声波法检测炉内气体速度场冷态实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
炉内空气动力场是决定锅炉安全、经济运行的重要因素,但一直以来,大型锅炉炉膛空气动力场的测量尚没有一种非接触式的实时、在线检测技术。目前电厂及工业锅炉中一般采用飘带法结合风速表或热线风速仪等对锅炉进行冷态条件下的空气动力场测量。传统的测量方法是接触式、逐点测量,显然在人、财、物方面需要较大投入,而且时间长,准确度低。声波法测量炉内空气动力场是一种非接触式、全场测量的方法,本文在前人研究的基础上丰富和发展了声波法检测炉内气体速度场的方法与理论,并自主开发了较为初步的声波法测量系统。最后进行了炉内空气速度场测量的实验研究,国际上尚没有类似的报道。
     在展开声波法检测炉内气体速度场的讨论前,文中先给出了传统方法测量一次风管射流流场的实验。通过五孔探针法、PIV法测量及CFD模拟,在一定程度上验证了传统方法的优势与不足。五孔探针法的优点是直接,在速度值不太小时测量可靠,是常用的流场测量方法,其缺点是灵敏度不高,不易测出较弱流场区域的速度值;PIV法准确性好、灵敏度高,但工作量大,测量条件苛刻;CFD模拟对于给定条件的流场,可以详细地模拟出其速度分布,但计算时间长,且不能反映流场的实时变化。因此,对于实际的炉内测量,传统的流场测量方法很难满足要求,找到一种新的、更为适合和优越的炉内速度场检测方法是必要和迫切的。
     声波是一种机械波,在气体介质中传播将受所在介质物性及运动的影响,这是声波法测量炉内空气动力场的物理学基础。为验证声波法测量气体流速的基本可行性,首先进行了声波法测量单路径空气速度场的实验。实验设计为:根据传感器布置合理性,在一开放的圆管空气水平射流场中选取一与射流轴线成一定夹角的直线区间,进行声波法单路径测量。实验中分别用声波法和五孔探针法测量了该区间内的空气流速,通过对比分析,验证了声波法用于测量气体流速的可行性与可靠性。
     声波法检测炉内二维气体动力场,是在所测场四周边界布置适当数量的声传感器,形成网状交叉的声传播路径,测出各条路径上相反两方向的声信号传播时间,即可由矢量层析算法重建出所测场内连续的气体速度分布。模拟研究中,首先建立了由6个参数确定的简化四角切圆速度场模型,通过正问题和逆问题的研究,并进行相应的误差分析,验证了声波法测量二维速度场的实现性和可用性。对于实际的四角切圆速度场,本文开发了基于矢量层析算法的一般二维速度场重建程序。该程序在前述简化四角切圆模型的基础上进行了不同复杂程度的仿真实验,结果表明程序在一定程度上是准确和可靠的。
     本文最后给出了声波法测量炉内二维速度场的冷模实验研究。该实验是在一座自行设计搭建的炉膛模型台架上进行的,其尺寸为1.0m×1.0m×2.45m。实验研究了对称供风和非对称供风条件下切圆流场的声波法测量情况,分别得出了比较满意的重建结果,其计算程序即为前述一般二维速度场重建程序。完成一次声波法测量需要约5秒钟时间。作为对比,对称条件速度场分别用热线风速计和CFD软件进行了测量及模拟;非对称条件下的速度场用CFD进行了模拟。对上述结果分别作了相应的定性和定量分析。结果表明,声波法测量结果与两种传统方法得到的结果能够较好地相符。不过,因为没有足够可靠并适于实验条件的测量方法,声波法测量的可靠度并没有得到充分证明,这需要进一步的工作来完成。而当前的实验结果仍然在一定程度上说明了声波法测量炉内速度场的可行性并体现了明显的先进性。
     声波法作为一种有前景的炉内动力场检测技术,其最终目标是很好地应用于工程实践,本文在冷模实验研究的基础上还讨论了其用于热态炉内测量时的影响因素与改进设想;另外也提到了其用于测量锅炉水平烟道内烟气流速及温度沿横截面分布的可能性。
The aerodynamic field in furnaces is an important factor determining the safe and economical operation. But all along, there’s no a nonintrusive, real-time and online technique on measurement of the aerodynamic field in large-scale furnaces. For the present, generally the cold aerodynamic fields are measured in power or industrial boilers. In the measurements, the ribbons are mainly adopted together with the anemometer or hot-line anemometer. Since the traditional methods are intrusive and pointwise, there needs quite much expense, nevertheless with long time and low accuracy. However, the acoustic method is nonintrusive and full-field to measure the aerodynamic field in furnaces. Based on the reseach of the predecessors, the paper amplified and developed the theory on acoustic velocity field measurement. The primitive acoustic measurement system and method have been developed creatively for cold measurement. And with the system, the velocity field measurements are performed. The related reports haven’t been found in the world, with only relavant theoretic research.
     Before the discussion on acoustic measuring the aerodynamic field in furnaces, an experiment on the traditional methods testing is carried out. The measured objection is a horizontal jet flow field of a newtype burner. By the practice of five-hole probe, PIV and simulation with CFD software, the faults of trandional techniques as well as the advantages are acquainted. Among the preceding methods, five-hole probe approach is immediate and relatively easy. But because of insufficient sensitivity, it can hardly measure the weak flow area. PIV method has perfect accuracy and sensitivity, however, it needs a great deal of work, and is particular at the measuring conditions. And for flow fields with difined conditions, CFD simulation can give detaild description. But it’s hard to trace the real-time variation of flow fields for CFD. So, for the aerodynamic field measurement in real furnaces, it’s requisite to find a new monitoring method that is more fit and advantageous.
     Sound wave is a kind of mechanical wave. Its propagation is effected by the attributes of the medium and the movement as well. This is the physical base of the acoustic measuring the aerodynamic fields in furnaces. Firstly, the measurement of a singular path in an air flow field by acoustic method is performed. This experiment can give an essential and direct argument of acoustic method used for measuring the air velocity field. By the practical situation, a relatively reasonable air flow field is designed. It is a proper linear interval taken in an open air jet flow from a horizontal circular tube. Acoustic and five-hole probe methods are used respectively to measure the flow field. The comparison between the results proved the feasibility of acoustic method for the measurement of the gas flow field.
     For the acoustic measurement of 2-D aerodynamic field in furnace, a right number of sound sensors are configured on the boundary of the measured field, and reticular sound projections are formed. By measuring the transit times of the sound waves in the reciprocal directions on the paths, the continuous velocity distribution can be reconstructed with a vector tomography algorithm. Regarding the simulation research, we firstly build up a simplified tangential flow field model. By calculation of the direct problem and reconstruction of the inverse problem, and also error analysis of different levels with the results, the performance and availability of the acoustic method in measuring the 2-D velocity fields is validated. Concerning the real tangential flow field, a reconstruction program of 2-D velocity field is developed. The program is examined with different degrees of phantom based on the preceding simplified tangential model. The result showed that the program is accurate and reliable to some extent, so it’s promising to be used to reconstruct the real tangential aerodynamic field in furnace.
     Based on the simulating study, the cold model experiment is performed on the 2-D flow field measurement with acoustic method. For that, a bench-scale furnace model of 1.0m×1.0m×2.45m is designed and built. In the experiment, the flow fields under the symmetrical and unsymmetrical air-supply conditions are measured respectively by acoustic method. Both have relatively satisfactory results. As comparison, the first case is also measued with a hot-wire anemometer, and simulated by CFD as well. For the second case, only the CFD simulation is used. With the measurement simulation results, qulitive and quantitative analyses are given. It is proved that, under relatively stable air conditions, the acoustic measuring results accord well with those by the other two methods. The experiment shows the feasibility of acoustic measuring flow fields in furnace, and also the obvious superiority. It’s prosperous to become an advanced and effective technique of aerodynamic field measurement, which is online and realtime. For the present, the measuring scheme of the acoustic system is each transducer emitting sound wave by turns, with about 5s for an integral measurement.
     As a prosperous monitoring technique of furnace aerodynamic field, the paper also discusses the impact factors and corresponding reforms with it for the measurement in hot furnace. What’s more, due to its great characteristics, its use on the gas speed and the temperature distributions in the horizontal flue is also mentioned.
引文
[1] 王志轩, 叶 雷, 发展循环经济 促进电力工业可持续发展. 中国电力, 2004, 37(11): 1-5.
    [2] 纪海剑, 锅炉冷态空气动力场试验自动测量系统研制与开发应用. 湖北电力, 1997, 21(4): 34-36.
    [3] 杨耀权, 庞志刚, 计算机图像采集装置在锅炉空气动力场试验中的应用. 微机与应用, 2000, (5): 25-26, 29.
    [4] 张 泽, 炉内流场中复杂结构喷嘴射流的近流线数值模拟. 中国电机工程学报, 2001, 21(8): 109-113.
    [5] 闫 晓, 许卫疆, 中储式热风送粉 W 型火焰锅炉炉内空气动力场实验研究. 热能动力工程, 2001, 16(3): 263-266.
    [6] 刘建忠, 姚 强, 激光多普勒测速技术应用于浓缩燃烧器湍流流场的测量. 激光与光电子学进展, 1999, (5): 33-37.
    [7] 詹 翔, 邵国桢, 四角切向燃烧煤粉锅炉炉内气固两相流动的数值模拟. 锅炉技术, 1997, (6): 1-5.
    [8] 孙保民, 徐旭常, W 型火焰煤粉锅炉炉内过程的综合数值模拟及流场的实验研究. 中国电机工程学报, 1996, 16(4): 230-235.
    [9] 殷晓红, 赵成东, 姚文达等, 炉内冷态空气动力场数值计算软件的建立及应用. 黑龙江电力技术, 1999, 21(3): 18-22.
    [10] 刘向军, 徐旭常, 四角切向燃烧煤粉锅炉炉膛内空气动力场的数值研究. 工程热物理学报, 1998, 19(5): 657-660.
    [11] 何 泓, 樊建人, 岑可法, 四角切圆锅炉三维贴体坐标的生成及流场的模拟. 动力工程, 2000, 20(3): 685-688.
    [12] 林宗虎, 锅炉测试. 北京: 中国计量出版社, 1996.
    [13] 黄素逸, 动力工程现代测试技术. 武汉: 华中科技大学出版社, 2001.
    [14] 车 刚, 徐通模, 许卫疆等, W 型火焰锅炉冷态空气动力特性的测试研究. 热能动力工程, 2001, 16(1): 19-22.
    [15] 何立明, 张建邦, 李晓勇等, 燃烧器配风对W型火焰锅炉炉内空气动力场影响的实验研究. 应用力学学报, 2002, 19(1): 18-22.
    [16] 周屈兰, 窦文宇, 徐通模, 惠世恩, 四角切向燃烧锅炉炉内冷态与热态流场特性的对比研究. 动力工程, 2003, 23(3): 2392-2396.
    [17] 李 力, 周力行, 李荣先等, 用双流体-轨道模型模拟四角喷燃模型炉内三维湍流两相流动和煤粉燃烧. 空气动力学学报, 2001, 19(1): 30-38.
    [18] 夏 钧, 钱力庚, 樊建人, 岑可法, 330MW 对冲锅炉炉内流场模拟及实验研究. 动力工程, 2002, 22(3): 1772-1811.
    [19] 张 颉, 孙 锐, 吴少华等, 200MW 旋流燃烧方式煤粉炉炉内燃烧试验和数值研究. 中国电机学报, 2003, 23(8): 215-220.
    [20] 王彦辉, 徐 鸿, 康志忠, 刘 彤, 燃烧模型与切圆锅炉烟气偏差的数值研究. 动力工程, 2004, 24(5): 693-697.
    [21] 黄跃春, 煤粉锅炉燃烧器的应用现状. 电力建设, 1998, 19(1): 8-10.
    [22] 秦裕琨, 孙 锐, 李争起等, 径向浓淡旋流煤粉燃烧器气流湍流特性的冷态试验研究. 工程热物理学报, 2001, 22 (1): 111-114.
    [23] 周俊虎, 聂 欣, 岑可法等, 无油点火燃烧器的数值试验研究. 中国电机工程学报, 2004, 24(9): 243-247.
    [24] Chen J C, Taniguchi M, Ito K, et al. Observation of laser ignition and combustion of pulverized coal. FUEL, 1995, 74(3): 323-330.
    [25] 崔凤誉, 张誉周, 等离子煤粉点火燃烧器工业性试验研究及应用. 中国电力, 2001, 34(2): 17-20.
    [26] 陈智超, 李争起, 孙 锐等, 叶片数量和一次风率对双调风旋流燃烧器流场的影响. 热能动力工程, 2004, 19(2): 191-194.
    [27] 张 华, 章明川, 王 经, 同轴旋转分层流燃烧器一次风扩展角α 的实验研究. 热能动力工程, 2005, 20(4): 402-406.
    [28] 韩 宾, 缪正清, 大容量直流燃烧器与旋流燃烧器锅炉的燃烧技术分析与性能对比. 锅炉技术, 2003, 34(5): 40-47.
    [29] 华国钧, 施可登, 张书谨, 对冲燃烧与切圆燃烧技术的共同发展. 浙江电力, 2002, 21(6): 5-8.
    [30] 包建锋, 胡家震, 姜义道等, 旋流式煤粉燃烧器应用分析. 黑龙江电力, 2000, 22(6): 28-31.
    [31] 石 伟, 周志军, 周俊虎等, 内二次风旋流强度对 PAX 燃烧器出口流场的影响. 动力工程, 2003, 23(1): 2169—2172.
    [32] 丁 宁, 曹欣玉, 岑可法等, 外直流内旋流同轴射流和二次风平行射流组燃烧器流动特性的研究. 动力工程. 2005, 3(25): 339-342.
    [33] J. M. Beer, Combustion technology developments in power generation in response to environmental challenges. Progress in energy and combustion science, 2000, 26(4-6): 301-327.
    [34] Johnson, S. A., Greenleaf, J. F., Tanaka, M. and Flandro, G., Reconstructing three-dimensional temperature and fluid velocity vector fields from acoustic transmission measurements. ISA-Trans., 1977, 16(3): 3-15.
    [35] Takuso Sato, Hisayuki Aoki, Osamu Ikeda, Introduction of mass conservation law to improve the tomographic estimation of flow-velocity distribution from differential time-of-flight data. J. Acoust. Soc., Am., 1985, 77(6): 2104-2108.
    [36] George S. K. Wong, Speed of sound in standard air. J. Acoust. Soc., Am., 1986, 79(5): 1359-1366.
    [37] 庄天戈, CT 原理与算法. 上海: 上海交通大学出版社, 1992.
    [38] Braun, H. and Hauck, A., Tomographic reconstruction of vector fields. IEEE Trans. Signal process., 1991, 39(2): 464-471.
    [39] Norton, S. J., Unique tomographic reconstruction of vector fields using boundary data. IEEE Trans. Image Process., 1992, 1(3): 406-412.
    [40] Desbat, L. and Wernsdo¨ rfer, A., Direct algebraic reconstruction and optimal sampling in vector field tomography. IEEE Trans. Signal Process., 1995, 43(8): 1798–1808.
    [41] M. H. Buonocore, W. R. Brody, and A. Macovski, A natural pixel decomposition for two-dimensional image reconstruction. IEEE Trans. Biomed. Eng., 1981, 28(2): 69-78.
    [42] F. Natterer, Efficient implementation of “optimal” algorithms in computerized tomography. Math. Meth. in the Appl. Sci. , 1980, 2: 545-555.
    [43] D. Girard, Optimal regularized reconstruction in computerized tomography. SIAM J. Sci. Stat. Comput., 1987, 8: 934-950.
    [44] Prince, J. L., Tomographic reconstruction of 3-D vector fields. In 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP-93., 1993, 5: 483-486.
    [45] Prince, J. L., Tomographic reconstruction of 3-D vector fields using inner product probes. IEEE Trans. Image Process., 1994, 2(3):216-219.
    [46] Prince, J. L., Convolution backprojection formulas for 3-D vector tomography with application to MRI. IEEE Trans. on Image Processing, 1996, 5(10): 1462-1472.
    [47] Muzio L. J., Eskinazi D., Green S. F., Acoustic pyrometry: new boiler diagnostic tool. Power Engineering, 1989. (11): 49-52.
    [48] Shogo T. Measurement of temperature distribution in boilers using acoustic sensors. SICE, 1999. 35(9): 1147-1153.
    [49] J. A. Kleppe, The reduction of NOx and NH3 “slip” in waster-to-energy boilers using acoustic pyrometry. In Power-gen. Americas’93, Session 11. Alternate Energy Sources, SEI Inc., 1993.
    [50] Larry G. Yori P.E., Applications and benefits of BOILERWATCH: acoustic gas temperature measurement systems in fossil fueled power boilers. (Technical data of SEI Inc.).
    [51] Methods for gas temperature measurement in boilers and furnaces and benefits of SEI BOILERWATCH acoustic pyrometry gas temperature measurement systems. (Technical data of SEI Inc.).
    [52] R. Roubicek, Installation of a Thermal Mapping Acoustic Pyrometer System on a High Vacuum Furnace. (Technical data of SEI Inc.), 2002.
    [53] Roberto Roubicek, Gas temperature measurement in the fireside of the process heaters - using acoustic pyrometry. In The 2003 NPRA Maintenance Conference (in Salt Lake City, Utah, 2003).
    [54] D. M. Deuster, Aldenhoven, Applications of Acoustic Gas Temperature Measuring Systems in Waste to Energy Plants. (Technical data of AGAM), 2000.
    [55] Zhou HC, Lou C, Cheng Q, et al, Experimental investigations on visualization of three-dimensional temperature distributions in a large-scale pulverized-coal-fired boiler furnace. Proceedings of the Combustion Institute, 2005, 30: 1699-1706.
    [56] W. Derichs, F. Hess, K. Menzel and E. Reinartz, Acoustic pyrometry: A correlation between temperature distributions and the operating conditions in a Brown coal fired boiler. In 2nd International Conference On Combustion Technologies For A Clean Environment (Lisbon, Portugal, July 19-22, 1993).
    [57] M. Bramanti, E. A. Salerno, A. Tonazzini, S. Pasini and A. Gray, An acoustic pyrometer system for tomographic thermal imaging in power plant boilers. IEEE Trans. On Instrum. Measurem., 1996, 45, 159-167.
    [58] 刘彤, 荆欣, 庞力平, 发展中的锅炉炉内温度测量技术. 现代电力, 2002, 19(4): 14-20.
    [59] 吴建军, 邵富群, 电厂锅炉若干重要在线自动测量技术. 控制工程, 2003, 10(2): 182-185.
    [60] 邵富群, 吴建云, 声学法复杂温度场的重组测量. 控制与决策, 1999, 14(2): 120-124.
    [61] 姜根山, 安连锁, 杨 昆, 温度梯度场中声线传播路径数值研究. 中国电机工程学报, 2004, 24(10): 210-214.
    [62] 田 丰, 邵富群, 王福利, 陈 松, 基于弯曲路径的复杂温度场重建算法仿真研究. 系统仿真学报, 2003, 15(5): 621-623.
    [63] 安连锁, 宋志强, 姜根山, 沈国清, 考虑声波折射的声学锅炉温度场测量技术的研究. 动力工程, 2005, 25(3):378-381.
    [64] 孙小平, 田 丰, 刘立云等, 基于声波传感器的炉内温度测量方法研究. 仪表技术与传感器, 2005, (2): 26-28.
    [65] 张晓东, 高 波, 宋之平, 互相关函数法在声学测温技术中的应用研究. 中国电机工程学报, 2003, 23(4): 185-188.
    [66] 黄庆康, 声学炉内温度场实时监测系统. 电站系统工程, 2000, 16(4): 221-223.
    [67] S. F. Green, Acoustic temperature & velocity measurement in combustion gases. Proc. Eighth Int. Heat Transfer Conf., San Francisco, USA, 1986: 555-560.
    [68] Helmut Sielschott, Measurement of horizontal flow in a large scale furnace usingacoustic vector tomography. Flow Meas. Instrum., 1997, 8(3): 191-197.
    [69] Zhou HC, Han SD, Sheng F, Zheng CG. Visualization of three-dimensional temperature distributions in a large-scale furnace via regularized reconstruction from radiative energy images: numerical studies. JQSRT, 2002, 72(4): 361-383.
    [70] Helmut Sielschott, Frank Wübbeling, Waveform Inversion in Acoustic Pyrometry. In 1st World Congress on Industrial Process Tomography, Buxton, Greater Manchester, 1999: 538-541.
    [71] J Lu, K Wakai, S Takahashi, et al, Acoustic computer tomographic pyrometry for two-dimensional measurement of gases taking into account the effect of refraction of sound wave paths. Meas. Sci. Technol., 2000, 11(3): 692–697.
    [72] 张大力, 吴建成, 刘家琦, 张显杰, 一种弯曲射线层析成象方法. 哈尔滨工业大学学报, 1995, 27(2): 8-11.
    [73] 马宁, 胡正仪, 唐雪原等, 一种基于弯曲射线的走时层析成象算法. 信号处理, 1996, 12(4): 332-337.
    [74] 陈裕明, 李晶, 张海燕等, 最小时间两点射线追踪. 石油地球物理勘探, 2002, 37(5): 455-459.
    [75] Schwarz A. Three-dimensional reconstruction of temperature and velocity fields in a furnace. Part. Part. Syst. Charact.. 1995, 12: 75-80.
    [76] Teerawatanachai, S., Komiya, K., Sasamoto, H., Estimating the velocity profile of air flow by means of the ultrasonic translation time computed tomography method. In IECON’91 Proceedings: 2379-2384.
    [77] Komiya, K.-I. and Teerawatanachai, S., Ultrasonic tomography for visualizing the velocity profile of air flow. Flow Meas. Instrum., 1993, 4: 61–65.
    [78] Pellejero, I., Zivanovic, M., Arroabarren, I., et al, Application of multitone signals in room acoustics measurements. In IEEE Instrum. And Meas., Technology Conference, Budapest, Hungary, May 21-23, 2001.
    [79] 曹红加, 聂超群, 那永洁等, 声波对锥形预混火焰表面温度脉动的影响. 中国电机工程学报, 2004, 24(10): 201-204.
    [80] M. Fleifil, A. M. Annaswamy, Z. A. Ghoneim, A. F. Ghoniem, Response of a laminar flame to flow oscillations: A kinematic model and thermoacousticinstability results. Combustion and Flame, 1996, 106(4): 487-498.
    [81] Gallego-Juarez J. A., de Sarabia E. R. –F., Rodriguez-Corral G., Hoffmann T. L., et al, Application of acoustic agglomeration to reduce fine particle emissions from coal combustion plants. Environmental Science and Technology, 1999, 33(2): 3843-3849.
    [82] 姜根山, 安连锁, 杨昆, 锅炉换热器管道泄漏口声辐射指向性特征数值研究. 中国电机工程学报, 2002, 22(6): 126-131.
    [83] 安连锁, 姜根山, 水冷壁管道泄漏声场分布特征数值研究. 中国电机工程学报, 2004, 24(12): 268-272.
    [84] Yukio Fukayama, Noriyuki imada, Katsuml Shimohira, et al, A Combustion Control Applying an Acoustic Gas Temperature Measuring Technique. In JFRC 20th Anniversary, 1997.
    [85] 李言钦, 周怀春, 何其伟, 采用声波法监测四角切圆流场二维分布特性的模拟研究. 中国电机工程学报,2003. 23(11): 215-291.
    [86] 李言钦, 周怀春, 声波法监测锅炉炉膛二维复杂空气动力场模拟研究. 动力工程, 2004, 6(24): 837-839.
    [87] LI Yan-qin, ZHOU Huai-chun, Experimental study on acoustic vector tomography of 2-D flow field in an experiment-scale furnace. Flow Meas. Instrum., 2006, 17: 113-122.
    [88] 李言钦, 周怀春, 声波法监测炉膛动力场的实验研究. 中国电机工程学报, (已录用).
    [89] 王 涌, 车 刚, 徐通模等, 数值计算在炉内流场研究中的应用. 西北电力技术, 2000, 28(1): 35-37.
    [90] 钱学森著, 徐华舫译, 气体动力学基本原理-A 编: 气体动力学诸方程. 北京: 科学出版社, 1966.
    [91] 童秉纲, 孔祥言, 邓国华, 气体动力学. 北京: 高等教育出版社, 1990.
    [92] 周怀春, 炉内火焰可视化检测原理与技术. 北京: 科学出版社, 2005.
    [93] 马大猷, 现代声学理论. 北京: 科学出版社, 2004.
    [94] 夏正良主编, 数字图像处理(修订版). 南京: 东南大学出版社, 1999.
    [95] Sielschott H., and Derichs, W. Tomography with few data: Use of collocation methods in acoustic pyrometry. In ECMI’94, Student Proceedings (Kaiserslautern, Germany, 1996): 251–263.
    [96] Sielschott, H. and Derichs, W., Use of collocation methods under inclusion of a priori information in acoustic pyrometry. In Beck, M.S. et al., eds., Process Tomography—1995, Implementation for industrial purposes (UMIST, Manchester, 1995): 110–117.
    [97] Hanson, K. M. and Wecksung, G. W., Local basis function approach to computed tomography. Applied Optics, 1985, 24: 4028–4039.
    [98] 孟莉, 刘积仁, 岩间尚文, 利用 GCV 优化的正则化方法对硬 X 射线望远镜图象重建研究. CT 理论与应用研究, 1998, 7(3): 7-11.
    [99] 刘元亨等, 近感检测原理. 西安: 西北工业大学出版社, 1998.
    [100] 伊藤文夫, 坂井正康, Fundamental studies of acoustic measurement and reconstructing combustion temperatue in large boilers. 日本机械工程师学会论文集(B 编), 1986, 53(489): 1610-1614.
    [101] 陶擎天等, 音频声学测量. 北京: 中国计量出版社, 1986.
    [102] [美]海因斯著, 张建华等译, 数字信号处理. 北京: 科学出版社, 2002.
    [103] 邹 鲲, 袁俊泉, MATLAB 6.x 信号处理. 北京: 清华大学出版社, 2002.
    [104] 姚天任, 现代数字信号处理. 武汉: 华中科技大学出版社, 2001.
    [105] 陈 峰, 成新民, 基于小波变换的信号去噪技术及实现. 现代电子技术, 2005, 28(3): 11-13.
    [106] 杨福生, 小波变换工程分析与应用. 北京: 科学出版社, 1999.
    [107] 杨福生, 随机信号分析. 北京: 清华大学出版社, 1990.
    [108] 孙学信, 燃煤锅炉燃烧试验技术与方法. 北京: 中国电力出版社, 2002.
    [109] 孙鹤泉, 康海贵, 李广伟, PIV 的原理与应用. 水道港口, 2002, 23 (1): 42-45.
    [110] 赵学端, 廖其奠, 粘性流体力学(第 2 版). 北京: 机械工业出版社, 1993.
    [111] 徐士良, 计算机常用算法 (第 2 版). 北京: 清华大学出版社, 1995.
    [112] 袁曾任编著, 人工神经网络及其应用(第 1 版). 北京: 清华大学出版社, 1999.
    [113] 高隽编著, 人工神经网络原理及仿真实例. 北京: 机械工业出版社, 2003.
    [114] Rumelhart D. E, et al, Learning Representation by BP Errors. Nature (London), 1986, 7: 149-154.
    [115] 阮 伟, 周俊虎等, 优化配煤理论的研究以及配煤专家系统的开发. 动力工程, 1999, 19(6): 434-437.
    [116] 刘革辉, 郑楚光, 电站用煤结渣预报的自适应模糊神经网络方法. 华中理工大学学报, 2000, 28(3): 108-110.
    [117] 魏延华, 模糊神经网络技术在流化床锅炉中的应用. 辽宁工程技术大学学报(自然科学版), 2000, 19(6): 608-610.
    [118] 赵 勇, 冯纯伯, 时变最优化信息处理技术及其应用(Ⅱ)——前馈神经网络学习算法. 东南大学学报, 1999, 29(4): 98-102.
    [119] 丛 爽编著, 面向 MATLAB 工具箱的神经网络理论与应用. 合肥: 中国科学技术大学出版社, 1998.
    [120] 邓念武, 邱福清, 徐晖, BP 模型在土石坝资料分析中的应用. 武汉大学学报,34(4): 17-20.
    [121] 岑可法, 锅炉燃烧实验研究方法及测量技术. 北京: 水利电力出版社, 1987.
    [122] 姜兴华等编, 流体力学. 成都: 西南交通大学出版社, 1999.
    [123] 张 颖, 陈建萍, 陈积懋, 模态声发射的噪声剔除技术. 航空制造技术, 2002, (12): 55-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700