87: 612-618.
    [15]. Dubey JP, Barr BC, Barta JR, et al. (2002) Redescription of Neospora caninum and its differentiation from related coccidia. Int J Parasitol 32: 929-946.
    [16]. Peters M, Lutkefels E, Heckeroth AR, Schares G (2001a) Immunohistochemical and ultrastructural evidence for Neospora caninum tissue cysts in skeletal muscles of naturally infected dogs and cattle. Int J Parasitol 31: 1144-1148.
    [17]. Hill DE, Liddell S, Jenkins MC, Dubey JP (2001) Specific detection of Neospora caninum oocyst in fecal samples from experimentally-infected dogs using the polymerase chain reaction. J Parasitol 87: 395-398.
    [18]. Slapeta JR, Modry D, Kyselova I, Horejs R, Lukes J, Koudela B (2002) Dog shedding oocysts of Neospora caninum: PCR diagnosis and molecular phylogenic approach. Vet Parasitol 109: 157-167.
    [19]. Gondim, L. F. P., M. M. McAllister, W. C. Pitt, and D. E. ZemLicka. 2004. Coyotes (Canis latrans) are definitive hosts of Neospora caninum. Int. J.Parasitol. 34:159–161.
    [20]. Lindsay, D. S., J. P. Dubey, and R. B. Duncan. 1999. Confirmation that the dog is a definitive host for Neospora caninum. Vet. Parasitol. 82:327–333.
    [21]. McAllister, M. M., J. P. Dubey, D. S. Lindsay, W. R. Jolley, R. A. Wills, and A. M. McGuire. 1998. Dogs are definitive hosts of Neospora caninum. Int.J. Parasitol. 28:1473–1478.
    [22]. Dubey, J. P. 2004. Toxoplasmosis—a waterborne zoonosis. Vet. Parasitol. 126:57–72
    [23]. Dubey JP, Lindsay DS (1996) A review of Neospora caninum and neosporosis. Vet Parasitol 67: 1-59.
    [24]. Dubey JP, Lindsay DS (2000) Gerbils (Meriones unguiculatus) are highly susceptible to oral infection with Neospora caninum oocyst. Parasitol. Res. 86: 165-168.
    [25]. Schares G, Heydorn AO, Cuppers A, Conraths FJ, Mehlhorn H (2001) Hammondia heydorni-like oocysts shed by a naturally infected dog and Neospora caninum NC-1 cannot be distinguished. Parasitol Res 87: 808-816.
    [26]. Pipano E, Shkap V, Fish L, Savitsky I,. Perl S, Orgad U (2002) Susceptibility of Psammomys obesus and Meriones tristrami to tachyzoites of Neospora caninum. J. Parasitol 88: 314-319.
    [27]. Dijkstra T, Eysker M, Schares G, Conraths FJ, Wouda W, Barkema HW (2001) Dogs shed Neospora caninum oocysts after ingestion of naturally infected bovine placenta but not after ingestion of colostrum spiked with Neospora caninum tachyzoites. Int J Parasitol 31: 747-752.
    [28]. Gondim LFP, Gao L, McAllister MM (2002) Improved production of Neospora caninumoocysts, cyclical oral transmission between dogs and cattle, and in vitro isolation from oocysts. J Parasitol 88: 1159-1163.
    [29]. Trees, A. J., and D. J. L. Williams. 2005. Endogenous and exogenous transplacental infection in Neospora caninum and Toxoplasma gondii. Trends Parasitol. 21:558–561.
    [30]. Lindsay, D. S., and J. P. Dubey. 1990. Infections in mice with tachyzoites and bradyzoites of Neospora caninum (Protozoa: Apicomplexa). J. Parasitol. 76:410–413.
    [31]. Dubey, J. P., C. Sreekumar, E. Knickman, K. B. Miska, M. C. B. Vianna, O. C. H. Kwok, D. E. Hill, M. C. Jenkins, D. S. Lindsay, and C. E. Greene. 2004. Biologic, morphologic, and molecular characterization of Neospora caninum isolates from littermate dogs. Int. J. Parasitol. 34:1157–1167.
    [32]. Lindsay, D. S., B. L. Blagburn, and J. P. Dubey. 1992. Factors affecting the survival of Neospora caninum bradyzoites in murine tissues. J. Parasitol. 78:70–72.
    [33]. de Marez, T., S. Liddell, J. P. Dubey, M. C. Jenkins, and L. Gasbarre. 1999. Oral infection of calves with Neospora caninum oocysts from dogs: humoral and cellular immune responses. Int. J. Parasitol. 29:1647–1657.
    [34]. Gondim, L. F. P., M. M. McAllister, R. C. Anderson-Sprecher, C. Bjo¨rkman, T. F. Lock, L. D. Firkins, L. Gao, and W. R. Fischer. 2004. Transplacental transmission and abortion in cows administered Neospora caninum oocysts. J. Parasitol. 90:1394–1400.
    [35]. Trees, A. J., M. M. McAllister, C. S. Guy, J. W. McGarry, R. F. Smith, and D. J. L. Williams. 2002. Neospora caninum: oocyst challenge of pregnant cows. Vet. Parasitol. 109:147–154.
    [36]. Dubey, J. P., and D. S. Lindsay. 2000. Gerbils (Meriones unguiculatus) are highly susceptible to oral infection with Neospora caninum oocysts. Parasitol. Res. 86:165–168.
    [37]. Wouda W (1998) Neospora abortion in cattle, aspects of diagnosis and epidemiology. PhD Thesis, Univ. Utrecht, the Netherlands. 1-176.
    [38]. Anderson, ML, Andrianarivo AG, Conrad PA (2000) Neosporosis in cattle. Anim Reprod Sci 60-61: 417-431.
    [39]. Buxton D, McAllister M, Dubey JP (2002) The comparative pathogenesis of neosporosis. Trends Parasitol 18: 546-552.
    [40]. Dijkstra T (2002) Horizontal and vertical transmission of Neospora caninum. PhD Thesis, Univ. Utrecht, the Netherlands. 1-140.
    [41]. Innes EA, Andrianarivo AG, Bj?rkman C, Williams DJL, Conrad PA. (2002). Immune responses to Neospora caninum and prospects for vaccination. Trends Parasitol 18: 497-504.
    [42]. Jenkins M, Baszler T, Bjorkman C, Schares G, Williams D (2002) Diagnosis andseroepidemiology of Neospora caninum-associated bovine abortion. Int J Parasitol 32: 631- 636.
    [43]. Dubey JP. Review of Neospora caninum and neosporosis in animals.Korean J Parasitol. 2003 Mar;41(1):1-16.
    [44]. Wouda W, Bartels CJM, Moen AR (1999a) Characteristics of Neospora caninum-associated abortion storms in dairy herds in the Netherlands (1995-1997). Theriogenology 52: 233-245.
    [45]. Anderson ML, Palmer CW, Thurmond MC, et al. (1995) Evaluation of abortions in cattle attributable to neosporosis in selected dairy herds in California. J Am Vet Med Assoc 207: 1206-1210.
    [46]. Barr BC, Anderson ML, Dubey JP, Conrad PA (1991) Neosporalike protozoal infections associated with bovine abortions. Vet Pathol 28: 110-116.
    [47]. Canada N, Meireles CS, Rocha A, Correia da Costa JM, Erickson MW, Dubey JP (2002b) Isolation of viable Toxoplasma gondii from naturally-infected aborted bovine fetuses. J Parasitol 88: 1247-1248.
    [48]. Sawada M, Kondo H, Tomioka Y, et al. (2000) Isolation of Neospora caninum from the brain of a naturally infected adult dairy cow. Vet Parasitol 90: 247-252.
    [49]. Thurmond MC, Hietala SK (1999) Neospora caninum infection and abortion in cattle. 4: 425-431.
    [50]. Anderson ML, Blanchard PC, Barr BC, Dubey JP, Hoffmann RL, Conrad PA (1991) Neospora-like protozoan infection as a major cause of abortion in California dairy cattle. J Am Vet Med Assoc 198: 241-244.
    [51]. Conrad, P. A., K. Sverlow, M. Anderson, J. Rowe, R. BonDurant, G. Tuter, R. Breitmeyer, C. Palmer, M. Thurmond, A. Ardans, J. P. Dubey, G. Duhamel, and B. Barr. 1993. Detection of serum antibody responses in cattle with natural or experimental Neospora infections. J. Vet. Diagn. Investig. 5:572–578.
    [52]. Fro¨ssling, J., A. Uggla, and C. Bjo¨rkman. 2005. Prevalence and transmission of Neospora caninum within infected Swedish dairy herds. Vet. Parasitol. 128:209–218.
    [53]. Lo′pez-Gatius, F., M. Lo′pez-Be′jar, K. Murugavel, M. Pabo′n, D. Ferrer, and S. Almer?′a. 2004. Neospora-associated abortion episode over a 1-year period in a dairy herd in north-east Spain. J. Vet. Med. B 51:348–352.
    [54]. Sager, H., I. Fischer, K. Furrer, M. Strasser, A. Waldvogel, P. Boerlin, L. Audige′, and B. Gottstein. 2001. A Swiss case-control study to assess Neospora caninum-associated bovine abortions by PCR, histopathology and serology. Vet. Parasitol. 102:1–15.
    [55]. Anderson ML, Reynolds JP, Rowe JD, et al. (1997) Evidence of vertical transmission of Neospora sp infection in dairy cattle. J Am Vet Med Assoc 210: 1169-1172.
    [56]. Figliuolo, L. P. C., A. A. R. Rodrigues, R. B. Viana, D. M. Aguiar, N. Kasai, and S. M. Gennari. 2004. Prevalence of anti-Toxoplasma gondii and anti- Neospora caninum antibodies in goat from Sa?o Paulo State, Brazil. Small Ruminant Res. 55:29–32.
    [57]. Boulton, J. G., P. A. Gill, R. W. Cook, G. C. Fraser, P. A. W. Harper, and J. P. Dubey. 1995. Bovine Neospora abortion in north-eastern New South Wales. Aust. Vet. J. 72:119–120.
    [58]. Guy, C. S., D. J. L. Williams, D. F. Kelly, J. W. McGarry, F. Guy, C. Bjo¨rkman, R. F. Smith, and A. J. Trees. 2001. Neospora caninum in persistently infected, pregnant cows: spontaneous transplacental infection is associated with an acute increase in maternal antibody. Vet. Rec. 149:443– 449.
    [59]. Wouda, W., A. R. Moen, and Y. H. Schukken. 1998. Abortion risk in progeny of cows after a Neospora caninum epidemic. Theriogenology 49: 1311–1316.
    [60]. Dijkstra, T., H. W. Barkema, M. Eysker, M. L. Beiboer, and W. Wouda. 2003. Evaluation of a single serological screening of dairy herds for Neospora caninum antibodies. Vet. Parasitol. 110:161–169.
    [61]. Romero, J. J., and K. Frankena. 2003. The effect of the dam-calf relationship on serostatus to Neospora caninum on 20 Costa Rican dairy farms. Vet Parasitol. 114:159–171.
    [62]. Davison, H. C., C. S. Guy, J. W. McGarry, F. Guy, D. J. L. Williams, D. F. Kelly, and A. J. Trees. 2001. Experimental studies on the transmission of Neospora caninum between cattle. Res. Vet. Sci. 70:163–168.
    [63]. Uggla, A., S. Stenlund, O. J. M. Holmdahl, E. B. Jakubek, P. Thebo, H. Kindahl, and C. Bjo¨rkman. 1998. Oral Neospora caninum inoculation of neonatal calves. Int. J. Parasitol. 28:1467–1472.
    [64]. Moskwa, B., W. Cabaj, K. Pastusiak, and J. Bien. 2003. The suitability ofmilk in detection of Neospora caninum infection in cows. Acta Parasitol. 48:138–141.
    [65]. Moskwa, B., K. Pastusiak, J. Bien, and W. Cabaj. 2007. The first detection of Neospora caninum DNA in the colostrum of infected cows. Parasitol. Res. 100:633–636.
    [66]. Serrano, E., I. Ferre, K. Osoro, G. Aduriz, A. Mateos-Sanz, A. Mart?′nez, R. Atxaerandio, C. O. Hidalgo, and L. M. Ortega-Mora. 2006. Intrauterine Neospora caninum inoculation of heifers. Vet. Parasitol. 135:197–203.
    [67]. Serrano-Mart?′nez, E., I. Ferre, K. Osoro, G. Aduriz, R. A. Mota, A. Mart?′nez, I. del-Pozo, C. O. Hidalgo, and L. M. Ortega-Mora. 2007. Intrauterine Neospora caninum inoculation of heifers and cows using contaminated semen with different numbers of tachyzoites.Theriogenology 67:729–737.
    [68]. Caetano-da-Silva, A., I. Ferre, E. Collantes-Ferna′ndez, V. Navarro, G. Aduriz, C. Ugarte-Garagalza, and L. M. Ortega-Mora. 2004. Occasional detection of Neospora caninum DNA in frozen extended semen from naturally infected bulls. Theriogenology 62:1329–1336.
    [69]. Ferre, I., G. Aduriz, I. del-Pozo, J. Regidor-Cerrillo, R. Atxaerandio, E. Collantes- Ferna′ndez, A. Hurtado, C. Ugarte-Garagalza, and L. M. Ortega- Mora. 2005. Detection of Neospora caninum in the semen and blood of naturally infected bulls. Theriogenology 63:1504–1518.
    [70]. Ortega-Mora, L. M., I. Ferre, I. del Pozo, A. Caetano da Silva, E. Collantes- Ferna′ndez, J. Regidor-Cerrillo, C. Ugarte-Garagalza, and G. Aduriz. 2003. Detection of Neospora caninum in semen of bulls. Vet. Parasitol. 117:301– 308.
    [71]. Canada, N., C. S. Meireles, P. Ferreira, J. M. C. da Costa, and A. Rocha. 2006. Artificial insemination of cows with semen in vitro contaminated with Neospora caninum tachyzoites failed to induce neosporosis. Vet. Parasitol. 139:109–114.
    [72]. Baillargeon P, Fecteau G, Pare J, Lamothe P, Sauve R (2001) Evaluation of the embryo transfer procedure proposed by the International Embryo Transfer Society as a method of controlling vertical transmission of Neospora caninum in cattle. J Am Vet Med Assoc 218: 1803-1806.
    [73]. Landmann JK, Jillella D, O’Donoghue PJ, McGowan MR (2002) Confirmation of the prevention of vertical transmission of Neospora caninum in cattle by the use of embryo transfer. Aust Vet J 80: 502-503.
    [74]. Bielanski A, Robinson J, Phipps-Todd B (2002) Effect of Neospora caninum on in vitro development of preimplantation stage bovine embryos and adherence to the zona pellucida. Vet Rec 150: 316-318.
    [75]. Thurmond MC, Hietala SK (1996) Culling associated with Neospora caninum infection in dairy cows. Am J Vet Res 57: 1559-1562.
    [76]. Thurmond MC, Hietala SK (1997) Effect of Neospora caninum infection on milk production in first-lactation dairy cows. J Am Vet Med Assoc 210: 672-674.
    [77]. Hernandez J, Risco C, Donovan A (2001) Association between exposure to Neospora caninum and milk production in dairy cows. J Am Vet Med Assoc 219: 632-635.
    [78]. Barling KS, McNeill JW, Thompson JA, et al. (2000) Association of serologic status for Neospora caninum with postweaning weight gain and carcass measurements in beef calves. J Am Vet Med Assoc 217: 1356-1360.
    [79]. Innes EA, Wright SE, Maley S, et al. (2001b) Protection againstvertical transmission in bovine neosporosis. Int J Parasitol 31: 1523-1534.
    [80]. McAllister MM, Bjorkman C, Anderson-Sprecher R, Rogers DG (2000) Evidence of point-source exposure to Neospora caninum and protective immunity in a herd of beef cows. J Am Vet Med Assoc 217: 881-887.
    [81]. Trees AJ, Williams DJL (2003) Vaccination against bovine neosporosis—the challenge is the challenge. J Parasitol 89.
    [82]. Dubey, J. P., A. Koestner, and R. C. Piper. 1990. Repeated transplacental transmission of Neospora caninum in dogs. J. Am. Vet. Med. Assoc. 197: 857–860.
    [83]. Cole, R. A., D. S. Lindsay, B. L. Blagburn, D. C. Sorjonen, and J. P. Dubey. 1995. Vertical transmission of Neospora caninum in dogs. J. Parasitol. 81:208–211.
    [84]. Dubey, J. P., and D. S. Lindsay. 1989. Transplacental Neospora caninum infection in dogs. Am. J. Vet. Res. 50:1578–1579.
    [85]. Barber, J. S., and A. J. Trees. 1998. Naturally occurring vertical transmission of Neospora caninum in dogs. Int. J. Parasitol. 28:57–64.
    [86]. Dubey, J. P., E. Knickman, and C. E. Greene. 2005. Neonatal Neospora caninum infections in dogs. Acta Parasitol. 50:176–179.
    [87]. Dubey JP, Koestner A, Piper RC (1990a) Repeated transplacental transmission of Neospora caninum in dogs. J Am Vet Med Assoc 197: 857-860.
    [88]. Basso W, Venturini L, Venturini MC, et al. (2001b) Prevalence of Neospora caninum infection in dogs from beef-cattle farms, dairy farms, and from urban areas of Argentina. J Parasitol 87: 906-907.
    [89]. Reichel MP, Thorton RN, Morgan PL, Mills RJM, Schares G (1998) Neosporosis in a pup. N Z Vet J 46: 106-110.
    [90]. ?o?skun SZ, Aydyn L, Bauer C (2000) Seroprevalence of Neospora caninum infection in domestic dogs in Turkey. Vet Rec 146: 649-649.
    [91]. Mineo TWP, Silva DAO, Costa GHN, et al. (2001) Detection of IgG antibodies to Neospora caninum and Toxoplasma gondii in dogs examined in veterinary hospital from Brazil. Vet Parasitol 98: 239-245.
    [92]. Gennari SM, Yai LEO, D’Auria SNR, et al. (2002) Occurrence of Neospora caninum antibodies in sera from dogs of the city of S?o Paulo, Brazil. Vet Parasitol 106: 177-179.
    [93]. Cringoli G, Rinaldi E, Capuano F, Baldi L, Veneziano V, Capelli G (2002) Serological survey of Neospora caninum and Leishmania infantum co-infection in dogs. Vet Parasitol 106: 307-313.
    [94]. Patitucci AN, Phil M, Pérez MJ, Rozas MA, Israel KF (2001) Neosporosis canina: presencia de anticuerpos séricos enpoblaciones caninas rurales y urbanas de Chile. Arch Med Vet 33: 227-232.
    [95]. Klein BU, Muller E (2001) Seropr?valenz von antik?rpern gegen Neospora caninum bei Hunden mit und ohne klinischem Neosporoseverdacht in Deutschland. Der praktische Tierarzt 82: 437-440.
    [96]. Sawada M, Park CH, Kondo H, et al. (1998) Serological survey of antibody to Neospora caninum in Japanese dogs. J Vet Med Sci 60: 853-854.
    [97]. de Souza SLP, Guimares JS, Ferreira F, Dubey JP, Gennari SM (2002) Prevalence of Neospora caninum antibodies in dogs from dairy cattle farms in Parana, Brazil. J Parasitol 88: 408-409.
    [98]. Wouda W, Dijkstra T, Kramer AMH, van Maanen C, Brinkhof JMA (1999b) Seroepidemiological evidence for a relationship between Neospora caninum infections in dogs and cattle. Int J Parasitol 29: 1677-1682.
    [99]. Boydell P, Brogan N (2000) Horner’s syndrome associated with Neospora infection. J Small Anim Pract 41: 571-572.
    [100]. Cantile C, Arispici M (2002) Necrotizing cerebellitis due to Neospora caninum infection in an old dog. J Vet Med 49: 47- 50.
    [101]. Tarantino C, Rossi G, Kramer LH, Perrucci S, Cringoli G, Macchioni G (2001) Leishmania infantum and Neospora caninum simultaneous skin infection in a young dog in Italy. Vet Parasitol 102: 77-83.
    [102]. PerléKMD, Del Piero F, Carr RF, Harris C, Stromberg PC (2001) Cutaneous neosporosis in two adult dogs on chronic immunosuppressive therapy. J Vet Diagn Invest 13: 252-255.
    [103]. Ordeix L, Lloret A, Fondevila D, Dubey JP, Ferrer L, Fondati A (2002) Cutaneous neosporosis during treatment of pemphigus foliaceus in a dog. J Am Anim Hosp Assoc 38: 415-419.
    [104]. Andreotti, R., J. M. Oliveira, E. Araujo e Silva, L. M. Oshiro, and M. F. C. Matos. 2006. Occurrence of Neospora caninum in dogs and its correlation with visceral leishmaniasis in the urban area of Campo Grande, Mato Grosso do Sul, Brazil. Vet. Parasitol. 135:375–379.
    [105]. Capelli, G., S. Nardelli, A. F. di Regalbono, A. Scala, and M. Pietrobelli. 2004. Sero-epidemiological survey of Neospora caninum infection in dogs in north-eastern Italy. Vet. Parasitol. 123:143–148.
    [106]. de Oliveira, J. M., M. F. C. Matos, L. M. Oshiro, and R. Andreotti. 2004. Prevalence of anti-Neospora caninum antibodies in dogs in the urban area of Campo Grande, MS, Brazil.Rev. Bras. Parasitol. Vet. 13:155–158.
    [107]. Malmasi, A., M. Hosseininejad, H. Haddadzadeh, A. Badii, and A. Bahonar. 22 November 2006, posting date. Serologic study of anti-Neospora caninum antibodies in household dogs and dogs living in dairy and beef cattle farms in Tehran, Iran. Parasitol. Res. doi: 10.1007/s00436-006-0385-7.
    [108]. Paradies, P., G. Capelli, G. Testini, C. Cantacessi, A. J. Trees, and D. Otranto. 2007,Risk factors for canine neosporosis in farm and kennel dogs in southern Italy. Vet. Parasitol., Vet Parasitol. 145(3-4):240-4.
    [109]. Trees, A. J., and D. J. L. Williams. 2000. Neosporosis in the United Kingdom. Int. J. Parasitol. 30:891–893.
    [110]. Bergeron, N., G. Fecteau, A. Villeneuve, C. Girard, and J. Pare′. 2001. Failure of dogs to shed oocysts after being fed bovine fetuses naturally infected by Neospora caninum. Vet. Parasitol. 97:145–152.
    [111]. Dijkstra, T., H. W. Barkema, M. Eysker, J. W. Hesselink, and W. Wouda. 2002. Natural transmission routes of Neospora caninum between farm dogs and cattle. Vet. Parasitol. 105:99–104.
    [112]. Bergeron, N., C. Girard, J. Pare′, G. Fecteau, J. Robinson, and P. Baillargeon. 2001. Rare detection of Neospora caninum in placentas from seropositive dams giving birth to full-term calves. J. Vet. Diagn. Investig. 13: 173–175.
    [113]. Fioretti, D. P., L. Rosignoli, G. Ricci, A. Moretti, P. Pasquali, and G. A. Polidori. 2000. Neospora caninum infection in a clinically healthy calf: parasitological study and serological follow-up. J. Vet. Med. B 47:47–53.
    [114]. Shivaprasad, H. L., R. Ely, and J. P. Dubey. 1989. A Neospora-like protozoon found in an aborted bovine placenta. Vet. Parasitol. 34:145–148.
    [115]. Guarino A, Fusco G, Savini G, Di Francesco G, Cringoli G (2000) Neosporosis in water buffalo (Bubalus bubalis) in southern Italy. Vet Parasitol 91: 15-21.
    [116]. Dubey JP, Hartley WJ, Lindsay DS, Topper MJ (1990b) fatal congenital Neospora caninum infection in a lamb. J Parasitol 76: 127-130.
    [117]. Hartley WJ, Bridge PS (1975) A case of suspected congenital Toxoplasma encephalomyelitis in a lamb associated with a spinal cord anomaly. Br Vet J 131: 380-384.
    [118]. Kobayashi Y, Yamada M, Omata Y, et al. (2001) Naturallyoccurring Neospora caninum infection in an adult sheep and her twin fetuses. J Parasitol 87: 434-436.
    [119]. Otter A, Wilson BW, Scholes SFE, Jeffrey M, Helmick B, Trees AJ (1997) Results of a survey to determine whether Neospora is a significant cause of ovine abortion in Englandand Wales. Vet Rec 140: 175-177.
    [120]. Helmick B, Otter A, McGarry J, Buxton D (2002) Serological investigation of aborted sheep and pigs for infection by Neospora caninum. Res Vet Sci 73: 187.
    [121]. Dubey JP, Lindsay DS (1990) Neospora caninum induced abortion in sheep. J Vet Diagn Invest 2: 230-233.
    [122]. McAllister MM, McGuire AM, Jolley WR, Lindsay DS, Trees AJ, Stobart RH (1996) Experimental neosporosis in pregnant ewes and their offspring. Vet Parasitol 33: 647-655.
    [123]. Buxton D, Maley SW, Thomson KM, Trees AJ, Innes EA (1997b) Experimental infection of non-pregnant and pregnant sheep with Neospora caninum. J Comp Pathol 117: 1-16.
    [124]. Buxton D, Maley SW, Wright S, Thomson KM, Rae AG, Innes EA (1998) The pathogenesis of experimental neosporosis in pregnant sheep. J Comp Pathol 118: 267-279.
    [125]. Jolley WR, McAllister MM, McGuire AM, Wills RA (1999) Repetitive abortion in Neospora-infected ewes. Vet Parasitol 82: 251-257.
    [126]. Innes EA, Lunden A, Esteban I, et al. (2001a) A previous infection with Toxoplasma gondii does not protect against a challenge with Neospora caninum in pregnant sheep. Parasite Immunol 23: 121-132.
    [127]. O’Handley R, Liddell S, Parker C, Jenkins M, Dubey JP (2002) Experimental infection of sheep with Neospora caninum oocysts. J Parasitol 88: 1120-1123.
    [128]. Barr BC, Anderson ML, Woods LW, Dubey JP, Conrad PA (1992) Neospora-like protozoal infections associated with abortion in goats. J Vet Diagn Invest 4: 365-367.
    [129]. Corbellini LG, Colodel EM, Driemeier D (2001) Granulomatous encephalitis in a neurologically impaired goat kid associated with degeneration of Neospora caninum tissue cysts. J Vet Diagn Invest 13: 416-419.
    [130]. Ooi HK, Huang CC, Yang CH, Lee SH (2000) Serological survey and first finding of Neospora caninum in Taiwan, and the detection of its antibodies in various body fluids of cattle. Vet Parasitol 90: 47-55.
    [131]. Dubey JP, Porterfield ML (1990) Neospora caninum (Apicomplexa) in an aborted equine fetus. J Parasitol 76: 732-734.
    [132]. Dubey JP, Morales JA, Villalobos P, Lindsay DS, Blagburn BL, Topper MJ (1996a) Neosporosis-associated abortion in a dairy goat. J Am Vet Med Assoc 208: 263-265.
    [133].Pronost S, Pitel PH, Romand S, Thulliez P, Collobert C, Fortier G (1999) Neospora caninum: premiére mise enévidence in France sur un avortonéquin, analyse et perspectives. Prat Vét Equine 31: 31-34.
    [134]. Lindsay DS, Steinberg H, Dubielzig RR, et al. (1996b) Central nervous system neosporosisin a foal. J Vet Diagn Invest 8: 507-510.
    [135]. Gray ML, Harmon BG, Sales L, Dubey JP (1996) visceral neosporosis in a 10-year-old horse. J Vet Diagn Invest 8: 130-133.
    [136]. Daft BM, Barr BC, Collins N, Sverlow K (1996) Neospora encephalomyelitis and polyradiculoneuritis in an aged mare with Cushing’s disease. Equine Vet J 28: 240-243.
    [137]. Marsh AE, Barr BC, Madigan J, Lakritz J, Nordhausen R, Conrad PA (1996) Neosporosis as a cause of equine protozoal myeloencephalitis. J Am Vet Med Assoc 209: 1907-1913.
    [138]. Hamir AN, Tornquist SJ, Gerros TC, Topper MJ, Dubey JP (1998) Neospora caninum - associated equine protozoal myeloencephalitis. Vet Parasitol 79: 269-274.
    [139]. Cheadle MA, Lindsay DS, Rowe S, et al. (1999b) Prevalence of antibodies to Neospora caninum in horses from Alabama and characterisation of an isolate recovered from a naturally infected horse. Int J Parasitol 29: 1537-1543.
    [140]. Dubey JP, Liddell S, Mattson D, Speer CA, Howe DK, Jenkins MC (2001) Characterization of the Oregon isolate of Neospora hughesi from a horse. J Parasitol 87: 345-353.
    [141]. Cheadle MA, Spencer JA, Blackburn BL (1999a) Seroprevalences of Neospora caninum and Toxoplasma gondii in nondomestic felids from southern Africa. J Zoo Wildlife Med 30: 248-251.
    [142]. Walsh CP, Duncan RB, Zajac AM, Blagburn BL, Lindsay DS (2000) Neospora hughesi: experimental infections in mice, gerbils, and dogs. Vet Parasitol 92: 119-128.
    [143]. Marsh AE, Johnson PJ, Ramos-Vara J, Johnson GC (2001) Characterization of a Sarcocystis neurona isolate from a Missouri horse with equine protozoal myeloencephalitis. Vet Parasitol 95: 143-154.
    [144]. Graham DA, Calvert V, Whyte M, Marks J (1999) Absence of serological evidence for human Neospora caninum infection. Vet Rec 144: 672-673.
    [145]. Petersen E, Lebech M, Jensen L, et al. (1999) Neospora caninum infection and repeated abortions in humans. Emerging Infectious Diseases 5: 278-280.
    [146]. Nam HW, Kang SW, Choi WY (1998) Antibody reaction of human anti-Toxoplasma gondii positive and negative sera with Neospora caninum antigens. Korean J Parasitol 36: 269-275.
    [147]. Woods LW, Anderson ML, Swift PK, Sverlow KW (1994) Systemic neosporosis in a California black-tailed deer (Odocoileus hemionus columbianus). J Vet Diagn Invest 6: 508-510.
    [148]. Dubey JP, Rigoulet J, Lagourette P, George C, Longeart L, LeNet JL (1996b) Fatal transplacental neosporosis in a deer (Cervus eldi siamensis). J Parasitol 82: 338-339.
    [149]. Peters M, Wohlsein P, Knieriem A, Schares G (2001b) Neospora caninum infectionassociated with stillbirths in captive antelopes (Tragelaphus imberbis). Vet Parasitol 97: 153-157.
    [150]. Williams JH, Espie I, van Wilpe E, Matthee A (2002) Neosporosis in a white rhinoceros (Ceratotherium simum) calf. Tydskr S Afr Vet Ver 73: 38-43.
    [151]. Dyer, R. M., M. C. Jenkins, O. C. H. Kwok, L. W. Douglas, and J. P. Dubey. 2000. Serologic survey of Neospora caninum infection in a closed dairy cattle herd in Maryland: risk of serologic reactivity by production groups. Vet. Parasitol. 90:171–181.
    [152]. Jensen, A. M., C. Bjo¨rkman, A. M. Kjeldsen, A. Wedderkopp, C. Willadsen, A. Uggla, and P. Lind. 1999. Associations of Neospora caninum seropositivity with gestation number and pregnancy outcome in Danish dairy herds. Prev. Vet. Med. 40:151–163.
    [153]. Rinaldi, L., G. Fusco, V. Musella, V. Veneziano, A. Guarino, R. Taddei, and G. Cringoli. 2005. Neospora caninum in pastured cattle: determination of climatic, environmental, farm management and individual animal risk factors using remote sensing and geographical information systems. Vet. Parasitol. 128:219–230.
    [154]. Sanderson, M. W., J. M. Gay, and T. V. Baszler. 2000. Neospora caninum seroprevalence and associated risk factors in beef cattle in the northwestern United States. Vet. Parasitol. 90:15–24.
    [155]. Waldner, C. L., E. D. Janzen, and C. S. Ribble. 1998. Determination of the association between Neospora caninum infection and reproductive performance in beef herds. J. Am. Vet. Med. Assoc. 213:685–690.
    [156]. Bartels, C. J. M., J. I. Arnaiz-Seco, A. Ruiz-Santa-Quitera, C. Bjo¨rkman, J. Fro¨ssling, D. von Blumro¨der, F. J. Conraths, G. Schares, C. van Maanen, W. Wouda, and L. M. Ortega-Mora. 2006. Supranational comparison of Neospora caninum seroprevalences in cattle in Germany, the Netherlands, Spain and Sweden. Vet. Parasitol. 137:17–27.
    [157]. Dannatt, L. 1997. Neospora caninum antibody levels in an endemicallyinfected dairy herd. Cattle Practice 5:335–337.
    [158]. Fioretti, D. P., P. Pasquai, M. Diaferia, V. Mangili, and L. Rosignoli. 2003. Neospora caninum infection and congenital transmission: serological and parasitological study of cows up to the fourth gestation. J. Vet. Med. B 50:399–404.
    [159]. Pare′, J., M. C. Thurmond, and S. K. Hietala. 1997. Neospora caninum antibodies in cows during pregnancy as a predictor of congenital infection and abortion. J. Parasitol. 83:82–87.
    [160]. Quintanilla-Gozalo, A., J. Pereira-Bueno, A. Seijas-Carballedo, E. Costas, and L. M. Ortega-Mora. Observational studies in Neospora caninum infected dairy cattle: relationship infection-abortion and gestational antibody fluctuations. Int. J. Parasitol. 30:900–906.
    [161]. Bartels, C. J. M., W. Wouda, and Y. H. Schukken. 1999. Risk factors for Neospora caninum-associated abortion storms in dairy herds in the Netherlands (1995 to 1997). Theriogenology 52:247–257.
    [162]. Dijkstra, T., H. W. Barkema, J. W. Hesselink, and W. Wouda. 2002. Point source exposure of cattle to Neospora caninum consistent with periods of common housing and feeding and related to the introduction of a dog. Vet. Parasitol. 105:89–98.
    [163]. Va′clavek, P., K. Sedla′k, L. Hu°rkova′, P. Vodra′ka, R. Sebesta, and B. Koudela. 2007. Serological survey of Neospora caninum in dogs in the Czech Republic and a long-term study of dynamics of antibodies. Vet. Parasitol. 143:35–41.
    [164]. Haddad, J. P. A., I. R. Dohoo, and J. A. VanLeewen. 2005. A review of Neospora caninum in dairy and beef cattle—a Canadian perspective. Can. Vet. J. 46:230–243.
    [165]. Conraths, F. J., and L. M. Ortega-Mora. 2005. Options for control of protozoal abortion in ruminants: practical experience. Conclusions, p. 229. Workshop Session T. 20th Int. Conf. World Assoc. Adv. Vet. Parasitol. Christchurch, New Zealand, 16 to 20 October 2005.
    [166].Hall, C. A., M. P. Reichel, and J. T. Ellis. 2005. Neospora abortions in dairy cattle: diagnosis, mode of transmission and control. Vet. Parasitol. 128:231– 241.
    [167]. Larson, R. L., D. K. Hardin, and V. L. Pierce. 2004. Economic considerations for diagnostic and control options for Neospora caninum-induced abortions in endemically infected herds of beef cattle. J. Am. Vet. Med. Assoc. 224:1597–1604.
    [168]. Reichel, M. P., and J. T. Ellis. 2002. Control options for Neospora caninum infections in cattle—current state of knowledge. N. Z. Vet. J. 50:86–92.
    [169]. Rosypal, A. C., and D. S. Lindsay. 2005. The sylvatic cycle of Neospora caninum: where do we go from here? Trends Parasitol. 21:439–440.
    [170]. González-Warleta M, Castro-Hermida JA, Carro-Corral C, Cortizo-Mella J, Mezo M.Epidemiology of neosporosis in dairy cattle in Galicia (NW Spain).Parasitol Res. 2008 Jan;102(2):243-9.
    [171]. Gondim, L. F. P., M. M. McAllister, N. E. Mateus-Pinilla, W. C. Pitt, L. D. Mech, and M. E. Nelson. 2004. Transmission of Neospora caninum between wild and domestic animals. J. Parasitol. 90:1361–1365.
    [172]. Dubey, J. P., K. Hollis, S. Romand, P. Thulliez, O. C. H. Kwok, L. Hungerford, C. Anchor, and D. Etter. 1999. High prevalence of antibodies to Neospora caninum in white-tailed deer (Odocoileus virginianus). Int. J. Parasitol. 29:1709–1711.
    [173]. Vianna, M. C. B., C. Sreekumar, K. B. Miska, D. E. Hill, and J. P. Dubey. 2005. Isolation of Neospora caninum from naturally infected white-tailed deer (Odocoileus virginianus). Vet.Parasitol. 129:253–257.
    [174]. Bowie, W. R., A. S. King, D. H. Werker, J. L. Isaac-Renton, A. Bell, S. B. Eng, and S. A. Marion. 1997. Outbreak of toxoplasmosis associated with municipal drinking water. Lancet 350:173–177.
    [175]. de Moura, L., L. M. G. Bahia-Oliveira, M. Y. Wada, J. L. Jones, S. H. Tuboi, E. H. Carmo, W. M. Ramalho, N. J. Camargo, R. Trevisan, R. M. T. Grac?a, A. J. da Silva, I. Moura, J. P. Dubey, and D. O. Garrett. 2006. Waterborne outbreak of toxoplasmosis, Brazil, from field to gene. Emerg. Infect. Dis. 12:326–329.
    [176]. Hamilton, C. M., R. Gray, S. E. Wright, B. Gangadharin, K. Laurenson, and E. A. Innes. 2005. Prevalence of antibodies to Toxoplasma gondii and Neospora caninum in red foxes (Vulpes vulpes) from around the United Kingdom. Vet. Parasitol. 130:169–173.
    [177]. Hernandez, J., C. Risco, and A. Donovan. 2002. Risk of abortion associated with Neospora caninum during different lactations and evidence of congenital transmission in dairy cows. J. Am. Vet. Med. Assoc. 221:1742–1746.
    [178]. Lo′pez-Gatius, F., P. Santolaria, and S. Almer?′a. 2005. Neospora caninum infection does not affect the fertility of dairy cows in herds with high incidence of Neospora-associated abortions. J. Vet. Med. B 52:51–53.
    [179]. Romero, J. J., E. Perez, G. Dolz, and K. Frankena. 2002. Factors associated with Neospora caninum serostatus in cattle of 20 specialized Costa Rican dairy herds. Prev. Vet. Med. 53:263–273.
    [180]. Williams, D. J. L., and A. J. Trees. 2006. Protecting babies: vaccine srategies to prevent foetopathy in Neospora caninum-infected cattle. Parasite Immunol. 28:61–67.
    [181]. Quinn, H. E., C. M. D. Miller, and J. T. Ellis. 2004. The cell-mediated immune response to Neospora caninum during pregnancy in the mouse is associated with a bias towards production of interleukin-4. Int. J. Parasitol. 34:723–732.
    [182]. chetters, T. 2004. Intervet symposium: bovine neosporosis. Vet. Parasitol. 125:137–146.
    [183]. Heuer, C., C. Nicholson, D. Russel, and J. Weston. 2004. Field study in dairy cattle from New Zealand. Vet. Parasitol. 125:137–146.
    [184]. Romero, J. J., E. Pe′rez, and K. Frankena. 2004. Effect of a killed whole Neospora caninum tachyzoite vaccine on the crude abortion rate of Costa Rican dairy cows under field conditions. Vet. Parasitol. 123:149–159.
    [185]. Foell D, Wittkowski H, Roth J. 2007. Mechanisms of disease: a‘DAMP’view of inflammatory arthritis. Nat. Clin. Pract. Rheumatol. 3:382–90.
    [186]. Rubartelli A, Lotze MT. 2007. Inside, outside, upside down: damage-associatedmolecular-pattern molecules (DAMPs) and redox. Trends Immunol. 28:429–36.
    [187]. Foell D, Wittkowski H, Vogl T, Roth J. 2007. S100 proteins expressed in phagocytes: a novel group of damage-associated molecular pattern molecules. J. Leukoc. Biol. 81:28–37.
    [188]. Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J. 2006. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237–41.
    [189]. Martinon F, Mayor A, Tschopp J. 2009. The inflammasomes: guardians of the body. Annu. Rev. Immunol.27:229–65.
    [190]. Cayrol C, Girard JP. 2009. The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1. Proc. Natl. Acad. Sci. USA 106:9021–26.
    [191]. Gasse P, Riteau N, Charron S, Girre S, Fick L, et al. 2009. Uric acid is a danger signal activating NALP3 inflammasome in lung injury inflammation and fibrosis. Am. J. Respir. Crit. Care Med. 179:903–13.
    [192]. Thomas JO, Travers AA. 2001. HMG1 and 2, and related‘architectural’DNA-binding proteins. Trends Biochem. Sci. 26:167–74.
    [193]. Watson M, Stott K, Thomas JO. 2007. Mapping intramolecular interactions between domains in HMGB1 using a tail-truncation approach. J. Mol. Biol. 374:1286–97.
    [194]. Ulloa L, Ochani M, Yang H, Tanovic M, Halperin D, et al. 2002. Ethyl pyruvate prevents lethality in mice with established lethal sepsis and systemic inflammation. Proc. Natl. Acad. Sci. USA 99:12351–56.
    [195]. Wang H, Liao H, Ochani M, Justiniani M, Lin X, et al. 2004. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat. Med. 10:1216–21.
    [196]. Ulloa L, Messmer D. 2006. High-mobility group box 1 (HMGB1) protein: friend and foe. Cytokine Growth Factor Rev. 17:189–201.
    [197]. Kim JH, Kim SJ, Lee IS, Lee MS, Uematsu S, et al. 2009. Bacterial endotoxin induces the release of high mobility group box 1 via the IFN-βsignaling pathway. J. Immunol. 182:2458–66.
    [198]. Scaffidi P, Misteli T, Bianchi ME. 2002. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:191–95.
    [199]. Bell CW, Jiang W, Reich CF 3rd, Pisetsky DS. 2006. The extracellular release of HMGB1 during apoptotic cell death. Am. J. Physiol. Cell Physiol. 291:C1318–25.
    [200]. Jiang W, Bell CW, Pisetsky DS. 2007. The relationship between apoptosis and high-mobility group protein1 release from murine macrophages stimulated with lipopolysaccharide or polyinosinic-polycytidylic acid. J. Immunol. 178:6495–503.
    [201]. Andersson U, Erlandsson-Harris H. 2004. HMGB1 is a potent trigger of arthritis. J. Intern.Med. 255:344–50.
    [202]. Rouhiainen A, Tumova S, Valmu L, Kalkkinen N, Rauvala H. 2007. Pivotal advance: analysis of proinflammatory activity of highly purified eukaryotic recombinant HMGB1 (amphoterin). J. Leukoc. Biol.81:49–58.
    [203]. Tian J, Avalos AM, Mao SY, Chen B, Senthil K, et al. 2007. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat. Immunol. 8:487–96.
    [204]. Sha Y, Zmijewski J, Xu Z, Abraham E. 2008. HMGB1 develops enhanced proinflammatory activity by binding to cytokines. J. Immunol. 180:2531–2537.
    [205]. Messmer D, Yang H, Telusma G, Knoll F, Li J, et al. 2004. High mobility group box protein 1: an endogenous signal for dendritic cell maturation and Th1 polarization. J. Immunol. 173:307–313.
    [206]. Haerdi, C., M. Haessig, H. Sager, G. Greif, D. Staubli, and B. Gottstein. 2006. Humoral immune reaction of newborn calves congenitally infected with Neospora caninum and experimentally treated with toltrazuril. Parasitol. Res. 99:534–540.
    [207]. Kritzner, S., H. Sager, J. Blum, R. Krebber, G. Greif, and B. Gottstein. 2002. An explorative study to assess the efficacy of toltrazuril-sulfone (Ponazuril) in calves experimentally infected with Neospora caninum. Ann. Clin. Microbiol. Antimicrob. 1:4.
    [208]. Gottstein, B., G. R. Razmi, P. Ammann, H. Sager, and N. Mu¨ller. 2005. Toltrazuril treatment to control diaplacental Neospora caninum transmission in experimentally infected pregnant mice. Parasitology 130:41–48.
    [209]. McAllister, M. M., C. Bjo¨rkman, R. Anderson-Sprecher, and D. G. Rogers. 2000. Evidence of point-source exposure to Neospora caninum and protective immunity in a herd of beef cows. J. Am. Vet. Med. Assoc. 217:881–887.
    [210]. Guy, C. S., J. Ellis, D. J. L. Williams, R. Smith, and A. J. Trees. 2005. Vaccination against Neospora-associated abortion in cattle. Session M. Diagnosis and control of protozoan-associated abortion in ruminants, p. 191. 20th Int. Conf. World Assoc. Adv. Vet. Parasitol., Christchurch, New Zealand, 16 to 20 October 2005.
    [211].Williams, D. J. L., C. S. Guy, J. W. McGarry, F. Guy, L. Tasker, R. F. Smith, K. MacEachern, P. J. Cripps, D. F. Kelly, and A. J. Trees. 2000. Neospora caninum-associated abortion in cattle: the time of experimentally-induced parasitaemia during gestation determines foetal survival. Parasitology 121: 347–358.
    [212]. Williams, D. J. L., C. S. Guy, R. F. Smith, J. Ellis, C. Bjo¨rkman, M. P. Reichel, and A. J. Trees. 2007. Immunization of cattle with live tachyzoites of Neospora caninum confersprotection against fetal death. Infect. Immun. 75:1343–1348.
    [213]. Innes, E. A., A. G. Andrianarivo, C. Bjo¨rkman, D. J. L. Williams, and P. A. Conrad. 2002. Immune responses to Neospora caninum and prospects for vaccination. Trends Parasitol. 18:497–504.
    [214]. Pereira-Bueno, J., A. Quintanilla-Gozalo, A. Seijas-Carballedo, E. Costas, and L. M. Ortega-Mora. 2000. Observational studies in Neospora caninum infected dairy cattle: pattern of transmission and age-related antibody fluctuations. Int. J. Parasitol. 30:906–909.
    [215]. Collantes-Ferna′ndez, E., A. Rodr?′guez-Bertos, I. Arna′iz-Seco, B. Moreno, G. Aduriz, and L. M. Ortega-Mora. 2006. Influence of the stage of pregnancy on Neospora caninum distribution, parasite loads and lesions in aborted bovine foetuses. Theriogenology 5:629–641.
    [216]. Innes, E. A., S. Wright, P. Bartley, S. Maley, C. Macaldowie, I. Esteban- Redondo, and D. Buxton. 2005. The host-parasite relationship in bovine neosporosis. Vet. Immunol. Immunopathol. 108:29–36.
    [217]. Atkinson, R., P. A. W. Harper, C. Ryce, D. A. Morrison, and J. T. Ellis. 1999. Comparison of the biological characteristics of two isolates of Neospora caninum. Parasitology 118:363–370.
    [218]. Collantes-Ferna′ndez, E., I. Lo′pez-Pe′rez, G. A′lvarez-Garc?′a, and L. M. Ortega-Mora. 2006. Temporal distribution and parasite load kinetics in blood and tissues during Neospora caninum infection in mice. Infect. Immun. 74:2491–2494.
    [219]. Miller, C. M. D., H. E. Quinn, P. A. Windsor, and J. T. Ellis. 2002. Characterization of the first Australian isolate of Neospora caninum from cattle. Aust. Vet. J. 80:620–625.
    [220]. Schock, A., E. A. Innes, I. Yamane, S. M. Latham, and J. M. Wastling. 2001. Genetic and biological diversity among isolates of Neospora caninum. Parasitology 123:13–23.
    [221].Andrianarivo, A. G., J. D. Rowe, B. C. Barr, M. L. Anderson, A. E. Packham, K. W. Sverlow, L. Choromanski, C. Loui, A. Grace, and P. A. Conrad. 2000. A POLYGEN-adjuvanted killed Neospora caninum tachyzoite preparation failed to prevent foetal infection in pregnant cattle following i.v./ i.m. experimental tachyzoite challenge. Int. J. Parasitol. 30:985–990.
    [222]. Liddell, S., M. C. Jenkins, C. M. Collica, and J. P. Dubey. 1999. Prevention of vertical transfer of Neospora caninum in BALB/c mice by vaccination. J. Parasitol. 85:1072–1075.
    [223]. Miller, C. M. D., H. Quinn, C. Ryce, M. P. Reichel, and J. T. Ellis. 2005. Reduction in transplacental transmission of Neospora caninum in outbred mice by vaccination. Int. J. Parasitol. 35:821–828.
    [224]. Andrianarivo, A. G., M. L. Anderson, J. D. Rowe, I. A. Gardner, J. P. Reynolds, L. Choromanski, and P. A. Conrad. 2005. Immune responses during pregnancy in heifers naturally infected with Neospora caninum with and without immunization. Parasitol. Res. 96:24–31.
    [225]. Taylor KR, Trowbridge JM, Rudisill JA, Termeer CC, Simon JC, Gallo RL. 2004. Hyaluronan fragments stimulate endothelial recognition of injury through TLR4. J. Biol. Chem. 279:17079–84.
    [226]. Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, et al. 2008. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat. Immunol. 9:857–65.
    [227]. Haraldsen G, Balogh J, Pollheimer J, Sponheim J, Kuchler AM. 2009. Interleukin-33- cytokine of dual function or novel alarmin? Trends Immunol. 30:227–33.
    [228]. Read CM, Cary PD, Crane-Robinson C, Driscoll PC, Norman DG. 1993. Solution structure of a DNA-binding domain from HMG1. Nucleic Acids Res. 21:3427–36.
    [229]. Stros M, Stokrova J, Thomas JO. 1994. DNA looping by the HMG-box domains of HMG1 and modulation of DNA binding by the acidic C-terminal domain. Nucleic Acids Res. 22:1044–51.
    [230]. Najima Y,Yahagi N,Takeuchi Yet a1.High mobility group protein-B 1 interacts with sterol regulatory element-binding proteins to enhance their DNA binding. Biol Chem., 2005, 280, 27523-27532.
    [231]. Sparvero LJ, Asafu-Adjei D, Kang R, Tang D, Amin N, et al. 2009. RAGE (receptor for advanced glycation endproducts), RAGE ligands, and their role in cancer and inflammation. J. Transl. Med. 7-17.
    [232]. Tiziana B,Talamo F,Scaflldi P,et al.Monocytie cells hyper-acetylate chromatin protein HMGBI to redirect it toward secretion[J].EMBO J,2003,22(20):5551-5560.
    [233]. Gardella S, Andrei C, Ferrera D, Lotti LV, Torrisi MR, et al. 2002. The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep. 3:995–1001.
    [234]. Gardella S.Andrei C.Ferrera D The nuclear protein HMGB1 is secreted by monocytes via a nonclassical, vesicle-mediated secretory pathway 2002(10).
    [235]. Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, et al. 1999. HMG-1 as a late mediator of endotoxin lethality in mice. Science 285:248–51.
    [236]. Kazama H, Ricci JE, Herndon JM, Hoppe G, Green DR, Ferguson TA. 2008. Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation ofhigh-mobility group box-1 protein. Immunity 29:21–32.
    [237]. Ivanov S, Dragoi AM, Wang X, Dallacosta C, Louten J, et al. 2007. A novel role for HMGB1 in TLR9- mediated inflammatory responses to CpG-DNA. Blood 110:1970–81.
    [238]. Dumitriu IE, Baruah P, Valentinis B, Voll RE, Herrmann M, et al. 2005. Release of high mobility group box 1 by dendritic cells controls T cell activation via the receptor for advanced glycation end products. J. Immunol. 174:7506–7515.
    [239]. Dumitriu IE, Baruah P, Bianchi ME, Manfredi AA, Rovere-Querini P. 2005. Requirement of HMGB1 and RAGE for the maturation of human plasmacytoid dendritic cells. Eur. J. Immunol. 35:2184–2190.
    [240]. Yang D, Chen Q, Yang H, Tracey KJ, Bustin M, Oppenheim JJ. 2007. High mobility group box-1 protein induces the migration and activation of human dendritic cells and acts as an alarmin. J. Leukoc.Biol. 81:59–66.
    [241]. Manfredi AA, Capobianco A, Esposito A, De Cobelli F, Canu T, et al. 2008. Maturing dendritic cells depend on RAGE for in vivo homing to lymph nodes. J. Immunol. 180:2270–75.
    [242]. Orlova VV, Choi EY, Xie C, Chavakis E, Bierhaus A, et al. 2007. A novel pathway of HMGB1-mediated inflammatory cell recruitment that requires Mac-1-integrin. EMBO J. 26:1129–39.
    [243]. Fiuza C, Bustin M, Talwar S, Tropea M, Gerstenberger E, et al. 2003. Inflammation- promoting activity of HMGB1 on human microvascular endothelial cells. Blood 101:2652–60.
    [244]. DeMarco RA. Fink MP. Lotze MT. Monocytes promote natural killer cell interferon gamma production in response to the endogenous danger signal HMGB1. Mol Immunol. 2005, 42(4):433-44.
    [245]. Palumbo R,Galvez B G,Pusterla T,et al.Cells migrating tO sites of tissue damage in response to the danger signal HMGB1 require NF-hppaB activation [J].Cell Biol,2007(1),179:33-40.
    [246]. Park J S,Arcaroli J,Yum H K,et al.Activation of gene expression in human neutmphils by high mobility group box 1 pmtdn[JJ.Am J Physiol Geu Physiol,2003,284(4):C870—879.
    [247].姚咏明,刘辉.对高迁移率族蛋白B1作用的新认识[J].中国危重病急救医学,2005,17(7):385-387.
    [248].王松柏,姚咏明,董宁,等.JAK/STAT通路介导脓毒症大鼠肝组织高迁移率族蛋白B1 mRNA表达的研究[J].中国危重病急救医学,2003,15(3)1147—149.
    [249]. Bassi R, Giussani P, Anelli V, Colleoni T, Pedrazzi M, et al. 2008. HMGB1 as an autocrine stimulus in human T98G glioblastoma cells: role in cell growth and migration. J. Neurooncol. 87:23–33.
    [250]. Peltz ED, Moore EE, Eckels PC, Damle SS, Tsuruta Y, et al. 2009. HMGB1 is markedly elevated within 6 hours of mechanical trauma in humans. Shock 32:17–22.
    [251]. Kohno T, Anzai T, Naito K, Miyasho T, Okamoto M, et al. 2009. Role of high-mobility group box 1 protein in post-infarction healing process and left ventricular remodelling. Cardiovasc. Res. 81:565–73.
    [252]. Goldstein RS, Gallowitsch-Puerta M, Yang L, Rosas-Ballina M, Huston JM, et al. 2006. Elevated highmobilitygroup box 1 levels in patients with cerebral and myocardial ischemia. Shock 25:571–74.
    [253]. Nakamura T, Fujiwara N, Sato E, Kawagoe Y, Ueda Y, et al. 2009. Effect of polymyxin B-immobilized fiber hemoperfusion on serum high mobility group box-1 protein levels and oxidative stress in patients with acute respiratory distress syndrome. ASAIO J. 55:395–99.
    [254]. Tsung A, Sahai R, Tanaka H, Nakao A, Fink MP, et al. 2005. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J. Exp. Med. 201:1135–43.
    [255]. Tsung A, Klune JR, Zhang X, Jeyabalan G, Cao Z, et al. 2007. HMGB1 release induced by liver ischemia involves Toll-like receptor 4 dependent reactive oxygen species production and calcium-mediated signaling.J. Exp. Med. 204:2913–23.
    [256]. Levy RM, Mollen KP, Prince JM, Kaczorowski DJ, Vallabhaneni R, et al. 2007. Systemic inflammation and remote organ injury following trauma require HMGB1. Am. J. Physiol. Regul. Integr. Comp. Physiol.293:R1538–44.
    [257]. Kaczorowski DJ, Nakao A,Vallabhaneni R, Mollen KP, Sugimoto R, et al. 2009. Mechanisms ofToll-like.receptor 4 (TLR4)-mediated inflammation after cold ischemia/ reperfusion in the heart. Transplantation 87:1455–63.
    [258]. Cataldegirmen G, Zeng S, Feirt N, Ippagunta N, Dun H, et al. 2005. RAGE limits regeneration after massive liver injury by coordinated suppression of TNF-αand NF-κB. J. Exp. Med. 201:473–84.
    [259]. Bucciarelli LG, Kaneko M, Ananthakrishnan R, Harja E, Lee LK, et al. 2006. Receptor for advancedglycation end products: key modulator of myocardial ischemic injury. Circulation 113:1226–34.
    [260]. Izuishi K, Tsung A, Jeyabalan G, Critchlow ND, Li J, et al. 2006. Cutting edge: High-mobility group box 1 preconditioning protects against liver ischemia-reperfusion injury. J. Immunol. 176:7154–58.
    [261]. Paull TT, Haykinson MJ, Johnson RC. 1993. The nonspecific DNA-binding and -bending proteins HMG1 and HMG2 promote the assembly of complex nucleoprotein structures. Genes Dev. 7:1521–34.
    [262]. Grosschedl R, Giese K, Pagel J. 1994. HMG domain proteins: architectural elements in the assembly of nucleoprotein structures. Trends Genet. 10:94–100.
    [263]. Popovic P J,DeMarco R,Lotze M T,et a1.High mobility group Blprotein suppresses the human plasmacytoid dendritic cell response tO TLR9 agonists[J].Immunol,2006,177(12):8701-8707.
    [264]. Means TK, Latz E, Hayashi F, Murali MR, Golenbock DT, Luster AD. 2005. Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J. Clin. Invest.115:407–417.
    [265]. Lovgren T, Eloranta ML, Bave U, Alm GV, Ronnblom L. 2004. Induction of interferon-αproduction in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG. Arthritis Rheum. 50:1861–72.
    [266]. Bave U, Magnusson M, Eloranta ML, Perers A, Alm GV, Ronnblom L. 2003. FcγRIIa is expressed on natural IFN-α-producing cells (plasmacytoid dendritic cells) and is required for the IFN-αproduction induced by apoptotic cells combined with lupus IgG. J. Immunol. 171:3296–302.
    [267]. Baumann I, Kolowos W, Voll RE, Manger B, Gaipl U, et al. 2002. Impaired uptake of apoptotic cells into tingible body macrophages in germinal centers of patients with systemic lupus erythematosus. ArthritisRheum. 46:191–201.
    [268]. Urbonaviciute V, Furnrohr BG, Meister S, Munoz L, Heyder P, et al. 2008. Induction of inflammatory and immune responses by HMGB1-nucleosome complexes: implications for the pathogenesis of SLE. J. Exp. Med. 205:3007–18.
    [269]. Youn JH, Oh YJ, Kim ES, Choi JE, Shin JS. 2008. High mobility group box 1 protein binding to lipopolysaccharide facilitates transfer of lipopolysaccharide to CD14 and enhances lipopolysaccharidemediated TNF-αproduction in human monocytes. J. Immunol. 180:5067–74.
    [270]. El Mezayen R, El Gazzar M, Seeds MC, McCall CE, Dreskin SC, Nicolls MR. 2007. Endogenous signals released from necrotic cells augment inflammatory responses to bacterial endotoxin. Immunol.Lett. 111:36–44.
    [271]. Campana L, Bosurgi L, Bianchi ME, Manfredi AA, Rovere-Querini P. 2009. Requirement of HMGB1 for stromal cell-derived factor-1/CXCL12-dependent migration of macrophages and dendritic cells.J. Leukoc. Biol. 86:609–615.
    [272]. Yang H, OchaniM, L i J , et al. Reversing established sep sis with antagonists of endogenous high– mobility group box 1 [ J ]. Proc Natl Acad Sci USA, 2004, 101 (1): 296 - 301.
    [273]. Abraham E, Arcaroli J, CarmodyA, et al. HMG - 1 as a mediator of acute lung inflammation [J]. J Immunol, 2000, 165 (6): 2950 - 2954.
    [274]. Friedman SG, Czura CJ, Tracey KJ. The gesture life of high mobility group box l [J]. CurrOp in Clin NutrMetab Care, 2003, 6 (3): 283 - 287.
    [275]. Das UN. Pyruvate is an endogenous anti– inflammatory and anti - oxidantmolecule [J]. Med SciMonit, 2006, 12(5) : 79-84.
    [276]. Chen GY, Tang J, Zheng P, Liu Y. 2009. CD24 and Siglec-10 selectively repress tissue damageinduced immune responses. Science 323:1722–25.
    [277].唐道林,石永忠,蒋磊,等.热休克蛋白对HMGBI表达及LPS诱导的HMGBl释放的影响l-J].医学临床研究,2005,22(3):289-292.
    [278]. Huuskonen J, Suuronen T, Nuutinen T, et al. Regulation of micro-glial inflammatory response by sodium butyrate and short2chain fatty acids[ J ]. Br J Pharmacol, 2004, 141 (5) : 874-880.
    [279]. Van de Wouwer M, Collen D, Conway EM. 2004. Thrombomodulin-protein C-EPCR system: integrated to regulate coagulation and inflammation. Arterioscler. Thromb. Vasc. Biol. 24:1374–1383353. Angus DC, Wax RS. 2001. Epidemiology of sepsis: an update. Crit. Care Med. 29:S109–116.
    [280]. Abeyama K, Stern DM, Ito Y, Kawahara K, Yoshimoto Y, et al. 2005. The N-terminal domain of thrombomodulin sequesters high-mobility group-B1 protein, a novel antiinflammatory mechanism.J. Clin. Invest. 115:1267–74.
    [281]. Ito T, Kawahara K, Nakamura T, Yamada S, Nakamura T, et al. 2007. High-mobility group box 1 protein promotes development of microvascular thrombosis in rats. J. Thromb. Haemost. 5:109–116.
    [282]. Sundén - Cullberg J , Norrby - Teglund A, Rouhiainen A, et al. Persistent elevation of high mobility group box– 1 p rotein (HMGB1) in patientswith severe sep sis and sep tic shock[ J ]. Crit CareMed, 2005, 33 (3): 564 - 573.
    [283]. Wang H, Yang H, Tracey KJ. 2004. Extracellular role of HMGB1 in inflammation and sepsis. J. Intern.Med. 255:320–31.
    [284]. Liliensiek B, Weigand MA, Bierhaus A, Nicklas W, Kasper M, et al. 2004. Receptor for advanced glycation end products (RAGE) regulates sepsis but not the adaptive immune response. J. Clin. Invest.113:1641–1650.
    [285]. Lutterloh EC, Opal SM, Pittman DD, Keith JC Jr,Tan XY, et al. 2007. Inhibition of the RAGE products increases survival in experimental models of severe sepsis and systemic infection. Crit. Care 11:R122.
    [286]. Rittirsch D, Flierl MA, Nadeau BA, Day DE, Huber-Lang M, et al. 2008. Functional roles for C5a receptors in sepsis. Nat. Med. 14:551–557.
    [287]. Plitas G, Burt BM, Nguyen HM, Bamboat ZM, DeMatteo RP. 2008. Toll-like receptor 9 inhibition reduces mortality in polymicrobial sepsis. J. Exp. Med. 205:1277–83.
    [288]. Pisetsky DS, Erlandsson-Harris H, Andersson U. 2008. High-mobility group box protein 1 (HMGB1): an alarmin mediating the pathogenesis of rheumatic disease. Arthritis Res. Ther. 10:209.
    [289]. Kokkola R, Li J, Sundberg E, Aveberger AC, Palmblad K, et al. 2003. Successful treatment of collageninduced arthritis in mice and rats by targeting extracellular high mobility group box chromosomal protein 1 activity. Arthritis Rheum. 48:2052–58.
    [290]. Pullerits R, Jonsson IM, Kollias G, Tarkowski A. 2008. Induction of arthritis by high mobility group box chromosomal protein 1 is independent of tumour necrosis factor signalling. Arthritis Res. Ther. 10:R72.
    [291]. Sundberg E, Grundtman C, Af Klint E, Lindberg J, Ernestam S, et al. 2008. SystemicTNFblockade does not modulate synovial expression of the pro-inflammatory mediator HMGB1 in rheumatoid arthritis patients—a prospective clinical study. Arthritis Res. Ther. 10:R33.
    [292]. Herrmann M, Voll RE, Zoller OM, Hagenhofer M, Ponner BB, Kalden JR. 1998. Impaired phagocytosis of apoptotic cell material by monocyte-derived macrophages from patients with systemic lupus erythematosus. Arthritis Rheum. 41:1241–50.
    [293]. Sanford AN, Dietzmann K, Sullivan KE. 2005. Apoptotic cells, autoantibodies, and the role of HMGB1 in the subcellular localization of an autoantigen. J. Autoimmun. 25:264–71.
    [294]. Qing X, Pitashny M, Thomas DB, Barrat FJ, Hogarth MP, Putterman C. 2008. Pathogenic anti-DNA antibodies modulate gene expression in mesangial cells: involvement of HMGB1 in anti-DNA antibodyinduced renal injury. Immunol. Lett. 121:61–73.
    [295]. Yoshizaki A, Komura K, Iwata Y, Ogawa F, Hara T, et al. 2009. Clinical significance of serum HMGB-1 and sRAGE levels in systemic sclerosis: association with disease severity. J. Clin. Immunol. 29:180–89.
    [296]. Hamada N, Maeyama T, Kawaguchi T, Yoshimi M, Fukumoto J, et al. 2008. The role of high mobility group box1 in pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 39:440–47.
    [297]. Muller S, RonfaniL, BianchiME. Regulated exp ression and subcellular localization ofHMGB1, a chromatin p rotein with a cytokine function [J]. J InternMed, 2004, 255 (3) : 332-343.
    [298]. Kuniyasu H, Yano S, Sasaki T, et al. Colon cancer cell2derived high mobility group 1 / amphoterin induces growth inhibition and apop tosis in macrophages [J]. Am J Pathol, 2005, 166 (3) : 7512760.
    [299]. Ellerman JE, Brown CK, de Vera M, Zeh HJ, Billiar T, et al. 2007. Masquerader: high mobility group box-1 and cancer. Clin. Cancer Res. 13:2836–2848.
    [300]. Brezniceanu ML, Volp K, Bosser S, Solbach C, Lichter P, et al. 2003.HMGB1inhibits cell death in yeast and mammalian cells and is abundantly expressed in human breast carcinoma. FASEB J. 17:1295–1297.
    [301]. Choi YR, Kim H, Kang HJ, Kim NG, Kim JJ, et al. 2003. Overexpression of high mobility group box 1 in gastrointestinal stromal tumors with KIT mutation. Cancer Res. 63:2188–2193.
    [302]. van Beijnum JR, Petersen K, Griffioen AW. 2009. Tumor endothelium is characterized by a matrix remodeling signature. Front. Biosci. 1:216–225.
    [303]. Chung HW, Lee SG, Kim H, Hong DJ, Chung JB, et al. 2009. Serum high mobility group box-1 (HMGB1) is closely associated with the clinical and pathologic features of gastric cancer. J. Transl. Med.7:38.
    [304]. Poser I, Golob M, Buettner R, Bosserhoff AK. 2003. Upregulation of HMG1 leads to melanoma inhibitory activity expression in malignant melanoma cells and contributes to their malignancy phenotype.Mol. Cell. Biol. 23:2991–98.
    [305]. Sasahira T, Kirita T, Oue N, Bhawal UK, Yamamoto K, et al. 2008. High mobility group box-1-inducible melanoma inhibitory activity is associated with nodal metastasis and lymphangiogenesis in oral squamous cell carcinoma. Cancer Sci. 99:1806–12.
    [306]. Sock E, Rettig SD, Enderich J, et al. Gene targeting reveals a widesp read role for the high2mobility2group transcrip tion factor Sox11 in tissue remodeling [J]. Mol Cell Biol, 2004, 24 (15): 6635-6644.
    [307]. Taguchi A, Blood DC, del Toro G, Canet A, Lee DC, et al. 2000. Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature 405:354–360.
    [308].黄庆先,王国斌,孙念峰,等.胰腺癌组织中高迁移率族蛋白1和基质金属蛋白酶2的表达研究[ J ].肿瘤防治杂志, 2005, 12(5) : 2365-2368.
    [309]. Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, et al. 2007. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy andradiotherapy. Nat. Med. 13:1050–59.
    [310]. Dumitriu IE, Baruah P, Valentinis B, Voll RE, Herrmann M, et al. 2005. Release of high mobility group box 1 by dendritic cells controls T cell activation via the receptor for advanced glycation end products.J. Immunol. 174:7506–15.
    [311]. Yanai H, Ban T, Wang Z, Choi MK, Kawamura T, et al. 2009. HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature 462(7269):99–103.
    [312]. Khan IA, Schwartzman JD, Fonseka S, Kasper LH.Neospora caninum: role for immune cytokines in host immunity.Exp Parasitol. 1997 Jan; 85(1):24-34.
    [313]. Nishikawa Y, Mishima M, Nagasawa H, Igarashi I, Fujisaki K, Otsuka H, Mikami T.Interferon-gamma-induced apoptosis in host cells infected with Neospora caninum. Parasitology. 2001 Jul; 123(Pt 1):25-31.
    [314]. Ritter DM, Kerlin R, Sibert G, Brake D.Immune factors influencing the course of infection with Neospora caninum in the murine host.J Parasitol. 2002 Apr; 88(2):271-80.
    [315]. M?lkováZ, Esteban M.Inhibition of vaccinia virus DNA replication by inducible expression of nitric oxide synthase.J Immunol. 1995 Dec 15;155(12):5711-8.
    [316]. Yamane, I., Kitani, H., Kokuho, T., Shibahara, T., Haritani, M., Hamaoka, T., Shimizu, S., Koiwai, M., Shimura, K. and Yokomizo, Y. The inhibitory effect of interferon gamma and tumor necrosis factor alpha on intracellular multiplication of Neospora caninum in primary bovine brain cells. Journal of Veterinary Medical Science,2000,62, 347–351.
    [317].陈学昊,陈兵,邱守卫。囊尾蚴病一氧化氮免疫机制的临床研究。中国人兽共患病杂志,1999,15(1)155-156.
    [318].闻平;戴庚孙; 1998,细菌脂多糖对成纤维细胞iNOS活性及细胞增殖的影响,中国人兽共患病杂志, (06),19-22.
    [319]. Lynn WA, Liu Y, Golenbock DT., 1993, Neither CD14 nor serum is absolutely necessary for activation of mononuclear phagocytes by bacterial lipopolysaccharide. Infect Immun., Oct;61(10):4452-61.
    [320]. Zhuang JC, Wogan GN. 1997, Growth and viability of macrophages continuously stimulated to produce nitric oxide. Proc Natl Acad Sci U S A. Oct 28;94(22):11875-80.
    [321]. Baszler, T. V., Long, M. T., McElwain, T. F. and Mathison, B. A. Interferon-gamma and interleukin-12 mediate protection to acute Neospora caninum infection in BALB/c mice. International Journal for Parasitology, 1999.29, 1635–1646.
    [322]. Dubey, J. P., Dorough, K. R., Jenkins, M. C., Liddell, S., Speer, C. A., Kwok, O. C. H and Shen, S. K. Canine neosporosis: clinical signs, diagnosis, treatment and isolation ofNeospora caninum in mice and cell culture. International Journal for Parasitology, 1998.28, 1293–1304.
    [323]. Tanaka, T., Hamada, T., Inoue, N., Nagasawa, H., Fujisaki, K., Suzuki, N. and Mikami, T. The role of CD4(+) or CD8(+) T cells in the protective immune response of BALB/c mice to Neospora caninum infection. Veterinary Parasitology ,2000.90, 183–191.
    [324]. Staska, L. M., McGuire, T. C., Davies, C. J., Lewin, H. A. and Baszler, T. V. Neospora caninum infected cattle develop parasite-specific CD4+cytotoxic T lymphocytes. Infection and Immunity, 2003.71, 3272–3279.
    [325]. Boysen, P., Klevar, S., Olsen, I. and Storset, A. K. The protozoan Neospora caninum directly triggers bovine NK cells to produce gamma interferon and to kill infected fibroblasts. Infection and Immunity, 2006. 74, 953–960.
    [326]. Adamsson J,Lindblad M。Lundqvist A,et a1.Novel immunostimulatory agent based on CpG oligodeoxynucleotide linked to the nontoxic B subunit of cholera toxin.J Immunol,2006,176(8):4902-4913.
    [327]. Yasuda K,Rutz M,Schlatter B,et a1.CpG Motif-independent activation of TLR9 upon endosomal translacation of“natural”phosphediester DNA.Eur J Immunol,2006,36(2):431-436.
    [328]. Jegerlehner A,Maurer P,Bessa J,et a1.TLR9 signaling in B cells determines class switch recombination to lgG2a.J Immunol. 2007.178(4):2415-2420.
    [329].冯晓声,诱发TH-1型免疫应答的犬新孢子虫可溶性复合物的探寻及机理研究,吉林大学,2009。
    [330]. Briquet S, Boschet C, Gissot M, TissandiéE, Sevilla E, Franetich JF, Thiery I, Hamid Z, Bourgouin C, Vaquero C.High-mobility-group box nuclear factors of Plasmodium falciparum.Eukaryot Cell. 2006 Apr;5(4):672-82.
    [331]. de Oliveira FM, de Abreu da Silva IC, Rumjanek FD, Dias-Neto E, Guimar?es PE, Verjovski-Almeida S, Stros M, FantappiéMR.Cloning the genes and DNA binding properties of High Mobility Group B1 (HMGB1) proteins from the human blood flukes Schistosoma mansoni and Schistosoma japonicum.Gene. 2006 Aug 1; 377:33-45. Epub 2006 Apr 27.
    [332]. Abhyankar MM, Hochreiter AE, Hershey J, Evans C, Zhang Y, Crasta O, Sobral BW, Mann BJ, Petri WA Jr, Gilchrist CA.Characterization of an Entamoeba histolytica high-mobility-group box protein induced during intestinal infection.Eukaryot Cell. 2008 Sep;7(9):1565-72. Epub 2008 Jul 25.
    [333]. Kumar K, Singal A, Rizvi MM, Chauhan VS.High mobility group box (HMGB) proteins ofPlasmodium falciparum: DNA binding proteins with pro-inflammatory activity.Parasitol Int. 2008 Jun; 57(2):150-7. Epub 2007 Dec 8.
    [334]. Dubey JP, Schares G, Ortega-Mora LM. Epidemiology and control of neosporosis and Neospora caninum.Clin Microbiol Rev. 2007 Apr;20(2):323-67.
    [335]. Kano R, Masukata Y, Omata Y, Kobayashi Y, Maeda R, Saito A.Relationship between type 1/type 2 immune responses and occurrence of vertical transmission in BALB/c mice infected with Neospora caninum.Vet Parasitol. 2005 Apr 20; 129(1-2):159-64.
    [336]. Feng X, Zhang N, Tuo W.Neospora caninum tachyzoite- and antigen-stimulated cytokine production by bone marrow-derived dendritic cells and spleen cells of naive BALB/c mice.J Parasitol. 2010 Aug; 96(4):717-23.
    [337]. Agresti A, Lupo R, Bianchi ME, Müller S.HMGB1 interacts differentially with members of the Rel family of transcription factors.Biochem Biophys Res Commun. 2003 Mar 7; 302(2):421-6.
    [338]. Banerjee S, Kundu TK.The acidic C-terminal domain and A-box of HMGB-1 regulates p53-mediated transcription.Nucleic Acids Res. 2003 Jun 15; 31(12):3236-47.
    [339]. Falciola L, Spada F, Calogero S, Langst G, Voit R, Grummt I, Bianchi ME.High mobility group 1 protein is not stably associated with the chromosomes of somatic cells.J Cell Biol. 1997 Apr 7;137(1):19-26.
    [340]. Bonaldi T, Talamo F, Scaffidi P, et al. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J. 2003 Oct 15; 22(20):5551-60.
    [341]. Wang H, Vishnubhakat JM, Bloom O, Zhang M, Ombrellino M, Sama A, Tracey KJ. Proinflammatory cytokines (tumor necrosis factor and interleukin 1) stimulate release of high mobility group protein-1 by pituicytes.Surgery. 1999 Aug; 126(2):389-92.
    [342]. Chen G, Ward MF, Sama AE, Wang H.Extracellular HMGB1 as a proinflammatory cytokine.J Interferon Cytokine Res. 2004 Jun;24(6):329-33.
    [343]. Yang H, Hreggvidsdottir HS, Palmblad K,et al.A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release.Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11942-7.
    [344]. Ahmad-Nejad P, Hacker H, Rutz M, Bauer S, Vabulas RM, Wagner H. Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments. Eur J Immunol. 2002; 32:1958–1968.
    [345]. Bauer S, Kirschning CJ, Hacker H, et al. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci U S A. 2001; 98:9237–9242. 429. Latz E, Schoenemeyer A, Visintin A, et al. TLR9 signals aftertranslocating from the ER to CpG DNA in the lysosome. Nat Immunol. 2004: 5:190–198.
    [346]. Hacker H, Vabulas RM, Takeuchi O, Hoshino K, Akira S, Wagner H. Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF)6. J Exp Med. 2000;192:595–600.
    [347]. Karlin S, Doerfler W, Cardon LR. Why is CpG suppressed in the genomes of virtually all small eukaryotic viruses but not in those of large eukaryotic viruses.J Virol. 1994;68: 2889–2897.
    [348]. Cardon LR, Burge C, Clayton DA, Karlin S. Pervasive CpG suppression in animal mitochondrial genomes. Proc Natl Acad Sci U S A. 1994; 91:3799–3803.
    [349]. Razin A, Friedman J. DNA methylation and its possible biological roles. Prog Nucleic Acid Res Mol Biol. 1981: 25:33–52.
    [350]. Fioretti, D. P., P. Pasquai, M. Diaferia, V. Mangili, and L. Rosignoli. 2003. Neospora caninum infection and congenital transmission: serological and parasitological study of cows up to the fourth gestation. J. Vet. Med. B 50:399–404.
    [351]. Kumar K, Singal A, Rizvi MM, Chauhan VS.High mobility group box (HMGB) proteins of Plasmodium falciparum: DNA binding proteins with pro-inflammatory activity.Parasitol Int. 2008 Jun; 57(2):150-7. Epub 2007 Dec 8.
    [352] Stacey KJ, Young GR, Clark F, et al. The molecular basis for the lack of immunostimulatory activity of vertebrate DNA. J Immunol, 2003: 170:3614–3620.
    [353] Jiang W, Li J, Gallowitsch-Puerta M, et al.The effects of CpG DNA on HMGB1 release by murine macrophage cell lines. J Leukoc Biol. 2005 Oct;78(4):930-6.
    [354]. Tuo W, Fetterer R, Jenkins M, Dubey JP.Identification and characterization of Neospora caninum cyclophilin that elicits gamma interferon production.Infect Immun. 2005 Aug;73(8):5093-100.
    [355] Jenkins MC, Tuo W, Feng X, Cao L, Murphy C, Fetterer R.Neospora caninum: cloning and expression of a gene coding for cytokine-inducing profilin.Exp Parasitol. 2010 Aug; 125(4):357-62. Epub 2010 Mar 6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700