开绕组电机双端级联式五电平逆变器调制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的发展,工业生产、交通运输等场合对电力变换器高压、大容量、低损耗的要求日益提高。双端级联式五电平逆变器能够有效提高输出电压等级与输出电平数,对于使用较低耐压等级的开关器件实现高压大功率变换具有重要意义。
     本文以双端级联式五电平逆变器作为研究对象,针对双逆变器调制策略中存在的零序电压抑制、中点电位平衡、死区补偿、窄脉冲消除等问题进行研究,基于不同调制目的提出多种五电平SVPWM调制策略。
     针对不同母线结构下的逆变器拓扑进行研究,分别建立逆变器在独立母线结构和共母线结构下的数学模型,以此为基础分析两种母线结构下不同开关状态对直流侧电容电压的影响;根据双端级联式拓扑的特点分别对系统产生的共模电压和零序电压进行分析。
     根据独立母线结构的双端级联式逆变器良好的容错特性,设计容错控制系统主回路,分析故障时的控制流程和负载电流流通路径。根据容错系统的控制要求,提出一种五电平容错调制策略。该调制策略采用参考电压分解法结合三电平简化算法进行调制,采用平衡因子法控制中点电位,能够同时满足正常工作状态和故障工作状态的需求。
     针对共母线结构下存在的零序环流问题,提出一种零共模电压矢量SVPWM调制策略,完全消除系统的零序电压和共模电压。调制策略采用线电压坐标系法为基础,分析不同的零共模电压矢量对中点电位的影响,以此为依据提出该调制策略下首发矢量选择原则,并利用最优空间矢量理论实现优化控制,降低输出电压谐波含量。
     以简化调制为目的,提出一种平均零序电压消除调制策略。该策略结合统一快速算法和空间电压矢量解耦方法,使得调制过程大为简化,缩短程序运行时间。通过改变有效时间Teff在开关周期内的位置,使1/2个开关周期内所产生的共模电压和零序电压的平均值为零,抑制零序电流,同时实现中点电位平衡控制。
     为降低开关损耗,基于上述平均零序电压消除调制策略,提出一种零共模电压矢量钳位调制策略。在等效开关频率不变的前提下,通过两台逆变器交替钳位工作模式大大降低逆变器开关损耗;结合平衡因子法和逆变器轮流钳位方式,控制中点电位;在调制度m≤0.5时选择零矢量作为钳位矢量,避免了逆变器在正常状态与钳位状态之间切换时出现电压越级跳变现象(n→p或p→n)。
     最后分析了双端级联式五电平逆变器死区和窄脉冲的影响,针对死区效应给出时间补偿和电压补偿两种解决方法;对窄脉冲消除方法进行研究,给出一种同时考虑死区补偿及窄脉冲消除的方法。
With the development of science and technology, the demand of high voltage,large capacity and low cost for power converters is daily increasing in the occasion ofindustrial production, transportation and so on. Dual three-level inverters fed with anopen-end winding induction motor (dual-terminal cascaded five-level inverter) caneffectively increase the rating of output voltage and the number of output level in thedual-inverter system. Thus, the dual-inverter topology has great significance inachieving the conversion of high voltage and large power for the using of switchingdevices with low power rating. A variety of five-level SVPWM modulation strategiesare proposed for different modulation purposes.
     In this dissertation, the so called dual-terminal cascaded five-level inverter istreated as the object of study. The problems, such as the zero-sequence voltagesuppression, nuetral-point potential balance, dead-time compensation, narrow-pulseelimination and so on, existed in the dual-inverter modulation strategy are researched.
     Firstly, the topology of dual-terminal cascaded five-level inverter is analyzed and729kinds of synthetic voltage-vector combinations of this inverter as aforementionedare listed. Mathematical models of the dual-inverter topology with common dc-linkstructure and independent dc-link structure are respectively established and the effectsof different switching states on the dc-link capacitor voltage with the two differentdc-link structures aforementioned are researched. According to the characteristics ofthe dual-terminal cascaded topology, the common-mode voltage, which is produced intraditional single-inverter system, is decomposed into zero-sequence voltage andcommon-mode voltage for analysis.
     Secondly, according to the fault-tolerant characteristics of the dual-terminalcascaded five-level inverter, the main circuit of fault-tolerant control system isdesigned. When the system fails, the control process and the path of load current areanalyzed in this fault situation. In order to meet the requirements of fault-tolerantcontrol system, a fault-tolerant modulation strategy is proposed. This modulationstrategy, which is based on a three-level simplified algorithm, controls theneutral-point potential by detecting the dc-link capacitor voltages.
     In order to solve the problem of zero-sequence circulating current in the commondc-link system, a SVPWM strategy based on zero common-mode voltage vectors isproposed to completely eliminate zero-sequence voltage and common-mode voltagein the system. This strategy is based on the method of line-voltage coordinate. Theselection principle of starting voltage vector depends on the analysis of the effects ofdifferent zero common-mode voltage vectors on the neutral-point potential. Thetheory of optimal space-vector location is adopted to achieve optimal control andreduce the output harmonic content.
     For the purpose of simplifying the modulation, a modulation strategy ofeliminating the average common-mode voltage is proposed in this dissertation. Thisstrategy, which combines the simplified algorithm and space-vector decouplingmethod, can extremely simplified the modulation process and shorten the runningtime of program. By changing the effective-time Teffposition within a switching cycle,the average values of common-mode voltage and zero-sequence voltage, which aregenerated in the dual inverter system within half a switching cycle, are zero, makingzero-sequence current suppressed, while achieving the dynamic balancing ofneutral-point potential.
     To reduce the switching loss, a modulation strategy, which is based on the abovemethod of eliminating common-mode voltage in the average sense, with the zerocommon-mode voltage vector clamped, is proposed in the dissertation. Under thepremise of adopting the same sampling frequency, employing the operating modewith two inverters alternately clamped is able to reduce switching losses. Theneutral-point potential is balanced by combining using the balancing-factor methodand adopting the working mode of alternately clamping two inverters. In order toavoid the leapfrog-jump phenomenon of pole voltage of the inverter(n→p or p→n),when the inverter is switched between normal state and clamped state, zero vector isselected as the clamped vector when the modulation index m is lower than0.5.
     Finally, two solutions of the time compensation and voltage compensation,which are based on the analysis of dead-time effect of the dual-terminal cascadedfive-level inverter, are given to compensate the dead-time effect. A strategy, which isin view of the analysis of the method of narrow-pulse elimination, of taking both thedead-time compensation and narrow-pulse elimination into consideration is proposedin this dissertation.
     There are83figures,14tables and165references in this dissertation.
引文
[1]武祥.我国IGBT的产业现状和发展[J].电子工业专用设备,2012,12:1-5.
    [2]仲明振,赵相宾.高压变频器应用手册[M].北京:机械工业出版社,2009.
    [3] Nagel A, Bernet S, Steimer P K, et al. A24-MVA Inverter using IGCT Series Connectionfor Medium Voltage Applications[C].Thirty-Sixth IAS Annual Meeting,2001:867-870.
    [4]侯凯,李伟邦,范镇淇,等.基于有源电压控制法和无源缓冲法的IGBT串联均压技术[J].电力系统自动化,2013,37(19):116-121.
    [5]王雪松,赵争鸣,袁立强,等.应用于大容量变换器的IGBT并联技术[J].电工技术学报,2012,27(10):155-172.
    [6] Abu-Rub H, Holtz J, Rodriguez J, et al. Medium-voltage multilevel converters—State ofthe art, challenges, and requirements in industrial applications[J]. IEEE Transactions onIndustrial Electronics,2010,57(8):2581-2596.
    [7]马小亮.多电平电压型变频器(上)[J].变频器世界,2011,10:53-58.
    [8]李永东,肖曦,高跃.大容量多电平变换器:原理·控制·应用[M].北京:科学出版社,2005.
    [9]马小亮.多电平电压型变频器(下)[J].变频器世界,2011,11:47-51.
    [10] Rodriguez J, Lai J S, Peng F Z. Multilevel inverters: A survey of topologies, controls, andapplications[J]. IEEE Transactions on Industrial Electronics,2002,4(49):724-738.
    [11] Kouro S, Malinowski M, Gopakumar K, et al. Recent advances and industrial applicationsof multilevel converters[J]. IEEE Transactions on Industrial Electronics,2010,8(57):2553-2580.
    [12] Bose B K. Power electronics and motor drives recent progress and perspective[J]. IEEETransactions on Industrial Electronics,2009,2(56):581-588.
    [13] McMurray W. Fast response stepped-wave switching power converter circuit: U.S,3581212[P].1971,5,25.
    [14] Dickerson J A, Ottaway G H. Transformerless power supply with line to load isolation:U.S,3596369[P].1971,8,3.
    [15] Baker R H. High-voltage converter circuit: U.S,4,203,151[P].1980,5,13.
    [16] Nabae A, Takahashi I, Akagi H. A new neutral-point-clamped PWM inverter[J]. IEEETransactions on Industry Applications,1981(5):518-523.
    [17] Marchesoni M, Mazzucchelli M, Tenconi S. A non conventional power converter forplasma stabilization[C].IEEE Power Electronics Specialists Conference,1988:122-129.
    [18] Hammond P W. A new approach to enhance power quality for medium voltagedrives[C].Petroleum and Chemical Industry Conference,1995:231-235.
    [19] Meynard T, Foch H. Dispositif électronique de conversion d’énergie électrique: French,2679715B1[P].1993,1,29.
    [20] Fazel S S, Bernet S, Krug D, et al. Design and comparison of4-kv neutral-point-clamped,flying-capacitor, and series-connected H-bridge multilevel converters[J]. IEEETransactions on Industry Applications,2007,4(43):1032-1040.
    [21] Wu C M, Lau W H, Chung H. A five-level neutral-point-clamped H-bridge PWM inverterwith superior harmonics suppression: A theoretical analysis[C].IEEE InternationalSymposium on Circuits and Systems,1999:198-201.
    [22] Marquardt R. Current rectification circuit for voltage source inverters with separate energystores replaces phase blocks with energy storing capacitors: DE,10103031A1[P].2002.
    [23] Meili J, Ponnaluri S, Serpa L, et al. Optimized Pulse Patterns for the5-Level ANPCConverter for High Speed High Power Applications[C].32nd Annual Conference on IEEEIndustrial Electronics,2006:2587-2592.
    [24] Klumpner C, Nielsen P, Boldea I, et al. A new matrix converter motor(MCM)for industryapplications[J]. IEEE Transactions on Industrial Electronics,2002,2(49):325-335.
    [25] Bruckner T, Bernet S, Guldner H. The active NPC converter and its loss-balancingcontrol[J]. IEEE Transactions on Industrial Electronics,2005,52(3):855-868.
    [26] Dixon J, Morán L. High-level multistep inverter optimization using a minimum number ofpower transistors[J]. IEEE Transactions on Power Electronics,2006,2(21):330-337.
    [27] Dixon J, Bret O N A A, R I Os F E, et al. High-power machine drive, using nonredundant27-level inverters and active front end rectifiers[J]. IEEE Transactions on PowerElectronics,2007,22(6):2527-2533.
    [28] Stemmler H, Guggenbach P. Configurations of high-power voltage source inverterdrives[C].Fifth European Conference on Power Electronics and Applications,1993:7-14.
    [29] Veenstra M, Rufer A. Control of a hybrid asymmetric multilevel inverter for competitivemedium-voltage industrial drives[J]. IEEE Transactions on Industry Applications,2005,41(2):655-664.
    [30] McGrath B P, Meynard T, Gateau G, et al. Optimal modulation of flying capacitor andstacked multicell converters using a state machine decoder[J]. IEEE Transactions onPower Electronics,2007,2(22):508-516.
    [31] McGrath B P, Holmes D G. A Comparison of multi carrier PWM strategies for cascadedand neutral point clamped multilevel inverters[C].IEEE/IAS Annual Meeting,1999:781-788.
    [32] Steinke J K. Swiching frequency optional PWM control of a three level inverter[J]. IEEETransactions on Power Electronics,1992,3(7):487-496.
    [33]宋文胜,冯晓云.基于零序电压分量注入的单相三电平NPC整流器脉宽调制方法[J].中国电机工程学报,2011,31(36):16-24.
    [34]伍小杰,李洪亮,路进军,等.双三相感应电机新型空间矢量脉宽调制策略研究[J].中国电机工程学报,2012(33):111-117.
    [35]林磊,邹云屏,钟和清,等.二极管箝位型三电平逆变器控制系统研究[J].中国电机工程学报,2005,25(15):33-39.
    [36]薄保中,刘卫国,苏彦民.三电平逆变器PWM控制窄脉冲补偿技术的研究[J].中国电机工程学报,2005,25(10):60-64.
    [37]宋强,刘文华,严干贵,等.基于零序电压注入的三电平NPC逆变器中点电位平衡控制方法[J].中国电机工程学报,2004,24(5):61-66.
    [38] Seo J H, Choi C H, Hyun D. A new simplified space-vector PWM method for three-levelinverters[J]. IEEE Transaction on Power Electronics,2001,16(4):545-550.
    [39]宋强.大容量多电平逆变器的控制方法及其系统设计[D].北京:清华大学,2003.
    [40] Celanovic N, Boroyevich D. A fast space-vector modulation algorithm for multilevelthree-phase converters[J]. IEEE Transactions on Industry Applications,2001,37(2):637-641.
    [41]姜卫东,王群京,陈权,等.一种新的N电平电压源逆变器的空间矢量调制算法[J].中国电机工程学报,2008,28(33):12-18.
    [42]唐雄民,龚理专,彭永进.一种快速的多电平空间矢量调制算法研究[J].高电压技术,2006,32(2):75-77.
    [43] Mondal S K, Pinto J O, Bose B K. A neural-network-based space-vector PWM controllerfor a three-level voltage-fed inverter induction motor drive[J]. IEEE Transactions onIndustry Applications,2002,38(3):660-669.
    [44] Bose B K. Neural network applications in power electronics and motor drives—Anintroduction and perspective[J]. IEEE Transactions on Industrial Electronics,2007,54(1):14-33.
    [45] Luo A, Tang C, Shuai Z, et al. Fuzzy-PI-based direct-output-voltage control strategy forthe STATCOM used in utility distribution systems[J]. IEEE Transactions on IndustrialElectronics,2009,56(7):2401-2411.
    [46]孟永庆,沈传文,刘正,等.基于零序电压注入的三电平中点箝位整流器中点电位控制方法的研究[J].中国电机工程学报,2007,27(10):92-97.
    [47] Steinke J K. Switching frequency optimal PWM control of a three-level inverter[J]. IEEETransactions on Power Electronics,1992,7(3):487-496.
    [48] Liu H L, Choi N S, Cho G H. DSP based space vector PWM for three-level inverter withDC-link voltage balancing[C].Conference on Industrial Electronics, Control andInstrumentation,1991:197-203.
    [49]庄朝晖,熊有伦.一种简单的三电平逆变器PWM控制算法[J].电工技术学报,2001,16(2):47-50.
    [50] Jae H S, Chang-Ho C, Dong-Seok H. A new simplified space-vector PWM method forthree-level inverters[J]. IEEE Transactions on Power Electronics,2001,16(4):545-550.
    [51] Celanovic N, Boroyevich D. A comprehensive study of neutral-point voltage balancingproblem in three-level neutral-point-clamped voltage source PWM inverters[J]. IEEETransactions on Power Electronics,2000,15(2):242-249.
    [52] Busquets-Monge S, Bordonau J, Rocabert J. A Virtual-Vector Pulsewidth Modulation fortheFour-Level Diode-Clamped DC-AC Converter[J]. IEEE Transactions on PowerElectronics,2008,23(4):1964-1972.
    [53] Busquets-Monge S, Bordonau J, Boroyevich D, et al. The nearest three virtual spacevector PWM-a modulation for the comprehensive neutral-point balancing in thethree-level NPC inverter[J]. IEEE Power Electronics Letters,2004,2(1):11-15.
    [54] Busquets-Monge S, Ortega J D, Bordonau J, et al. Closed-Loop Control of a Three-PhaseNeutral-Point-Clamped Inverter Using an Optimized Virtual-Vector-Based PulsewidthModulation[J]. IEEE Transactions on Industrial Electronics,2008,55(5):2061-2071.
    [55] Murai Y, Watanabe T, Iwasaki H. Waveform Distortion and Correction Circuit for PWMInverters with Switching Lag-Times[J]. IEEE Transactions on Industry Applications,1987,23(5):881-886.
    [56] Sukegawa T, Kamiyama K, Mizuno K, et al. Fully digital, vector-controlled PWMVSI-fed AC drives with an inverter dead-time compensation strategy[J]. IEEETransactions on Industry Applications,1991,27(3):552-559.
    [57] Jong-Lick L. A new approach of dead-time compensation for PWM voltage inverters[J].IEEE Transactions on Circuits and Systems,2002,49(4):476-483.
    [58] Jung-Soo C, Ji-Yong Y, Seung-Won L, et al. A novel dead time minimization algorithm ofthe PWM inverter[C].Conference Record of the1999IEEE Industry ApplicationsConference,1999:2188-2193.
    [59]陆海峰,谭瑞民,瞿文龙.减小死区影响的准单极性PWM调制方法[J].清华大学学报(自然科学版),2005,45(10):3-6.
    [60]程小猛,陆海峰,瞿文龙,等.用于逆变器死区补偿的空间矢量脉宽调制策略[J].清华大学学报(自然科学版),2008,48(7):1077-1080.
    [61] Munoz A R, Lipo T A. On-line dead-time compensation technique for open-loopPWM-VSI drives[J]. IEEE Transactions on Power Electronics,1999,14(4):683-689.
    [62] Hyun-Soo K, Hyung-Tae M, Myung-Joong Y. On-line dead-time compensation methodusing disturbance observer[J]. IEEE Transactions on Power Electronics,2003,18(6):1336-1345.
    [63]吴茂刚,赵荣祥,汤新舟.正弦和空间矢量PWM逆变器死区效应分析与补偿[J].中国电机工程学报,2006,26(12):101-105.
    [64]何正义,季学武,瞿文龙.一种新颖的基于死区时间在线调整的SVPWM补偿算法[J].电工技术学报,2009,24(6):42-47.
    [65] Leggate D, Kerkman R J. Pulse-based dead-time compensator for PWM voltageinverters[J]. IEEE Transactions on Industrial Electronics,1997,44(2):191-197.
    [66]胡庆波,吕征宇.一种新颖的基于空间矢量PWM的死区补偿方法[J].中国电机工程学报,2005,25(03):15-19.
    [67]周华伟,温旭辉,赵峰,等.一种抑制VSI零电流箝位效应的死区补偿方法[J].电机与控制学报,2011,15(1):26-32.
    [68]孙向东,钟彦儒,任碧莹,等.一种新颖的死区补偿时间测量方法[J].中国电机工程学报,2003,23(2):107-111.
    [69] Urasaki N, Senjyu T, Uezato K, et al. Adaptive Dead-Time Compensation Strategy forPermanent Magnet Synchronous Motor Drive[J]. IEEE Transactions on EnergyConversion,2007,22(2):271-280.
    [70]王高林,于泳,杨荣峰,等.感应电机空间矢量PWM控制逆变器死区效应补偿[J].中国电机工程学报,2008,28(15):79-83.
    [71] Urasaki N, Senjyu T, Kinjo T, et al. Dead-time compensation strategy for permanentmagnet synchronous motor drive taking zero-current clamp and parasitic capacitanceeffects into account[J]. Electric Power Applications,2005,152(4):845-853.
    [72] Seon-Hwan H, Jang-Mok K. Dead Time Compensation Method for Voltage-Fed PWMInverter[J]. IEEE Transactions on Energy Conversion,2010,25(1):1-10.
    [73] Ben-Brahim L, Tadakuma S. A novel multilevel carrier-based PWM-control method forGTO inverter in low index modulation region[J]. IEEE Transactions on IndustryApplications,2006,42(1):121-127.
    [74] Shun J, Yanru Z. A novel three-level SVPWM algorithm considering neutral-point control,narrow-pulse elimination and dead-time compensation[C].The4th International PowerElectronics and Motion Control Conference,2004:688-693.
    [75] Wang R, Liang M, Fei L, et al. Zero-sequence voltage injection for narrow pulsecompensation and neutral point potential balancing of NPC inverter[C].IEEE6thInternational Power Electronics and Motion Control Conference,2009:887-891.
    [76]薄保中,刘卫国,罗兵,等.五电平逆变器窄脉冲补偿方法的研究[J].电气传动,2005,35(6):22-25.
    [77]薄保中,刘卫国,罗兵,等.三电平逆变器窄脉冲补偿方法研究[J].电力自动化设备,2004,24(8):25-28.
    [78]冉旺,马亮,林飞,等.基于零序电压注入的三电平逆变器窄脉冲补偿方法研究[C].中国浙江杭州:2008:1.
    [79] Liu H L, Cho G H. Three-level space vector PWM in low index modulation regionavoiding narrow pulse problem[J]. IEEE Transactions on Power Electronics,1994,9(5):481-486.
    [80] Yo-Han L, Bum-Seok S, Dong-Seok H. A novel PWM scheme for a three-level voltagesource inverter with GTO thyristors[J]. IEEE Transactions on Industry Applications,1996,32(2):260-268.
    [81] Yen-Shin L. Investigations into the effects of PWM techniques on common mode voltagefor inverter-controlled induction motor drives[C].IEEE Power Engineering Society1999Winter Meeting,1999:35-40.
    [82] Erdman J M, Kerkman R J, Schlegel D W, et al. Effect of PWM inverters on AC motorbearing currents and shaft voltages[J]. IEEE Transactions on Industry Applications,1996,32(2):250-259.
    [83] Ran L, Gokani S, Clare J, et al. Conducted electromagnetic emissions in induction motordrive systems. I. Time domain analysis and identification of dominant modes[J]. IEEETransactions on Power Electronics,1998,13(4):757-767.
    [84] Ran L, Gokani S, Clare J, et al. Conducted electromagnetic emissions in induction motordrive systems. II. Frequency domain models[J]. IEEE Transactions on Power Electronics,1998,13(4):768-776.
    [85] Lakshminarayanan S, Mondal G, Tekwani P N, et al. Twelve-Sided Polygonal VoltageSpace Vector Based Multilevel Inverter for an Induction Motor Drive WithCommon-Mode Voltage Elimination[J]. IEEE Transactions on Industrial Electronics,2007,54(5):2761-2768.
    [86] Hashem G M, El-Koshariy A D. Investigation of induction motor performance fed fromPWM inverter[C].Eleventh International Middle East Power Systems Conference,2006:421-426.
    [87] Akagi H, Shimizu T. Attenuation of Conducted EMI Emissions From an Inverter-DrivenMotor[J]. IEEE Transactions on Power Electronics,2008,23(1):282-290.
    [88] Haoran Z, Von Jouanne A, Shaoan D, et al. Multilevel inverter modulation schemes toeliminate common-mode voltages[J]. IEEE Transactions on Industry Applications,2000,36(6):1645-1753.
    [89] Renge M M, Suryawanshi H M. Five-Level Diode Clamped Inverter to EliminateCommonMode Voltage and Reduce du/dt in Medium Voltage Rating Induction Motor Drives[J].IEEE Transactions on Power Electronics,2008,23(4):1598-1607.
    [90]幸善成,吴正国.基于多电平随机脉宽调制技术的共模电压和谐波抑制方法[J].中国电机工程学报,2006,26(17):57-61.
    [91] Poh C L, Holmes D G, Fukuta Y, et al. Reduced common-mode modulation strategies forcascaded multilevel inverters[J]. IEEE Transactions on Industry Applications,2003,39(5):1386-1395.
    [92]姜艳姝,徐殿国,赵洪,等.多电平SPWM变频器中共模电压抑制技术的研究[J].中国电机工程学报,2005,25(3):20-24.
    [93] Takahashi I, Ohmori Y. High-performance direct torque control of an induction motor[J].IEEE Transactions on Industry Applications,1989,25(2):257-264.
    [94] Kawabata T, Ejiogu E C, Kawabata Y, et al. New open-winding configurations forhigh-power inverters[C].Proceedings of the IEEE International Symposium on IndustrialElectronics,1997:457-462.
    [95] Corzine K, Sudhoff S. Performance characteristics of a cascaded two-level converter[J].IEEE Transactions on Industrial Electronics,1999,3(14):433-439.
    [96] Corzine K, Wielebski F. Control of cascaded multilevel inverters [J]. IEEE Transactionson Power Electron,2004,3(19):732-738.
    [97] Lu S, Corzine K. Advanced control and analysis of cascaded multilevel converters basedon P-Q compensation[J]. IEEE Transactions on Power Electron,2007,4(22):1242-1252.
    [98] Xiaomin K, Corzine K A, Wielebski M W. Overdistention operation of cascadedmultilevel inverters[J]. IEEE Transactions on Industry Applications,2006,42(3):817-824.
    [99] Corzine K A, Lu S, Fikse T H. Distributed Control of Hybrid Motor Drives[J]. IEEETransactions on Power Electronics,2006,21(5):1374-1484.
    [100] Somasekhar V T, Sekhar K C, K. Gopakumar. A New Fivelevel Inverter System for anInduction Motor with Open-end Winding[C].PEDS Conference,2003:199-204.
    [101] Sekhar K C, Das G T R. Five-level SPWM Inverter for an Induction Motor with Open-endWindings[C].First International Power and Energy Coference,2006:342-347.
    [102] V S, K G. A multilevel inverter system for an induction motor with open-end windings[J].IEEE Transactions on Industrial Electronics,2005,3(52):824-836.
    [103] Lakshminarayanan S, Mondal G, Tekwani P N, et al. Twelve-Sided Polygonal VoltageSpace Vector Based Multilevel Inverter for an Induction Motor Drive WithCommon-Mode Voltage Elimination[J]. IEEE Transactions on Industrial Electronics,2007,5(54):2761-2768.
    [104] Tekwani P N, Kanchan R S, Gopakumar K. A Dual Five-Level Inverter-Fed InductionMotor Drive With Common-Mode Voltage Elimination and DC-Link Capacitor VoltageBalancing Using Only the Switching-State Redundancy—Part I[J]. IEEE Transactions onIndustrial Electronics,2007,5(54):2600-2608.
    [105] Tekwani P N, Kanchan R S, Gopakumar K. A Dual Five-Level Inverter-Fed InductionMotor Drive With Common-Mode Voltage Elimination and DC-Link Capacitor VoltageBalancing Using Only the Switching-State Redundancy—Part II[J]. IEEE Transactions onIndustrial Electronics,2007,54(5):2609-2617.
    [106] Rajeevan P P, Sivakumar K, Gopakumar K, et al. A Nine-Level Inverter Topology forMedium-Voltage Induction Motor Drive With Open-End Stator Winding[J]. IEEETransactions on Industrial Electronics,2013,9(60):3627-3636.
    [107] Wu X Q, Steimel A. Direct self control of induction machines fed by a double three-levelinverter[J]. IEEE Transactions on Industrial Electronics,1997,4(44):519-527.
    [108] Patel C, Day R P P A, Dey A, et al. Fast Direct Torque Control of an Open-End InductionMotor Drive Using12-Sided Polygonal Voltage Space Vectors[J]. IEEE Transactions onPower Electronics,2012,27(1):400-410.
    [109] Boller T, Holtz J, Rathore A K. Optimal pulsewidth modulation of a dual three-levelinverter system operated from a single dc link[C].IEEE Energy Conversion Congress andExposition,2011:3406-3410.
    [110] Restrepo J, Aller J M, Bueno A, et al. Direct power control of a dual converter operatingas synchronous rectifier[C].Applied Power Electronics Conference and Exposition,2010:343-348.
    [111] Holtz J, Oikonomou N. Optimal Control of a Dual Three-Level Inverter System forMedium-Voltage Drives[J]. IEEE Transactions on Industry Applications,2010,46(3):1034-1141.
    [112] Das A, Sivakumar K, Ramchand R, et al. A Combination of Hexagonal and12-SidedPolygonal Voltage Space Vector PWM Control for IM Drives Using Cascaded Two-LevelInverters[J]. IEEE Transactions on Industrial Electronics,2009,56(5):1657-1664.
    [113] Das A, Sivakumar K, Ramchand R, et al. A Pulsewidth Modulated Control of InductionMotor Drive Using Multilevel12-Sided Polygonal Voltage Space Vectors[J]. IEEETransactions on Industrial Electronics,2009,56(7):2441-2449.
    [114] Lakshminarayanan S, Kanchan R S, Tekwani P N, et al. Multilevel inverter with12-sidedpolygonal voltage space vector locations for induction motor drive[J]. IEE Proceedings-Electric Power Applications,2006,153(3):411-419.
    [115] Somasekhar V T, Srinivas S, Kumar K K. Effect of Zero-Vector Placement in aDual-Inverter Fed Open-End Winding Induction Motor Drive With AlternateSub-Hexagonal Center PWM Switching Scheme[J]. IEEE Transactions on PowerElectronics,2008,23(3):1584-1591.
    [116] Somasekhar V T, Srinivas S, Kumar K K. Effect of Zero-Vector Placement in aDual-Inverter Fed Open-End Winding Induction-Motor Drive With a DecoupledSpace-Vector PWM Strategy[J]. IEEE Transactions on Industrial Electronics,2008,55(6):2497-2505.
    [117] Lakshminarayanan S, Gopakumar K, Mondal G, et al. Eighteen-sided polygonal voltagespace-vector-based PWM control for an induction motor drive[J]. IET Electric PowerApplications,2008,2(1):56-63.
    [118] Srinivas S, Somasekhar V T. Space-vector-based PWM switching strategies for athree-level dual-inverter-fed open-end winding induction motor drive and theircomparative evaluation[J]. IET Electric Power Applications,2008,2(1):19-31.
    [119] Lu S, Corzine K A. Advanced Control and Analysis of Cascaded Multilevel ConvertersBased on P-Q Compensation[J]. IEEE Transactions on Power Electronics,2007,22(4):1242-1252.
    [120] Chandra Sekhar K, Das G T R. A Nine-Level Inverter System for an Open-End WindingInduction Motor Drive[C].IEEE Conference on Industrial Electronics and Applications,2006:1-6.
    [121] Ahmed M R, Alam M J. Power factor improvement by pulse width modulated switchedsingle capacitor[C].India International Conference on Power Electronics,2006:212-215.
    [122] Kanchan R S, Tekwani P N, Baiju M R, et al. Three-level inverter configuration withcommon-mode voltage elimination for induction motor drive[J]. IEE Proceedings-Electric Power Applications,2005,152(2):261-270.
    [123] Kanchan R S, Tekwani P N, Gopakumar K. Three-Level Inverter Scheme with CommonMode Voltage Elimination and DC-Link Capacitor Voltage Balancing for an Open EndWinding Induction Motor Drive[C].IEEE International Conference on Electric Machinesand Drives,2005:1445-1652.
    [124] Baiju M R, Mohapatra K K, Kanchan R S, et al. A dual two-level inverter scheme withcommon mode voltage elimination for an induction motor drive[J]. IEEE Transactions onPower Electronics,2004,19(3):794-805.
    [125] Mohapatra K K, Gopakumar K, Somasekhar V T, et al. A harmonic elimination andsuppression scheme for an open-end winding induction motor drive[J]. IEEE Transactionson Industrial Electronics,2003,50(6):1187-1198.
    [126] Somasekhar V T, Gopakumar K, Pittet A, et al. PWM inverter switching strategy for adual two-level inverter fed open-end winding induction motor drive with a switchedneutral[J]. IEE Proceedings-Electric Power Applications,2002,149(2):152-160.
    [127] Shivakumar E G, Gopakumar K, Sinha S K, et al. Space vector PWM control of dualinverter fed open-end winding induction motor drive[C].Sixteenth Annual IEEE AppliedPower Electronics Conference and Exposition,2001:399-405.
    [128] Rendusara D, Cengelci E, Enjeti P, et al. Analysis of common mode voltage-“neutralshift” in medium voltage PWM adjustable speed drive (MV-ASD) systems[C].30thAnnual IEEE Power Electronics Specialists Conference,1999:935-940.
    [129] Blasko V. Analysis of a hybrid PWM based on modified space-vector andtriangle-comparison methods[J]. IEEE Transactions on Industry Applications,1997,33(3):756-764.
    [130] Holmes D G. The significance of zero space vector placement for carrier-based PWMschemes[J]. IEEE Transactions on Industry Applications,1996,32(5):1122-1129.
    [131] Yu J, Sun D, Lin B, et al. Direct torque control combined with MTPA concept for openwinding IPMSM[C].International Conference on Electrical Machines and Systems,2012:1-6.
    [132] Patel C, Ramchand R, Rajeevan P P, et al. Direct torque control scheme of IM drive with12-sided polygonal voltage space vectors[C].Proceedings of the2011-14th EuropeanConference on Power Electronics And Applications,2011:1-11.
    [133] Santos-Martin D, Rodriguez-Amenedo J L, Arnalte S. Dynamic programming powercontrol for doubly fed induction generators[J]. IEEE Transactions on Power Electronics,2008,23(5):2337-2345.
    [134] Kumar A, Fernandes B G, Chatterjee K. DTC of open-end winding induction motor driveusing space vector modulation with reduced switching frequency[C].Power ElectronicsSpecialists Conference,2004:1214-1319.
    [135] Rendusara D A, Cengelci E, Enjeti P N, et al. Analysis of common modevoltage-“neutral shift” in medium voltage PWM adjustable speed drive(MV-ASD) systems[J]. IEEE Transactions on Power Electronics,2000,15(6):1124-1233.
    [136] Haoran Z, Von Jouanne A, Shaoan D, et al. Multilevel inverter modulation schemes toeliminate common-mode voltages[J]. IEEE Transactions on Industry Applications,2000,36(6):1645-1753.
    [137] Boller T, Holtz J, Rathore A K. Optimal Pulsewidth Modulation of a Dual Three-LevelInverter System Operated From a Single DC Link[J]. IEEE Transactions on IndustryApplications,2012,48(5):1610-1615.
    [138] Somasekhar V T, Gopakumar K, Shivakumar E G, et al. A space vector modulationscheme for a dual two level inverter fed open-end winding induction motor drive for theelimination of zero sequence currents[J]. European Power Electronics And DrivesAssociation,2002,12(2):26-36.
    [139] Somasekhar V T, Srinivas S, Gopakumar K. A Space Vector based PWM SwitchingScheme for the reduction of Common-Mode Voltages for a Dual Inverter fed Open-endWinding Induction motor Drive[C].IEEE36th Power Electronics Specialists Conference,2005:816-821.
    [140] Somasekhar V T, Srinivas S, Prakash Reddy B, et al. Pulse width-modulated switchingstrategy for the dynamic balancing of zero-sequence current for a dual-inverter fedopen-end winding induction motor drive[J]. IET Electric Power Applications,2007,1(4):591-600.
    [141] Ogasawara S, Akagi H. Analysis of variation of neutral point potential inneutral-point-clamped voltage source PWM inverters[C].Conference Record of the1993IEEE Industry Applications Society Annual Meeting,1993:965-970.
    [142] Jang-Hwan K, Seung-Ki S. PWM Method of a Three-Level Neutral-Point-ClampedConverter under Neutral Point Imbalance Condition[C].Twenty Second Annual IEEEApplied Power Electronics Conference,2007:1089-1094.
    [143] Kanchan R S, Tekwani P N, Gopakumar K. Three-Level Inverter Scheme With CommonMode Voltage Elimination and DC Link Capacitor Voltage Balancing for an Open-EndWinding Induction Motor Drive[J]. IEEE Transactions on Power Electronics,2006,21(6):1676-1683.
    [144] Kalaiselvi J, Srinivas S. Hybrid PWMs for shaft voltage reduction in a dual inverter fedinduction motor drive[C].IEEE International Conference on Industrial Technology,2013:539-544.
    [145] Casadei D, Grandi G, Lega A, et al. Multilevel Operation and Input Power Balancing for aDual Two-Level Inverter with Insulated DC Sources[J]. IEEE Transactions on IndustryApplications,2008,44(6):1815-1824.
    [146] Madhukar Rao A, Umesh B S, Sivakumar K. A fault tolerant dual inverter configurationfor islanded mode photovoltaic generation system[C].Future Energy ElectronicsConference,2013:816-821.
    [147] Sivakumar K, Das A, Ramchand R, et al. A Hybrid Multilevel Inverter Topology for anOpen-End Winding Induction-Motor Drive Using Two-Level Inverters in Series With aCapacitor-Fed H-Bridge Cell[J]. IEEE Transactions on Industrial Electronics,2010,57(11):3707-3714.
    [148] Kastha D K, Bose B K. Investigation of fault modes of voltage-fed inverter system forinduction motor drive[J]. IEEE Transactions on Industry Applications,1994,30(4):1028-1038.
    [149]张兰红,胡育文,黄文新.三相变频驱动系统中逆变器的故障诊断与容错技术[J].电工技术学报,2004,19(12):1-9.
    [150]安群涛.三相电机驱动系统中逆变器障诊断与容错控制策略研究[D].哈尔滨工业大学,2011.
    [151]杨贵杰,孙力,崔乃政,等.空间矢量脉宽调制方法的研究[J].中国电机工程学报,2001,21(5):80-84.
    [152]浦志勇,黄立培,吴学智.三相PWM整流器空间矢量控制简化算法的研究[J].电工电能新技术,2002,21(2):56-60.
    [153] Carrara G, Gardella S, Marchesoni M, et al. A new multilevel PWM method: a theoreticalanalysis[J]. IEEE Transactions on Power Electronics,1992,7(3):497-505.
    [154]张崇巍,苑春明,张兴.中点电位平衡的三电平逆变器SVPWM简化算法及其实现[J].电气传动,2008,38(11):37-41.
    [155] McGrath B P, Holmes D G, Meynard T. Reduced PWM harmonic distortion for multilevelinverters operating over a wide modulation range[J]. IEEE Transactions on PowerElectronics,2006,21(4):941-949.
    [156]姜卫东,王群京,陈权,等.一种新的N电平电压源逆变器的空间矢量调制算法[J].中国电机工程学报,2008,28(33):12-18.
    [157] Holmes D. Grahame, Lipo Thomas A.电力电子变换器PWM技术原理与实践[M].北京:人民邮电出版社,2010.
    [158] Fukuda S, Iwaji Y, Hasegawa H. PWM technique for inverter with sinusoidal outputcurrent[J]. IEEE Transactions on Power Electronics,1990,5(1):54-61.
    [159]戴鹏,符晓,袁庆庆,等.基于复矢量调节器的低开关频率PWM整流器研究[J].中国电机工程学报,2011,31(21):25-31.
    [160]伍小杰,袁庆庆,符晓,等.基于复矢量调节器的低开关频率同步电机控制[J].中国电机工程学报,2012,32(3):124-139.
    [161] Van der Broeck H W, Skudelny H C. Analysis and realization of a pulse width modulatorbased on voltage space vectors[J]. IEEE Transactions On Industry Applications,1988(24):142-150.
    [162]李永东,侯轩,谭卓辉.三电平逆变器异步电动机直接转矩控制系统(I)——单一矢量法[J].电工技术学报,2004,19(4):34-39.
    [163] Urasaki N, Senjyu T, Funabashi T, et al. Adaptive dead-time compensation strategy takingparasitic capacitance effects into account[C].IEEE International Conference on IndustrialTechnology,2005:1109-1114.
    [164]王高林.感应电机无速度传感器转子磁场定向控制策略研究[D].哈尔滨工业大学,2008.
    [165] Ben-Brahim L. On the compensation of dead time and zero-current crossing for aPWM-inverter-controlled AC servo drive[J]. IEEE Transactions on Industrial Electronics,2004,51(5):1113-1118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700