聚苯胺激子的复合过程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究的对象为聚苯胺的完全氧化态,一种导电聚合物。导电聚合物的导电机理不同于金属,也不同于无机半导体。自由电子是金属的载流子,电子或空穴是无机半导体的载流子,然而导电高聚物的载流子是孤子、极化子和双极化子等。由于导电高聚物具有π电子共轭结构,因此,导电高聚物都具有快速响应(10~(-13)s)和高的三阶非线性光学性质。由于导电高聚物具有特殊的结构和优异的物理化学性能,使得它们在能源(二次电池、太阳能电池和固体电池),发光二极管(LED),传感器,隐身技术以及生命科学等方面都有诱人的应用前景。研究导电高分子材料的电学、磁学和光学等方面的理论日显重要。本文对聚苯胺激子的一些性质进行了研究。
     本文的理论基础是准一维体系的电子结构理论,这一基础理论建立在一维的Peierls不稳定性的基础之上,准一维体系理论给出了导电聚合物中的孤子、极化子、激子等概念,并成功地解释了以这些“粒子”为载流子的导电现象。在此基础上,苏武沛、Schrieffer和Heeger等的合作建立了著名的SSH模型用以解释聚乙炔的电子结构和一维的Peierls相变。许多学者也将SSH模型推广到聚苯胺的研究中,如Ginder、Baranowski等,但现有的理论几乎都没有考虑电子相互作用这一强关联因素,尤其是长程库仑力的影响被忽略。显然,这对于激子的复合与湮灭的研究是个缺陷。我们认为有必要考虑电子相互作用。
     首先,我们在聚苯胺的Baranowski-Büttner-Voit(BBV)理论模型基础上,加入了长程(计入至第四次近邻)电子—电子相互作用项,对聚苯胺激子静态进行自洽变分计算,对体系的电子结构、键序波、芳环扭角、能隙和能带进行了研究,参照实验结果确定了电子相互作用强度参量。发现引入电子—电子相互作用后,聚苯胺静态激子的性质受到影响,该聚合物的键序波、芳环扭角和电子
    
    中文摘要
    结构发生了变化,而且在理论吸收谱的低能端出现了明显的二特征吸收峰
    (1.0 ev和1.5 ev附近),这一结果与实验数据很好的吻合,从而这一点表明我
    们所考虑的因素是合理的。我们的模型参量为:近邻格点电子相互作用强度
    作0.75 eV,同一格点的电子相互作用强度卜1.5 eV。
     进而用上述修正的BBV模型,我们对聚苯胺激子的复合湮灭过程进行了半
    经验的分子动力学模拟。结果表明,大约在900 fsec之后激子复合过程结束,
    电子结构返回到二聚化状态,体系的键序波、芳环扭角等回到基态的二聚化状
    态。并且,体系的二特征吸收峰在此时也己完全消失。这一现象与实验观察到
    的短寿命光诱致吸收峰结果相似,但在时间上900 fsec短于实验的100 msec。据
    此我们推断实验上聚苯胺激子复合过程开始前有约为几十个msec的稳定期。
     我们的工作表明,扩展的BBV模型能再现聚苯胺体系的大量实验数据,可
    以对聚苯胺的各种氧化态作进一步研究,也可以推广到其他的类聚苯胺的准一
    维体系中去。
The present work studied an oxidized form of polyaniline, a conducting polymer. Mechanism of conducting polymers is different from metals and semiconductors. Unconstrained electrons are voltaic carriers of metals, and electrons or holes are carriers of inorganic semiconductors, while conducting polymers' carriers are kinks, solitons, bisolitons or excitons etc. Polymers can be used for energy source (recharge batteries, solar batteries and solid batteries), light emitting diodes (LED), sensors, technology of shelter and life sciences etc., for the particular structures and excellent properties of physics and chemistry. It is important that the theoretical study works of electricity, magnetics and optics for conducting polymer materials. In present work, we studied some properties of biexciton in polyaniline.
    Theoretical foundation of the present work is theories of electronic structure in one-dimension systems, which is established on the Peierls unstable properties of ID systems. The theories showed us concepts of kinks, solitons, excitons of conducting polymers, and successful explained the conducting phenomenons of these "particles" as carriers. W.P. Su, Schrieffer and Heeger founded the famous SSH model and explained the electronic structures of polyacetylene and the Peierls phase-transform of ID systems. Many scholars generalized the SSH model to polyaniline, such as Ginder, Baraniwski etc. But electron-electron interactions were neglected in those theoretical works, especially influence of the long-range Coulomb force. It is a flaw to study recombination of excitons. So we figured that the influence of the electron-electron interactions must be considered in our work.
    Added an electron-electron interaction (up to the fourth neighbor) term to the Baranowski-Buttner-Voit (BBV) model for polyaniline, we carried out a self-consistent-variation calculation for an biexciton in the pernigranlilne-base polymer, in order to confirm the model Hamiltonian. The results showed that two peaks (near l.OeV and 1.5eV) appeared in the calculated optical absorption, besides the reproduced electronic structure, bond order wave (BOW) and ring-torsion angles.
    
    
    
    This result is consistent with the experimentally observed features of short-life. That shows our model is reasonable. The parameters of the extended BBV model are as follows: the near neighbor interaction intension F=0.75eV and the coefficient of the Hubbard term U=1.5eV.
    Based on above model, molecular dynamics simulation was used to study recombination process of an exciton in the polymer. The results showed that the excitons were completely recombined after 900 fsec and the geometry structure of the polymer such as the BOW and the ring-torsion angles returned to the ground states, which were the dimerization states. Comparison with the experimentally observed life time -100 msec, the recombination time 900 fsec is quite short. Thus we suggested a stable period of dozens msec for the PNB excitons.
    Our work shows that the extended BBV model can reproduce most observed data of the polymer. More works can be done on the other oxide forms of polyaniline. And the method can be generalized to other quasi-one dimensional systems.
引文
[1]Hideki Shirakawa, Edwin J. Louis, Alan G. MacDiarmid, Chwan K. Chiang and Alan J. Heeger.Synthesis of electrically conducting organic polymers: halogen derivatives of polvacetvlene, (CH)_x[J]. J. Chem. Soc. Commun., 1977, 578-579
    [2]朱道本,王佛松.有机固体[M].上海:上海科学技术出版社,1999
    [3]雀部博之.导电高分子材料[M].科学出版社,1989
    [4]R. De Surville,M. Jozefowiez,L. T. Yu,J. Pepiehon and R. Buret. Electrochemical chains using protolytie organic semiconductors[J]. Electrochimica Acta,1968,13:1451-1458
    [5]王利祥,王佛松.导电聚合物聚苯胺的研究进展Ⅰ.合成、链结构和凝聚态结构[J].应用化学,1990,7(5):1-10
    [6]R. Buvet, S. Desagher, M. Jozefowicz, J. Perichon and L. T. Yu. Thermodynamic analysis of the populations of charge carriers in dissociable binary semiconductors[J].Electrochimica Acta,1968,13:1441-1450
    [7]Kazuyuki Chiba, Takeo Ohsaka and Noboru Oyama. Electrode kinetics of electroactive electropolymerized polymers deposited on graphite electrode surfaces[J]. J. Electroanaly. Chem.,1987,217:239-251
    [8]R. F. Bianchi,G. F. Leal Ferreira, C. M. Lepienski,R. M. Faria. Alternating electrical conductivity of polyaniline[J]. Journal of Chemical Physics Vol 110(9) pp. 4602-4607
    [9]Yong Cao, Suzhen Li, Zhijiann Xue and Ding Guo.Spoctroseopic and electrical characterization of some aniline oligomers and polyaniline[J]. Synth Met, 1986,16:305-315
    [10]穆绍林,陆友玲.聚邻甲苯胺的合成及物理化学性质[J].物理化学学报,1989,5(3):270-273
    [11]曾幸荣,龚克成.锌—聚苯胺二次电池的性能研究[J].塑料工业,1990,6:49-52
    [12]Lu Yuan, Li Jian, Wu Wanqun.Morphological investigation of polyaniline[J]. Synth Met,1989,30:87-95
    [13]N. Ahmad, A. G. MacDiarmid.Inhibition of corrosion of steels with the exploitation of conducting polymers [J]. Synth Met, 1996,78:103-110
    [14]R. H. Baughman, J. F. Wolf, H. Eekhardt,L. W. Shacklette.The structure of a novel polymeric metal: Aceeptor-doped polyaniline[J]. Synth Met,1988,25:121-137
    [15]W. Takashima, M. Kaneko,K. Kaneto and A. G. MacDiarmid.The electrochemical actuator using electrochemically-deposited poly-aniline film[J]. Synth Met,1995,71:2265-2266
    [16]L. H. C. Mattoso,G. L. Mantovarti and A. G. MacDiarmid. Secondary doping in elastomerie polyaniline blends[J]. Synth Met,1997,84:73-74
    [17]M. Angelopoulos,R. Dipietro,W. G. Zheng,A. G. MacDiarmid and A. J. Epstein.Effect of selected processing parameters on solution properties and morphology of polyaniline and impact on conductivity[J]. Synth Met,1997,84:35-39
    [18]T. Hagiwara, M. Yamaura and K. Iwata.Structural analysis of deprotonated polyauiline by solid-state ~(13)C N.M.R[J]. Synth Met,1988,26:195-201
    [19]S. Stafstrm,J. L. Brédas,A. J. Epstein et al.Polaron lattice in highly conducting polyaniline: Theoretical and optical studies[J]. Phys. Rev. Lett, 1987,59:1464-1467
    [20]A. J. Epstem,J. M. Ginder,F. Zuo,R. W. BigelowH. S. Woo,D. B. Tanner,A. F. Richter, W. S. Huang and A. G. MacDiarmid. Insulator-m-metal transition in polyaniline[J]. Synth Met,1987,18:303-309
    [21]A. G. Macdiarmid, J. C. Chiang,A. F. Riehter, A. J. Epstein. Polyaniline: a new concept in
    
    conducting polymers[J-]. Synth Met,1987,18:285-290
    [22]Peter M. McManus,Sze Cheng Yang,Richard J. Cushman. Electrochemical doping of polyaniline: effects on conductivity and optical spectra[J]. J. Chem Soc Chem Commun. 1985,1556
    [23]Huang W S.Ph D Dissatertion.Pennsylvania: Univ. Pennsylvania,1985
    [24]P. Nunziante and G. Pistoia. Factors affecting the growth of thick polyaniline films by the cyclic voltammetry technique[J]. Electrochimica Acta ,1989,34:223-228
    [25]T. G. Vargo,J. M. Calvert,K. J. Wynne,J. K. Avlyanov, A. G. MacDiarmid,M. F. Rubner. Patterned polymer multilayer fabrication by controlled adhesion of polyelectrolytes to plasma-modified fluoropolymer surfaces[J]. Supramol. Sci.,1995,2:169-174
    [26]Yong Cao,Paul Smith, Alan J. Heeger.Counter-ion induced processibility of conducting polyaniline and of conducting polyblends of polyaniline in bulk polymers[J]. Synth Met,1992,48:91-97
    [27]H. L. Wang,A. G. MacDiarmid,Y. Z. Wang,D. D. Gebler,A. J. Epstein. Application of polyaniline (emeraldine base, EB) in polymer light-emitting devices[J].Synth Met,1996,78:33-37
    [28]Wei-Chih Chen, Ten-Chin Wen and A. Gopalan. The inductive behavior derived from hydrolysis of polyaniline[J].Electrochimica Acta,2002,47:4195-4206
    [29]A. J. Heeger,D. Moses,M. Sinclair.Semiconducting polymers: Fast response non-linear optical materials[J]. Synth Met,1986,15:95-104
    [30]V. I. Krinichnyi. Non-linear 2-ram waveband EPR spectroscopy of spin/charge excitations in organic semiconductors[J].Physica B: Condens.Matt.,2001,308:1003-1006
    [31]Macdiarmid A G,Mu S L.,Somasiri N L D et al.Electrochemical Characteristics of "Polyaniline" Cathodes and Anodes in Aqueous Electrolytes[J]. Mol Cryst. Liq Cryst, 1985,121:187
    [32]Akira Kitani, Jun Yano and Kazuo Sasaki.ECD materials for the three primary colors developed by polyanilines[J]. J. Elect. Chem., 1986,209:227-232
    [33]Satoshi Taguchi and Toshihiko Tanaka. Fibrous polyaniline as positive active material in lithium secondary batteries[J]. J. Pew. Sour.,1987,20:249-252
    [34]Fumio Goto,Katsushi Abe,Katsuaki Ikabayashi,Takashi Yoshida, Hidetake Morimoto.The polyaniline/lithium battery[j]. J. Powert Source,1987, 20:243-248
    [35]A. G. MacDiarmid, L. S. Yang,W. S. Huang,B. D. Humphrey.Polyamline: Electrochemistry and application to rechargeable batteries[J]. Synth Met., 1987,18:393-398
    [36]T. Nakajima, T. Kawagoe.Polyaniline: Structural analysis and application for battery[J]. Synth Met, 1989,28:629-638
    [37]E. Geniès,P. Hany, Ch. Santier.Secondary organic batteries made with thick free standing films of electrochemically prepared polyaniline[J]. Synth Met, 1989,28:647-654
    [38]E. M. Genies and C. Tsintavis. Electrochemical behaviour, chronocoulometric and kinetic study of the redox mechanism of polyamline deposits[J]. J. Electroanaly. Chem.,1986, 200:127-145
    [39]M. Akhtar,H. A. Wealdiem,R. M. Paiste,K. Gaughan.Polyaniline thin film electrochromic devices[J]. Synth Met,1988,26:203-208
    [40]J. H. Burroughes,D. D. C. Bradley,A. R. Brown,P,. N. Marks, K. Mackay, R. H. Friend, P. L. Burns: A. B. Holmes.Light-emitting diodes based on conjugated polymers[J]. Nature, 1990,347:539-541
    [41]D. Braun,A. J. Heeger.Visible light emission from semiconducting polymer diodes[J].Appl Phys Lett,1991,58:1982-1984
    [42]Y. Yang,A. J, Heeger.Polyaniline as a transparent electrode for polymer light-emitting diodes: Lower operating voltage and higher efficiency[J]. Appl Phys
    
    Lett, 1994,64:1245-1247
    [43]M. Onoda and A. G. MacDiarmid. Light-emitting diodes using n-type conducting polymer[J]. Synth Met,1997,91:307-309
    [44]Y. Z. Wang,D. D. Gebler, A. J. Epstein,D. K. Fu, T. M. Swager and A. G. MacDiarmid.Light-emitting devices based on pyridine-eontaining conjugated polymers[J]. Synth Met,1997,85:1179-1182
    [45]F. Huang,H. L. Wang, M. Feldstein,A. G. MaeDiarmid,B. R. Hsieh and A. J. Epstein. Application of thin films of conjugated polymers in electrochemical and conventional light-emitting devices and in related photovoltaie devices[J]. Synth Met,1997,85:1283-1284
    [46]A. G. MacDiarmid and F. Huang.gole of ionic species in determining characteristics of polymer LEDs[J]. Synth Met,1999,102:1026-1029
    [47]J. M. G. Laranjeira, H. J. Khoury, W. M. de Azevedo, E. A. de Vasconeelus,E. F. da Silva, Jr..Polyaniline nanofilms as a monitoring label and dosimetrie device for gamma radiation[J].Materials Characterization,2003,50:127-130
    [48]R. A. de Barros, W. M. de Azevedo and F. M. de Agniar. Photo-induced polymerization of polyaniline[J].Materials Characterization,2003,50:131-134
    [49]黄美荣,李新贵,曾剑峰.聚苯胺纳米复合材料的特异性能及应用前景[J].玻璃钢/复合材料,2004,1:8-13
    [50]A. G. MacDiarmid. "Synthetic metals": a novel role for organic polymers[J]. Curt. App. Phys.,2001, 1:269-279
    [51]A J Heeger, S. Kivelson,J. R. Schrieffer,W. P. Su.Solitons in conducting polymers[J]. Rev. Mod. Phys.,1988,60:781-850
    [52]李景德,陈敏,李智强.介电极化新概念—边界屏蔽理论[J].物理,2000,29(1):7-12
    [53]W. P. Su, J. R. Schrieffer and A. J. Heeger. Solitons in Polyacetylene[J]. Phys. Rev. Lett. 1979,42:1698-1701
    [54]薛增泉.分子电子学.北京:北京大学出版社,2003
    [55]孙鑫著、吴大诚.高聚物中的孤子和极化子.成都:四川教育出版社,1988
    [56]陈星弼.固体物理导论.北京:国防工业出版社,1979
    [57]M Ginder,A J Epstein.Role of ring torsion angle in polyaniline: Electronic structure and defect states[J]. Phys. Rev. B.1990,41:10674-10685; J. M. Ginder and A. J. Epstein.Ring-rotational dimerization in pernigraniline[J].Phys. Rev. Lett., 1990,64:1184
    [58]D Baranowski and, H. Büttner, J,Voit.Influence of libronic degrees of freedom on electronic properties of polyaniline[J]. Phys. Rev.. B, 1992,45:10990-11003
    [59]J. Liu, D.C. Wu.Combined polarons in a pernigraniline-base polymer[J]. Phys. Lett. A, 1998,244:292-294
    [60]Liu J., Wu D. C.Bond-order soliton associated with a ring-torsion soliton in PNB and its IRAV mode[J]. Sol. Commun.,1998,107:65-67
    [61]W.P. Su, J.R. Schrieffer,A.J. Heeger.Soliton excitations in polyacetylene[J]. Phys. Rev. B, 1980,22:2099-2111
    [62]M.E. Jozefowicz,R. Laversanne,H. H. S. Javadi,A. J. Epstein,J. P. Pouget et al. Multiple lattice phases and polaron-lattice—spinless-defect competition in polyaniline[J]. Phys. Rev. B, 1989,39:2958-2961
    [63]J. Liu, D. C. Wu.Two-Value Hopping and Influences of Disorder in Oxidized Polyaniline[J].Phys. Stat. Sol. (b),1998,206(2):683-689
    [64]P. Dean.The Vibrational Properties of Disordered Systems: Numerical Studies[J].Rev. Mod. Phys.,1972,44:127-168
    [65]黄代绘,李华,刘杰.PNB聚合物的激子及其对静电场的响应[J].四川师范大学学报(自然
    
    科学版),2002,25:178
    [66]唐金龙,刘杰.电子相互作用对聚苯胺激子性质的影响[J].四川师范大学学报(自然科学版)2004,27(1):71-73
    [67]S.M. Weber-Mibrodt, J.T.Gammel,A.R.Bishop,E.Y.Loh Jr..Two-band model for halogen-bridged mixed-valence transition-metal complexes. Ⅱ. Electron-electron correlations and quantum phonons[J].Phys. Rev. B, 1992, 45:6435-6458
    [68]W. Baford.Excitons in the strong coupling limit of the one-dimensional extended Hubbard model[J].Phys.Rev. B, 2002,65:205118-205123
    [69]Z.G. Yu, R.T. Fu, C.Q. Wu,X. Sun, K. Nasu.Excitons, Biexcirons, and the band gap in poly (p-phenylene vinylene)[J].Phys.Rev. B,1995,52:4849
    [70]J. Tinka Gammel,A. Saxena,I. Batistié,A. R. Bishop, S.R. Phillpot.Two-band model for halogen-bridged mixed-valence transition-metal complexes. I. Ground state and excitations spectrum[J].Phys. Rev. B,1992,45:6408-6434
    [71]Jie Liu,Xin Sun, D L Lin,T F Georgy.Gap states of polaron and associated optical absorption in the quasi-one-dimensional solid (Pt(en)_2)(PtCl_2(en)_2)(CIO_4)_4[J]. J. Phys. :Condens. Matter.,1992,4:5301-5308
    [72]J.M.Leng,R.P.MaCall,K.R.Cromack, Y.Sun, S.K.Manohar, A.G. MacDiarmid. Photoexeited solitons and polarons in permgraniline-base polymers[J]. Phys.Rev. B,1993,48:15719-15731
    [73]J.M. Ginder,A.J. Epstein,A.G. Macdiarmid.Electronic phenomena in polyaniline[J].Synth Met, 1989,29:395-400
    [74]D.H. Huang, H. Li ,J. Liu. Long-Range Excitons in a PNB Polymer and Its Responses to Electrostastic Fields[J].Phys.Stat.Sol.(b),2002,233(2): 197-204
    [75]S.Adachi,V.M.Kobryanskii,T.Kobayashi.Excitation of a Breather Mode of Bound Soliton Pairs in Trans-Polyacetylene by Sub-Five-Femtosecond Optical Pulses[J].Phys. Rev. Lett.,2002,89:027401
    [76]G.Binning,H. Rohrer, Ch, Gerber,E. Weibel.Surface Studies by Scanning Tunneling Microscopy[J].Phys. Rev. Lett.,1982,49:57-61
    [77]K.H.Hoffmann,M. Schreiber. Computational Physics[M].Berlin:Springer,2001
    [78]B. A. Pailthorpe.Molecular-dynamics simulations of atomic processes at the low-temperature diamond (111) surface[J]. J. Appl. Phys., 1991,70:543-547
    [79]R.G.Parr,W.Yang.Density Functional Theory of Atoms and Molecules[M]. Oxford:Oxford University Press,1989
    [80]S. Skokov,B. Weiner, M. Frenldach, Th. Fruenheim, M. Sternberg.Dimer-row pattern formation in diamond (100) growth[J].Phys. Rev. B,1995, 52:5426-5432
    [81]D. Djurado, M. Bée, M. Gonzalez, C. Mondelli, B. Dufour, P. Raanou, A. Pron and J. P. Travers.Molecular dynamics in plastic conducting compounds of polyaniline[J]. Chem. Phys.,2003,292:355-361
    [82]F. L. Pratt, K. Ishida, K. Nagamine, P. A. Pattenden, Th. Jestdt, S. J. Blundell, W. Hayes and A. Monkman. Muon studies of spin dynamics in polyaniline[J]. Synth Met,1997,84:943
    [83]C. J. Magon, R. R. de Souza, A. J. Costa-Filho, E. A. Vidoto, R. M. Faria, and O. R_ Nascimento. Spin dynamics study in doped polyaniline by continuous wave and pulsed electron paramagnetie resonance[J]. J. Chem. Phys., 2000, 112(6):2958-2966
    [84]K,Binder.Monte Carlo Methods in Statistical Physics[M]. 2nd ed. Berlin:Springer
    [85]G.Ciccotti,D. Frenkel,I.R. McDonald, eds.Simulation of Liquids and Solids[M]. North-Holland:Amsterdam,1990
    [86]L. Verlet.Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Moleeules[J].Phys. Rev. 1967,159:98-103
    
    
    [87]S.R.Phillpot, M.J. Rice, A.R. Bishop, et al.Dynamics, photoexcitation, and coherent anharmomcitv in polyyne[J].Phvs. Rev. B,1987,36:735-744
    [88]赵二海,傅荣堂,孙鑫等.高分子中的激子—激子复合过程[J].物理学报,1998,47:2031-2039
    [89]Jie Liu, Jin-Long Tang. Recombination Dynamics of a Biexciton in a Pemigraniline-Base Polymer. Physica B (submitted)
    [90]J.M. Leng,R.P. MaCalI,K.R. Cromaek, J.M. Ginder,H.J. Ye,Y. Sun, S.K. Manohar,A.G. MacDiarmid,A.J. Epstein.Photoexcitations in pernigraniline: Ring-torsional polarons and bond-order solitons[J]. Phys.Rev.Lett.,1992,68:1184-1187

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700