莳萝子挥发油抗真菌活性及其作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着广谱抗生素、糖皮质激素、免疫抑制剂等广泛的应用,念珠菌和皮肤癣菌等真菌引起的真菌感染日益增加,临床真菌感染的发病率和死亡率呈逐年上升趋势。目前,临床常用抗真菌药物主要是唑类药物和两性霉素B,这些抗真菌药物均对人体有不同程度的毒副作用;且随着抗真菌药物的广泛应用,临床上出现越来越严重的真菌耐药现象。因此,临床上迫切需要寻找一种新的抗真菌药物来治疗真菌感染。
     挥发油是植物体内次生代谢产物之一。据报道,挥发油具有抗菌驱虫、抗炎、抗病毒、抗氧化、抗肿瘤、解热镇痛、祛痰止咳等多种生物活性。莳萝子是伞形科草本植物莳萝的种子,具有香气。其挥发油具有降血脂、抗氧化、抗菌等多种生物活性。
     本研究是以莳萝子挥发油为研究对象,研究其体外体内抗菌活性和抗菌机制。
     1.采用水蒸气蒸馏法,提取莳萝子挥发油。并研究莳萝子存储时间对挥发油得率和抗菌活性的影响。实验结果表明,随着储存时间的延长,莳萝子挥发油得率有所降低,储存一年后,莳萝子挥发油得率降低了39.02%。采用GC-MS对莳萝子挥发油进行分析,从莳萝子挥发油中共鉴定出23个化合物,占总含量的99.4%。主要物质有香芹酮(41.5%),柠檬烯(32.6%)及芹菜脑(16.8%)等。采用高效气相色谱法,依据香芹酮和柠檬烯标准曲线测定了不同储存时间莳萝子的挥发油中香芹酮和柠檬烯的含量,分析和评价储存时间对莳萝子挥发油主要成分(香芹酮和柠檬烯)含量的影响。结果表明,储存时间对莳萝子挥发油主成分(香芹酮和柠檬烯)的含量基本上没有影响。
     2.采用美国临床实验室标准化委员会(NCCLS)制定的真菌敏感性测定方案(M38-A2)采用微量稀释法测定莳萝子挥发油对皮肤癣菌的最低抑菌浓度(MIC),用带毒平板法测定莳萝子挥发油对皮肤癣菌菌丝抑制作用。研究莳萝子挥发油对皮肤癣菌孢子萌发和生物量的影响。进一步以红色毛癣菌为代表菌株,研究莳萝子挥发油对皮肤癣菌细胞膜中麦角固醇含量、线粒体中苹果酸脱氢酶、琥珀酸脱氢酶、三磷酸腺苷酶活性的影响。结果表明莳萝子挥发油抑制皮肤癣菌MIC为0.156-0.312μL/mL。当莳萝子挥发油浓度为1.25μL/mL时能完全抑制皮肤癣菌菌丝生长。不同浓度莳萝子挥发油对皮肤癣菌孢子萌发和生物量都有抑制作用,与浓度呈正相关。莳萝子挥发油处理红色毛癣菌后能减少细胞膜中麦角固醇的合成,降低线粒体中苹果酸脱氢酶、琥珀酸脱氢酶、三磷酸腺苷酶活性,表明莳萝子挥发油通过破坏细胞膜和线粒体达到抗菌效果。
     3.采用美国临床实验室标准化委员会(NCCLS)制定的真菌敏感性测定方案(M27-A3)采用微量稀释法测定莳萝子挥发油对念珠菌(Candida spp.)的最低抑菌浓度(MIC);在液体培养基中,观察不同浓度莳萝子挥发油对Candida spp生长曲线的影响以及Candida spp经莳萝子挥发油处理后的芽管萌发情况。由实验结果可知莳萝子挥发油对Candida spp具有较强抑制作用,MIC为0.312-0.625μL/mL;莳萝子挥发油在浓度为1.25-2.5μL/mL范围内能完全抑制Candida spp生长;由芽管萌发实验可知,莳萝子挥发油浓度为0.625μL/mL时,白色念珠菌(C.albicans09-1522)、克柔念珠菌(C. krusei09-1681)、热带念珠菌(C. tropicalis032)、近平滑念珠菌(C.parpapsilosis07-305)芽管形成率分别为3.33%、2.33%、1.67%、1.33%,说明莳萝子挥发油能抑制Candida spp芽管萌发。进一步用XTT法测定莳萝子挥发油对Candida spp生物膜形成的抑制作用,结果表明当莳萝子挥发油浓度大于0.312μL/mL能抑制(Candida spp生物膜的形成。用XTT法检测莳萝子挥发油对Candidaspp.成熟生物膜的活性的影响,结果表明,莳萝子挥发油能降低Candida spp生物膜的活性。比较莳萝子挥发油对Candida spp生物膜和悬浮细胞的抑制作用,结果表明挥发油抑制悬浮细胞作用强于生物膜。
     4.采用小鼠免疫抑制模型进行体内实验,评价莳萝子挥发油对阴道念珠菌病的预防和治疗作用。结果表明莳萝子挥发油浓度为2%(v/v)能清除小鼠阴道C.albicans,真菌检验和组织病理检查证明了莳萝子挥发油对阴道念珠菌病有较强的防治作用。
     5.以细胞膜和线粒体为靶标点研究莳萝子挥发油对C.albicans的抗菌机制,采用碘化吡啶染色法测定莳萝子挥发油对C.albicans细胞膜的损坏,结果表明莳萝子挥发油能严重破坏C.albicans的细胞膜。本实验进一步测定莳萝子挥发油对C.albicans线粒体功能的影响。采用罗丹明染色法测定莳萝子挥发油作用后C.albicans的线粒体膜电势、分光光度法测定线粒体脱氢酶活性、染色法测定线粒体内活性氧含量。结果表明莳萝子挥发油导致C.albicans线粒体膜电势超级化和线粒体内脱氢酶的活性被显著抑制。莳萝子挥发油所致线粒体功能的异常导致线粒体内活性氧累积,抗氧化剂半胱氨酸不但可以抑制莳萝子挥发油诱导的线粒体内活性氧累积,而且可以抑制莳萝子挥发油的抗真菌活性,说明活性氧是莳萝子挥发油发挥抗真菌作用的关键介质。
     6.活性氧是真菌凋亡的关键调节因子,因此,本实验进一步研究莳萝子挥发油诱导C.albicans线粒体活性氧累积是否导致真菌凋亡。采用透射电镜观察莳萝子挥发油作用于C.albicans后细胞超微结构的改变,采用共聚焦显微镜观察DAPI染色后细胞核的形态变化,FITC-AnnexinV染色后C.albicans磷脂酰丝氨酸的外翻、FITC-VAD-FMK荧光染色法测定莳萝子挥发油作用后白色念珠菌(C.albicans)的Metacaspase活性,分光光度法测定线粒体内细胞色素C含量。结果表明莳萝子挥发油导致C.albicans出现典型的凋亡特征,如染色质凝集、细胞核浓缩和磷脂酰丝氨酸的外翻,说明莳萝子挥发油导致了C.albicans细胞凋亡。莳萝子挥发油促进C.albicans线粒体内细胞色素C的释放,并激活了Metacaspase。抗氧化剂半胱氨酸抑制挥发油导致的细胞核裂解,磷脂酰丝氨酸的外翻以及Metacaspase的活化,提示活性氧是莳萝子挥发油导致细胞凋亡的重要介质,实验结果表明莳萝子挥发油通过引起C.albicans线粒体活性氧累积,进而激活Metacaspase诱导真菌凋亡,从而发挥其抗真菌作用。
The incidence of fungal infections (such as Candida spp. and Dermatophyte) has increased dramatically, causing high morbidity and mortality. The more the broad-spectrum antibiotics, corticosteroids, immunosuppressive agents are used by humans, the easlier they get fungal infections. Currently, with the large scale application of broad-spectrum antifungal agents and the introduction of protocols for antifungal prophylaxis in patients at risk, there has been a notable increase in drug resistance. The development of more effective antifungal therapies is therefore of paramount importance.
     Essential oil is one of secondary metabolites in plants. It is reported that essential oil has antibacterial insecticide, anti-inflammatory, antiviral, antioxidant, antitumor, antipyretic and analgesic, expectorant cough and other biological activity. A. graveolens (dill), one of species of Umbelliferae, is a traditional Chinese herb. Dill seed essential oil have antioxidant, antimicrobial and other biological activity.
     In this paper, the activities (in vitro and in vivo) and mechanism of the seed of Anethum graveolens L. against fungal were researched.
     1. The dill seed essential oil was obtained by steam distillation. The chemical composition of the DSEO was analyzed by gas chromatography-mass spectral (GC-MS) spectroscopy. Twenty-three compounds, constituting about99.4%of the total essential oil, were identified. The most abundant oil components are carvone (41.5%), limonene (32.6%), apiole (16.8%).We study the storage of dill seeds at different time on the yield and main composition of DSEO. Besides, antifungal activity of DSEO on Candida spp. and dermatophytes when dill seeds storage different time. The results showed that the yield of DSEO was reduced. The yield of DSEO was reduced39.02%after storage one year. The storage time of dill seeds had little effect on the content of carvone and limonene.
     2. The microbroth dilution method was used in the minimal inhibitory concentration (MIC), according to M38-A2of the guidelines of the Clinical and Laboratory Standard Institute (CLSI). The effect of DSEO on hyphal growth of dermatophyte by agar dilution method. And then, we study DSEO on spore germination and biomass of dermatophyte. The results showed that DSEO was active in vitro against all tested strains, with MICs ranging from0.156-0.312μL/mL for dermatophyte. All tested stains were completely inhibited by DSEO at1.25μL/mL. The spore germination of dermatophyte were inhibited, and the biomass of dermatophyte were reduced on dose-dependent by DSEO.The further study the effect of DSEO on ergosterol content, and the activity of the Malate Dehydrogenase (MDH), Succinate Dehydrogenase (SDH), T-ATPase of T. rubrum ATCC40051. The results showed that ergosterol biosynthesis were inhibited and the activities of MDH, SDH andT-ATPase of T. rubrum ATCC40051were reduced by DSEO. It means that DSEO antidermatophytic through mitochondrial and membrance dysfunction
     3. The microbroth dilution method was used in the minimal inhibitory concentration (MIC), according to M27-A3of the guidelines of the Clinical and Laboratory Standard Institute (CLSI). And then, Growth curves and germ tube formation of Candida spp. inhibited by DSEO. The results showed essential oil was active in vitro against all tested strains, with MICs ranging from0.312-0.625μL/mL for Candida spp. All tested stains were completely inhibited bydill seed essential oil at1.25-2.5μL/mL.The germ tube formation rate were3.33%,2.33%,1.67%,1.33%for C. albicans09-1522、C. krusei09-1681、C. tropicalis032、C. parpapsilosis07-305, respectively, while the dill seed essential oil concentration at0.625μL/mL, it means that the germ tube formation were inhibited by dill seed essential oil. Further,
     The biofilm metabolic activity of Candida spp. were measured by XTT reduction assay.The result showed that dill seed essential oil severly inhibited Candida spp.strains from forming biofilms at concentrations>0.312μL/mL. Candida spp. strains biofilms treated with dill seed essential oil showed a significant reduction in metabolic activity when viability was measured by XTT reduction assay.The susceptibility of fungal biofilms to dill seed essential oil was investigated and compared with that of planktonic yeast cells. The result showed Candida spp. biofilms were significantly more resistant to dill seed essential oil than their planktonic counterparts.
     4. Efficacy evaluation of essential oil in the prophylaxis and treatment of experimental vaginal candidiasis was performed in immunosuppressed mice. The anti-Candida activity was analyzed by microbiological and histological techniques and was compared with that of fluconazole (FCZ). Essential oil (2%v/v) was highly efficacious in accelerating C. albicans09-1555clearance from experimentally infected mice vagina by prophylaxis and therapeutic treatments. In both therapeutic efficacy and prophylaxis studies, the histological findings confirmed the microbiological results. The experimental results revealed that the tested essential oil is effective against vulvovaginal candidiasis in immunosuppressed mice.
     5. Effect of dill seed essential oil on membrane of Candida albicans by pyridine iodine staining and UVspectrophotometry. The result showed that membrane of Candida albican were severly damaged by dill seed essential oil. We assayed the mitochondrial membrane potential (mtAy) using rhodamine123and detected the antivities of mitochondrial dehydrogenases by spectrophotometry. Besides, the mitochondrial dysfunction-induced reactive oxygen species (ROS) production was determined by a fluorometric assay, and the effects of antioxidant L-cysteine on DSEO-induced ROS production and the antifungal effect of DSEO on C.albicans were also investigated. The results showed that exposure to DSEO resulted in an elevation of (mtΔΨ) and inhibition of the mitochondrial dehydrogenases. The dysfuntions of mitochondria caused ROS accumulation in C.albicans, and the increase in the level of ROS production and DESO-induced decrease in cell viability were prevented by addition of L-cysteine, indicating that ROS was an important mediator of the antifungal action of DSEO. In summary, DSEO exert its antifungal activity through mitochondrial dysfunction induced ROS accumulation in C.albicans.
     6. The ROS are a key regulator to yeast apoptosis. As a consequence, the further study was designed to investigate whether DSEO induced apoptosis in C.albicans.We observed the ultrastructure by transmission electron microscopy, studied the nuclear fragmentation by DAPI staining, and investigated the expore of phosphatidylserine at the outer layer of the cytoplasmic membrane by the FITC-Annexin V staining. Besides, the activity of metacaspase was detected by FITC-V AD-FMK staining, and the release of cytochrome C from mitochondria was also determined. Furthermore, the effect of antioxidant L-cysteine on DSEO-induced apoptosis in C.albicans was also investigated. The results showed that cells treated with DSEO showed typical markers of apoptosis, such as phosphatidylserine exposure, nuclear fragmentation, chromatin condensation. Besides, DSEO promoted the cytochrome C release and activated the metacaspase, which resulted in the yeast apoptosis. The addition of L-cysteine prevented DSEO-induced nuclear fragmentation, phosphatidylserine exposure, and metacaspase activation, indicating the ROS was an important mediator of DSEO-induced apoptosis. In summary, DSEO induced apoptosis in C.albicans through a metacaspase-dependent apoptotic pathway.
引文
1. 车斌和谢为民.抗真菌药物的分类及研究进展概述.海峡药学.2008,20(12):110-113.
    2. 冯俊奇,李秀兰,白人骁.细胞凋亡机制研究进展.国际生物学工程杂志,2006,29(1):45-47.
    3. 国家中医药管理局《中华本草》编委会编著.中华本草,维吾尔药卷. 上海:上海科学技术出版社,2005:399.
    4. 金育忠,石长栓,王力洁,等.莳萝籽挥发油化学成分的研究.中草药,1996,11:654.
    5. 梁智辉,朱慧芬,陈九武.流式细胞术基本原理与实用技术.华中科技大学出版社,2008:115-140.
    6. 罗曼,蒋立科.柠檬醛损伤黄曲霉线粒体生化机理的研究.微生物学报,2002,42(2):226-228
    7. 刘勇民.维吾尔药志(下册).鸟鲁木齐:新疆科技卫生出版社,1999:661.
    8. 施国安.真菌耐药的现状与对策.2005,3:243-245.
    9. 叶丽娟,王辂,朱辉.抗真菌药物作用机制及真菌耐药机制的研究进展.国外医药抗生素分册,2006,27(5):221-224.
    10.周智兴.黄芩苷:、IgY抗白色念珠菌作用机制研究.硕士学位论文.2006.
    11.郑岳臣.医学真菌学.上海科学技术出版社,2005,53-171.
    12. Abu-Elteen KH, Malek MA. Prevalence of dermatophytoses in the Zarqa district of Jordan. Mycopathologia,1999,145:137-142.
    13. Adrian C, Martin SJ. The mitochondrial apoptosome:a killer unleashed by the cytochrome seas. Trends Biochem Sci,2001,26:390-397
    14. Aerts AM, Carmona-Gutierrez D, Lefevre S, et al. The antifungal plant defensin RsAFP2 from radish induces apoptosis in a metacaspase independent way in Candida albicans FEBS Letters, 2009,583:2513-2516
    15. Agarwal V, Lal P, Pruthi V. Prevention of Candida albicans biofilm by plant oils. Mycopathologia,2008,165(1):13-19.
    16. Al-Fattani MA, Douglas LJ. Biofilm matrix of Candida albicans and Candida tropicalis:chemical composition and role in drug resistance. J Med Microbiol,2006,55(8):999-1008
    17. Al-Ismail KM, Aburjai T.Antioxidant activity of water and alcohol extracts of chamomile flowers, anise seeds and dill seeds, Journal of the Science of Food and Agriculture, 2004,84:173-178.
    18. Aly R. Ecology and epidemiology of dermatophyte infections. J Am Acad Dermatol,1994,31: S21-S25.
    19. Almirante B, Rodriguez D, Park BJ, et al. Epidemiology and predictors of mortality in cases of Candida bloodstream infection:results from population-based surveillance, Barcelona, Spain, from 2002 to 2003. J Clin Microbiol,2005,43(4):1829-1835.
    20. Akkoyun HT, Dostbil N. Antibacterial activity of some species of Umbelliferae. Asian Journal of Chemistry,2007,19:4862-4866.
    21. Ameisen JC. The origin of programmed cell death. Science,1996,272:1278-1279
    22. Anita Jain SS, Katewa BL, Chaudhary, et al. Folk herbal medicines used in birth control and sexual diseases by tribals of southern Rajasthan India. Journal of Ethnopharmacology,2004, 90:171-177.
    23. Arora DS, Kaur GJ. Antibacterial activity of some Indian medicinal plants. Journal of Natural Medicines,2007,61:313-317.
    24. Arthington-Skaggs BA, Jradi H, Desai T, et al.Quantification of ergosterol content:novel method for determination of fluconazole susceptibility of Candida albicans. J Clin Microbiol,1999,37: 3332-3337.
    25. Aviles P, Falcoz C, San Roman R, et al. Pharmacokinetics pharmacodynamics of a sordarin derivative (GM 237354) in a marine model of lethal candidiasis. Antimierob Agents Chemother, 2000,44(9):2333-2340.
    26. Baddley JW, Pappas PG. Antifungal combination therapy:clinical potential. Drugs,2005,65(11): 1461-1480.
    27. Bahramikia S, Yazdanparast R. Efficacy of Different Fractions of Anethum graveolens Leaves on Serum Lipoproteins and Serum and Liver Oxidative Status in Experimentally Induced Hypercholesterolaemic Rat Models. American Journal of Chinese Medicine,2009,37:685-699.
    28. Bakkali F, Averbeck S, Averbeck D, et al. Biological effects of essential oils A review. Food and Chemical Toxicology,2008. (46):446-475.
    29. Bailer J, Aichinger T, Hackl G, et al. Essential oil content and composition in commercially available dill cultivars in comparison to caraway. Industrial Crops and Products,2001, 14:229-239.
    30. Bajpai VK, Yoon JI, Kang SC. Antifungal potential of essential oil and various organic extracts of Nandina domestica Thunb. against skin infectious fungal pathogens. Applied Microbiology and Biotechnology,2009,83:1127-1133
    31. Balietti M, Fattoretti P, Skalicky M, et al.Bertoni-Freddari C. The effect of chronic physical exercise on succinic dehydrogenase activity in the heart muscle of old rats. Biogerontology,2005, 6:95-100
    32. Barchiesi F, Schimizzi AM, Najvar LK, et al. Interactions of posaconazole and flucytosine against Cryptococcus neoformans. Antimicrob Agents Chemother,2001,45(5):1355-1359.
    33. Bassetti M, Righi E, Costa A, et al. Epidemiological trends in nosocomial candidemia in intensive care. BMC Infect. Dis,2006,10:21-26
    34. Bauer KD. Quality control issues in DNA content flow cytometry. In:Ann N Y Acad Sci,1993, 677:59-77
    35. Blanka H, Viktor A, Czaika Markus F. Epidemiological trends in skin mycoses worldwide. Mycoses,2008,51:2-15
    36. Bonini MG, Rota C, Tomasi A, Mason RP. The oxidation of 2',7'-dichorofluorescin to reactive oxygen species:a self-fulfilling prophes? Free Radic Biol Med,2006,40:968-975.
    37. Brand MD, Chien LF, Ainscow EA,et al. The causes and functions of mitochondrial proton leak. Biochim Biophys Acta,1994,1187:132-139
    38. Braga PC, Alfieri M, Culici M, et al. Inhibitory activity of thymol against the formation and viability of Candida albicans hyphae. Mycoses,2007,50(6):502-506.
    39. Brajtburg J, Powderly WG, Kobayashi CS, et al. Amphotericin B:current understanding of mechanisms of action. Antimierob Agents Chemother,1990,34(2):183-188.
    40. Brilhante RS, Paixao GC, Salvino LK, et al. Epidemiology and ecology of dermatophytoses in the City of Fortaleza:Trichophyton tonsurans as important emerging pathogen of tineacapitis. Rev Soc Bras Med Trop,2000,33:417-425.
    41. Broomfield S, Chow BL, Xiao W. MMS2.encoding a ubiquitin-conjugating-enzyme-like protein, is a member of the yeast error-free postreplication repair pathway. PNAS.1998,95:5678-5683.
    42. Broza Saric-Kundalic, Christoph Dobes, Valerie Klatte-Asselmeyer, et al. Ethnobotanical study on medicinal use of wild and cultivated plants in middle, south and west Bosnia and Herzegovina. Journal of Ethnopharmacology,2010.1:33-35
    43. Burhans WC, Weinberger M, Marchetti MA, et al. Apoptosis-like yeast cell death in response to DNA damage and replication defects. Mutat Res,2003,532:227-243
    44. Busquet MS, Calsamiglia A, Ferret,et al. Plant extracts affect in vitro rumen microbial fermentation. Journal of Dairy Science,2006,89:761-771.
    45. Cabib E. Differential inhibition of chitin synthetases 1 and 2 from Saccharomyces cerevisiae by polyoxin D and nikkomycins. Antimicrob Agents Chemother,1991,35(1):170-173.
    46. Carson CF, Hammer KA, Riley TV. Melaleuca alternifolia (Tea Tree) oil:a review of antimicrobial and other medicinal properties. Clin Microbiol Rev,2006,19:50-62.
    47. Carson CF, Riley TV. Antimicrobial activity of the major components of the essential oil of Melaleuca alternifolia. J Appl Bacteriol,1995,78:264-269.
    48. Celik E, Ilkit M, Tanir F. Prevalence and causative agents of superficial mycoses in a textile factory in Adana, Turkey. Mycoses,2003,46:311-315.
    49. Cerbon J, Calderon V. Changes of the compositional asymmetry of phospholipids associated to the increment in the membrane surface potential.Biochim Biophys Acta,1991,1067:139-144.
    50. Chami F, Chami N, Bennis S,et al. Evaluation of carvacrol and eugenol as prophylaxis and treatment of vaginal candidiasis in an immunosuppressed rat model. J Antimicrob Chemother, 2004,54:909-914
    51. Chandrs J, Kuhn DM, Mukherjee PK, et al. Biofilm formation by the fungal pathogen Candida albicans:development, architecture, and drug resistance. J Bacteriol,2001,84(18):5385-5394.
    52. Chaubey MK. Fumigant Toxicity of Essential Oils from Some Common Spices against Pulse Beetle, Callosobruchus chinensis (Coleoptera:Bruchidae). Journal of Oleo Science,2008,57: 171-179.
    53. Chaubey MK. Insecticidal activity of Trachyspermum ammi (Umbelliferae), Anethum graveolens (Umbelliferae) and Nigella sativa (Ranunculaceae) essential oils against stored-product beetle Tribolium castaneum Herbst (Coleoptera:Tenebrionidae). African Journal of Agricultural Research,2007,2:596-600.
    54. Chi CC, Wang SH, Chou MC. The causative pathogens of onychomycosis in southern Taiwan. Mycoses,2005,48:413-20.
    55. Chen S, Slavin M, Nguyen Q, et al. Active surveillance for candidemia, Australia. Emerg Infect Dis,2006,12:1508-1516.
    56. Ciechanover A. The ubiquitin-proteasome pathway:on protein death and cell life. EMBO J,1998, 17:7151-7160.
    57. Clinical and Laboratory Standards Institute (CLSI):Performance standards for antimicrobial susceptibility testing. Eighteenth informational supplement CLSI document M100-S18, Wayne, PA, USA 2008.
    58. Colombo AL, Nucci M, Park BJ, et al. Epidemiology of candidemia in Brazil:a nationwide sentinel surveillance of candidemia in eleven medical centers. J Clin Microbiol,2006,44: 2816-2823.
    59. Cosentino S, Tuberoso CIG, Pisano B, et al. In vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. Letters in Applied Microbiology,1999, 29:130-135.
    60. Cox SD, Mann CM, Markham JL, et al. The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J Appl Microbiol,2000,88:170-175.
    61. Cox SD, Mann CM, Markham JL. Interactions between components of the essential oil of Melaleuca alternifolia. J Appl Microbiol,2001a,91:492-497
    62. Cox SD, Mann CM, Markham JL, et al. Determining the antimicrobial actions of tea tree oil. Molecules,2001 b,6:87-91.
    63. Dalleau S, Cateau E, Berges T, et al. In vitro activity of terpenes against Candida biofilms. Int J Antimicrob Ag,2008,31:572-576.
    64. Delaquis PJ, Stanich K, Girard B, et al. Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. International Journal of Food Microbiology,2002,74:101-109.
    65. Dominguez JM, Gomez-Lorenzo MG, Martin JJ. Sordarin inhibits fungal protein synthesis by blocking translocation differently to fusidic acid. J Biol Chem,1999,274(32):22423-22427.
    66. Douglas LJ. Candida biofilms and their role in infection. Trends Microbiol,2003,11(1):30-36.
    67. Durua ME, Cakirb A, Kordalic S, et al. Chemical composition and antifungal properties of essential oils of three Pistacia species. Fitoterapia,2003,74:170-176
    68. Duru ME, Ozturk M, Ugur A, et al. The constituents of essential oil and in vitro antimicrobial activity of Micromeria cilicica from Turkey. Journal of Ethnopharmacology,2004,94:43-48.
    69. Duarte MC, Figueira GM, Sartoratto A, et al. Anti-Candida activity of Brazilian medicinal plants. Journal of Ethnopharmacology,2005,97:305-311
    70. Elbein AD, Pan YT, Pastuszak L, et al. New insights on trehalose:a miltifunctional molecule. Glycobiology,2003,13(4):17-27.
    71. Ellabib MS, Khalifa Z, Kavanagh K. Dermatophytes and other fungi associated with skin mycoses in Tripoli, Libya. Mycoses,2002,45:101-104.
    72. Elgayyar MF, Draughon A, Golden DA, et al. Antimicrobial activity of essential oils from plants against selected pathogenic and saprophytic microorganisms. Journal of Food Protection, 2001,64:1019-1024.
    73. Enweani IB, Ozan CC, Agbonlahor DE. Dermatophytosis in school children in Ekpoma, Nigeria. Mycoses,1996,39:303-305.
    74. Fatope MO, Marwah RG, Onifade AK, et al. C-13 NMR analysis and antifungal and insecticidal activities of Oman dill herb oil. Pharmaceutical Biology,2006,44:44-49.
    75. Faleiro ML, Miguel MG, Ladeiro F, et al. Antimicrobial activity of essential oils isolated from Portuguese endemic species of Thymus. Letters in Applied Microbiology,2002,36:35-40.
    76. Fidel PL, Cutright J, Steele C. Effects of reproductive hormones on experimental vaginal candidiasis. Infec Immun,2000; 68:651-657
    77. Filipowicz N, Kaminski M, Kurlenda J,et al. Antibacterial and antifungal activity of Juniper Berry oil and its selected components. Phytotherapy Research,2003,17:227-231
    78. Fu ZJ,Lu H,Zhu ZY, et al. Combination of Baicalein and Amphotericin B Accelerates Candida albicans Apoptosis. Biol Pharm Bull,2011,2:214-218
    79. Giordani R, Regli P, Kaloustian J, et al. Antifungal effect of various essential oils against Candida albicans. Potentiation of antifungal action of amphotericin B by essential oil from Thymus vulgaris. Phytother Res,2004,18:990-995.
    80. Green DR, Reed JC. Mitochondria and apoptosis. Science,1998,281:1309-1312
    81. Gruhlke MCH, Portz D, Stitz M, et al. Allicin disrupts the cell's electrochemical potential and induces apoptosis in yeast. Free Radical Biology & Medicine,2010,49:1916-1924.
    82. Gunter TE, Pfeiffer DR. Mechanisms by which mitochondria transport calcium. Am J Physiol Cell Physiol,1990,258:C755-C786.
    83. Hajhashemi V, Abbasi N. Hypolipidemic activity of Anethum graveolens in rats. Phytotherapy Research,2008,22:372-375.
    84. Hammer KA, Carson CF, Riley TV. Antimicrobial activity of essential oils and other plant extracts. Journal of Applied Microbiology,1999,86:985.
    85. Hammer KA, Carsonl CF, Riley TV. Antifungal effects of Melaleuca alternifolia (tea tree) oil and its components on Candida albicans, Candida glabrata and Saccharomyces cerevisiae, journal of Antimicrobial Chemo therapy,2004,53:1081-1085.
    86. Havlickova B, Czaika VA, Friedrich M. Epidemiological trends in skin mycoses worldwide Blanka. Mycoses,2008,51:2-15
    87. Haworth RS, Cragoe EJ, Fliegel L. Amiloride and 5-(N-ethyl-N-isopropyl) amiloride inhibit medium acidification and glucose metabolism by the fission yeast Schizosaccharomyces pombe. Biochim Biophys Acta,1993,1145:266-272
    88. Hay R, Bendeck SE, Chen S, et al. Skin Diseases. In:Disease Control Priorities in Developing Countries,2nd edn. New York:Oxford University Press,2006:707-722.
    89. Helmerhorst EJ, Troxler RF, Oppenheim FG. The human salivary peptide histatin 5 exerts its antifungal activity through the formation of reactive oxygen species. PNAS,2001,98: 14637-14642.
    90. He M, Du MQ, Fan MW, et al. In vitro activity of eugenol against Candida albicans biofilms. Mycopathologia,2007,163(3):137-143.
    91. Hili P, Evans CS, Veness RG. Antimicrobial action of essential oils:the effect of dimethylsulphoxide on the activity of cinnamon oil. Letter in Applied Microbiology, 1997,24:269-275
    92. Hiramoto F, Nomura N, Furumai T, et al. Apoptosis-like cell death of Saccharomyces cerevisiae induced by a mannose-binding antifungal antibiotic, pradimicin. J Antibiot,2003,56:768-72
    93. Horn DL, Neofytos D, Anaissie EJ, et al. Epidemiology and outcomes of candidemia in 2019 patients:data from the prospective antifungal therapy alliance registry. Clin Infect Dis,2009,48: 1695-1703.
    94. Huang S, Cao YY, Dai B, et al. In vitro synergism of Fluconazole and baicalein against clinical isolates of Candida albicans resistant to fluonazole. Biol Pharm Bull,2008,31(12):2234-2236.
    95. Hwang B, Hwang JC, Lee L,et al. The antimicrobial peptide, psacotheasin induces reactive oxygen species. Biochemical and Biophysical Research Communications,2011,405:267-271. and triggers apoptosis in Candida albicans
    96. Inouye S, Tsuruoka T, Uchida K, et al. Effect of sealing and Tween 80 on the antifungal susceptibility testing of essential oils. Microbiol Immunol,2001,45:201-208.
    97. Ishikawa TM, Kudo M, Kitajima J. Water-soluble constituents of dill. Chemical and Pharmaceutical Bulletin,2002,55:501-507.
    98. Jeong SY, Seol DW. The role of mitochondria in apoptosis. BMB Rep.2008,41:11-22
    99. Jirovetz L, Buchbauer G, Stoyanova AS, et al. Composition, quality control, and antimicrobial activity of the essential oil of long-time stored dill(Anethum graveolens L.) seeds from Bulgaria. Journal of Agricultural and Food Chemistry,2003,51:3854-3857.
    100. Jorge MS, Faria, Ine's S, et al.Biotransformation of menthol and geraniol by hairy rootcultures of Anethum graveolens:effect on growth and volatile components, Biotechnol Lett,2009, 31:897-903.
    101. Juliano C, Mattana A, Usa M. Composition and in vitro antimicrobial activity of the essential oil of Thymus herba-barona Loisel growing wild in Sardinia. Journal of Essential Oil Research,2000,12:516-522.
    102. Justesen U, Knuthsen P. Composition of flavonoids in fresh herbs and calculation of flavonoid intake by use of herbs in traditional Danish dishes,Food Chemistry,2001,73:245-250.
    103. Kamble VA, Patil SD. Antimicrobial effects of certain spices and condiments used in an Indian indigenous system of medicine. Zeitschrift Fur Arznei-& Gewurzpflanzen,2007,12:188-193.
    104. Kapoor R, Giri B, Krishan G, et al. Glomus macrocarpum:a potential bioinoculant to improve essential oil quality and concentration in Dill(Anethum graveolens L.)and Carum (Trachyspermum ammi (Linn.) Sprague). World Journal of Microbiology & Biotechnology,2002, 18:459-463.
    105. Kaur GJ, Arora DS. Bioactive potential of Anethum graveolens, Foeniculum vulgare and Trachyspermum ammi belonging to the family Umbelliferae-Current status, Journal of Medicinal Plants Research,2010,4:87-94.
    106. Kaur GJ, Arora DS. Antibacterial and phytochemical screening of Anethum graveolens,Foeniculum vulgare and Trachyspermum ammi, Biomed cental,2009,9:1472-6882.
    107. Kawasaki M, Aoki M, Ishizaki H. Phylogenetic relationships of some Microsporum and Arthroderma species inferred from mitoehondrial DNA analysis. Mycopathologia, 1995,130(1):11-21
    108. Kirkpatriek CH. Fungal infections in HIV Patients. Ann N Y Acad Sci.1990,616:461-468.
    109. Kim ES, Kim DH, Chang SE, et al. Trichosporon species in onychomycosis and tinea pedis. Korean J Dermatol,2003,41:702-707
    110. Kroemer G, Reed JC. Mitochondrial control of cell death. Nat Med,2000,6:513-519
    111. Kojuri J, Vosoughi AR, Akrami M. Effects of Anethum graveolens and garlic on lipid profile in hyperlipidemic patients. Lipids in Health and Disease,2007,6:1-5.
    112. Kuhn DM, Balkis M, Chandra J, et al. Uses and Limitations of the XTT Assay in Studies of Candida Growth and Metabolism. J Clin Microbiol 2003,41:506-508
    113. Kumamoto CA. Candida biofilms. Cum Opin Microbiol,2002,5(6):608-611.
    114. Kumar A, Malik F,Bhushan S,et al. An essential oil and its major constituent isointermedeol induce apoptosis by increased expression of mitochondrial cytochrome c and apical death receptors in human leukaemia HL-60 cells. Chemico-Biological Interactions,2008,171 332-347
    115. Lari AR, Akhlaghi L, Falahati M, et al. Characteristics of dermatophytoses among children in an area south of Tehran, Iran. Mycoses,2005,48:32-37.
    116. Letscher-Bru V, Herbrecht R. Caspofungin:the first representative of a new antifungal class. J Antimicrob Chemother,2003,51:513-521.
    117. Li W, Sun L, Sun LB,et al. Yeast AMID homologue Ndilp displays respiration-restricted apoptotic activity and is involved in chronological aging. Mol Biol Cell.2006,17:1802-1811.
    118. Lippold HJ. Quantitative Succinic Dehydrogenases Histochemistry. Histochemistry 1982,76:381-405
    119. Lisiewska Z, Kmiecik WS, lupski J.Contents of chlorophylls and carotenoids in frozen dill: effect of usable part and pre-treatment on the content of chlorophylls and carotenoids in frozen dill(Anethum graveolens L.), depending on the time and temperature of storage, Food Chemistry, 2004,84:511-518.
    120. Lisiewska Z, Slupski J, Kmiecik W.Contents of macro and microelements in fresh and frozen dill (Anethum graveolens L.) Journal of Food Composition and Analysis,2005,4:737-743.
    121. Lisiewska Z, Kmiecik W, Korus A. Content of vitamin C, carotenoids, chlorophylls and polyphenols in green parts of dill(Anethum graveolens L.) depending on plant height,Journal of Food Composition and Analysis,2006,19:134-140.
    122. Lopez P, Sanchez C, Batlle R, et al. Solid-and vapor-phase antimicrobial activities of six essential oils:Susceptibility of selected foodborne bacterial and fungal strains. Journal of Agricultural and Food Chemistry,2005,53:6939-6946.
    123. Luminita P, Gergen I, Rujescu C, et al.Researches about antioxidant capacity, ascorbic acid and polyphenols contents in some vegetables,Bulletin of the University of Agricultural Sciences and Veterinary Medicine,2006,62:323-328,451.
    124. Lunde CS, Kubo I. Effect of polygodial on the mitochondrial ATPase of Saccharomyces cerevisiae. Antimicrob Agents Chemother,2000,44:1943-1953
    125. Madeo F, Frohlich E, Frohlich KU. A yeast mutant showing diagnostic markers of early and late apoptosis. J Cell Biol,1997,139:729-734
    126. Madeo F, Herker E, Wissing S, et al. Apoptosis in yeast. Curr Opin Microbiol.2004,7(6): 655-660
    127. Madeo F, Carmona-Gutierrez D, Ring J, et al.Caspase-dependent and caspase-independent cell death pathways in yeast. Biochem Biophys Res Commun,2009,382:227-231
    128. Maesaki S, Hossain MA, Miyazaki Y, et al. Efficacy of FK463,a (1,3)-beta-D-glucan synthase inhibitor, in disseminated azole-resistant Candida albicans infection in mice. Antimicrob Agents Chemother,2000,44(6):1728-1730.
    129. Magiatis P, Melliou E, Skaltsounis AL, et al.Chemical composition and antimicrobial activity of the essential oils of Pistacia lentiscus var. chia. Planta Medica,1999,65:749-752
    130. Malawista SE, Sato H, Bensch KG. Vinblastine and griseofulvin reversibly disrupt the living mitotic spindle. Science,1968,160:770-772.
    131. Male O. The significance of mycology in medicine. Frontiers in Mycology. Wallingford:CAB International,1990:131-156.
    132. Magwa ML, Gundidza M, Gweru N, et al. Chemical composition and biological activities of essential oil from theleaves of Sesuvium portulacastrum. Journal of Ethnopharmacology, 2006,103:85-89
    133. Maruyama N, Takizawa T, Ishibashi H, et al. Protective Activity of Geranium Oil and Its Component, Geraniol, in Combination with Vaginal Washing against Vaginal Candidiasis in Mice. Biol Pharm Bull,2008,31:1501-1506.
    134. Martins AP, Salgueiro LR, Goncalves MJ,et al. Antimicrobial activity and chemical composition of the bark oil of Croton stellulifer, an endemic species from S.Tome e Principe. Planta Medica, 2000,66:647-650
    135. Martin SJ, Reutelingsperger CP, McGahon AJ, et al.Early redistribution of plasma of apoptosis regardless of the initiating of Bcl-2 and Abl. J Exp Med,1995,182:1545-1556.
    136. Maria Lis-Balchin, Stephen Hart. A preliminary study of the effect of essential oils on skeletal and smooth muscle in vitro. Journal of Ethnopharmacology,1997,58:183-187.
    137. Melo AS, Bizerra FC, Freymuller E, et al. Biofilm production and evaluation of antifungal susceptibility amongst clinical Candida spp. isolates, including strains of the Candida parapsilosis complex. Med Mycol,2011,49(3):253-262
    138. Marino M, Bersani C, Comi G. Antimicrobial activity of the essential oils of Thymus vulgaris L. measured using a bioimpedometric method. Journal of Food Protection,1999,62:1017-1023
    139. Martinez A, Ferrer S, Santos I, et al. Antifungal activities of two new Azasordarins, GW471552 and GW471558, in experimental models of oral and vulvovaginal Candidiasis in immunosuppressed rats. Antimicrob Agents Ch,2001,45:3304-3309
    140. Maschmeyer G. The changing epidemiology of invasive fungal infections:new threats. Int J Antimicro Agents,2006,27:3-6.
    141. Min Z, Jia Jun W, Li L, et al. Clinical and mycological studies of 600 cases of tinea capitas in Shanghai. J Clin Dermatol,2004,33:11-12.
    142. Mishra NC, Kumar S. Apoptosis:a mitochondrial perspective on cell death. Indian J Exp Biol, 2005,43:25-34
    143. Mitsui K, Nakagawa D, Nakamura M, et al.Valproic acid induces apoptosis dependent of Ycalp at concentrations that mildly affect the proliferation of yeast, FEBS Lett.2005,579:723-727.
    144. Mondello F, De Bernardis F, Girolamo A, et al. In vivo activity of terpinen-4-ol, the main bioactive component of Melaleuca alternifolia Cheel (tea tree) oil against azole-sceptible and-resistant human pathogenic Candida species. BMC Infect Dis,2006,6:158-162.
    145. Mondello F, Bernardis DF, Girolamo A, et al. In vitro and in vivo activity of tea tree oil against azole-susceptible and -resistant human pathogenic yeasts. J Antimicrob Chemother,2003,51: 1223-1229
    146. Monsefi M, Ghasemi M, Bahaoddini A. The effects of Anethum graveolens L. on female reproductive system. Phytotherapy Research,2006,20:865-868.
    147. Mukhejiee PK, Sheehan DJ, Hitchcock CA. et al. Combination treatment of invasive fungal infections. Clin Microbiol Rev,2005,18(1):163-194.
    148. Narasimhan ML, Coca MA, Jin J, et al. Osmotin is a homolog of mammalian adiponectin and controls apoptosis in yeast through a homolog of mammalian adiponectin receptor. Mol Cell, 2005,17:171-180
    149. Narasimhan ML, Damsz B, Coca MA, et al. plant defense response effector induces microbial apoptosis. Mol Cell,2001,8:921-930.
    150. Nakamura CV, Ishida K, Faccin LC, et al. In vitro activity of essential oil from Ocimum gratissimum L. against four Candida species. Research in Microbiology,2004,155:579-586
    151. Nelson MM, Martin AG, Hefferman MP. Superficial fungal infections:dermatophytosis, onychomycosis, tinea nigra, piedra. Dermatology in General Medicine,2003:1989-2005.
    152. Niaz I, Sitara U, Qadri S. Effect of different seed oils and benlate fungicide on In vitro growth of four Drechslera species. Pakistan Journal of Botany,2008,40:397-401.
    153.Niimi K, Harding DRK, Parshot R. et al. Chemosensitization of fluconazole resistance in Saccharomyces cerevisiae and pathogenic fungi by a D-octapeptide derivative. Antimicrob Agents Chemother,2004,48:1256-1271
    154. Oliva B, Piccirilli E, Ceddia T, et al. Antimycotic activity of Melaleuca alternifolia essential oil and its major components. Lett Appl Microbiol,2003,37:185-187.
    155. Oumzil H, Ghoulami S, Rhajaoui M, et al. Antibacterial and antifungal activity of essential oils of Mentha suaveolens. Phytotherapy Research,2002,16:727-731
    156. Ozcan M. Effect of spice hydrosols on the growth of Aspergillus parasiticus NRRL 2999 strain. Journal of Medicinal Food,2005,8:275-278.
    157. Palmeira-de-Oliveira A, Salgueiro L, Palmeira-de-Oliveira R, et al. Anti-Candida Activity of Essential Oils,2009(9):1292-1305
    158. Panda S. The Effect of Anethum graveolens L. (dill) on Corticosteroid Induced Diabetes mellitus: Involvement of Thyroid hormones. Phytotherapy Research,2008,22:1695-1697
    159. Perrone GG, Tan SX, Dawes LW. Reactive oxygen species and yeast apoptosis. Biochim Biophys Acta,2008,1783:1354-1368.
    160. Pfaller MA, Diekema DJ, Andes D, et al. Integration of Molecular, Clinical, and Microbiological Data to Arrive at Species-Specific Interpretive Criteria. Drug Resist 2010,13:180-195
    161. Phillips AJ, Sudbery L, Ramsdale M. Apoptosis induced by environmental stresses and amphotericin Bin Candida albicans. Proc. Natl Acad Sci USA,2003,100:14327-14332
    162. Pina-Vaz C, Sansonetty F, Rodrigues A,et al. Cytometric approach for rapid evaluation of susceptibility of Candida strains to antifungals. Clin Microbiol Infect,2001,7:609-618
    163. Pina-Vaz C, Goncalves Rodrigues A, Pinto E, et al. Antifungal activity of Thymus oils and their major compounds. J Eur Acad Dermatol Venereol,2004,18(1):73-78.
    164. Pinto E, Pina-Vaz C, Salgueiro L, et al. Antifungal activity of the essential oil of Thymus pulegioides on Candida, Aspergillus and dermatophyte species. J Med Microbiol,2006, 55(10):1367-73
    165. Pinto E, Vale-Silva L, Cavaleiro C, et al. Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species. J Med Microbiol,2009, 58:1454-1462
    166. Prohic A. An epidemiological survey of tinea capitis in Sarajevo, Bosnia and Herzegovina over a 10-year period. Mycoses,2008,51:161-164.
    167. Qasem A, Al-Ismail K. Antioxidant activity of alcohol extracts of chamomile flowers, anise seeds and dill seeds in two vegetable oils and two animal fats, Grasas Y Aceites,2004,55: 345-353.
    168. Quan H, Cao YY, Xu Z, et al. Potent in vitro synergism of flucinazole and berberine chloride against clinical isolates of Candida albicans resistant to fluconazole. Antimicrob Agents Chemotber,2006,50(3):1096-1099.
    169. Rafii F, Shahverdi AR. Comparison of essential oils from three plants for enhancement of antimicrobial activity of nitrofurantoin against enterobacteria. Chemotherapy,2007,53:21-25.
    170. Raghavan S. Handbook of spices, seasoning and flavourings.2nd edition. CRC Press Taylor and Franci group, Boca Raton, New York,2006,63-64,104-105,107-109
    171.Ramage G, Vande Walle K, Wickes BL. Standardized Method for In Vitro Antifungal Susceptibility Testing of Candida albicans Biofilms. Antimicrob Agents Ch, 2001,45(9):2475-2479
    172. Ramage G, Saville SP, Thomas DP, et al. Candida biofilms:an update. Eukaryot Cell,2005,4: 633-638.
    173. Rana BK, Singh UP, Taneja V. Antifungal activity and kinetics of inhibition by essential oil isolated from leaves of Aegle marmelos. Journal of Ethnopharmacology,1997,1:29-34.
    174. Rasooli I, Abyaneh MR. Inhibitory effects of Thyme oils on growth and aflatoxin production by Aspergillus parasiticus. Food Control,2004:479-483.
    175. Rodriguez RJ, Low C, Bottema CD, et al. Multiple functions for sterols in Saccharomyces cerevisiae. Biochim Biophys Acta,1985,837:336-343
    176. Ruhnke M. Epidemiology of Candida albicans infections and role of non-Candida-albicans yeasts. Curr Drug Targets,2006,7:495-504.
    177. Ryder NS, Leitner I. Synergistic interaction of terbinafine with triazoles or amphotericin B against Aspergillus species. Med Mycol,2001,39(1):91-95
    178. Ryder NS. Inhibition of squalene epoxidase and sterol sidechain methylation by allylamines. Biochem Soc Trans,1990,18:45-46.
    179. Salgueiro LR, Cavaleiro C, Pinto E, et al. Chemical composition and antifungal activity of the essential oil of Origanum virens on Candida species. Planta Med,2003,69:871-874.
    180. Seon SM, Kim J, Lee SG, et al. Fumigant Antitermitic Activity of Plant Essential Oils and Components from Ajowan (Trachyspermum ammi), Allspice (Pimenta dioica), Caraway (Carum carvi), Dill (Anethum graveolens), Geranium (Pelargonium graveolens), and Litsea (Litsea cubeba) Oils against Japanese Termite (Reticulitermes speratus Kolbe). Journal of Agricultural and Food Chemistry,2009,57:6596-6602.
    181. Saric-Kundalic B, Dobes C, Klatte-Asselmeyer V, et al. Ethnobotanical study on medicinal use of wild and cultivated plants in middle, south and west Bosnia and Herzegovina. Journal of Ethnopharmacology.2010,131:33-55.
    182. Seufert W, McGrath JP, Jentsch S. UBC1 encodes a novel member of an essential subfamily of yeast ubiquitin-conjugating enzymes involved in protein degradation. EMBO J,1990,9(13): 4535-4541.
    183. Shigematsu ML, Uno J, Arai T. Effect of ketoconazole on isolated mitochondria from Candida albicans. Antimicrob.Agents Chemother,1982,21:919-924.
    184. Shyu YS, Lin JT, Chang YT, et al. Evaluation of antioxidant ability of ethanolic extract from dill (Anethum graveolens L.) flower, Food Chemistry,2009,115:515-521.
    185. Silva CB, Guterres SS, Weisheimer V, et al. Antifungal activity of the lemongrass oil and citral against Candida spp. Braz J Infect Dis,2008,12:63-66.
    186. Singal A, Rawat S, Bhattacharya SN, et al. Clinicomyocological profile of tinea capitis in North India and response to griseofulvin. J Dermatol,2001,28:22-26.
    187. Singer MA, Lindquist S. Thermotolerance in Saccharomyces cerevisiae:the Yin and Yang of trehalose. Trends Biotechnol,1998,16(11):460-468.
    188. Singh G, Maurya S, De Lampasona MP, et al. Chemical constituents, antimicrobial investigations, and antioxidative potentials of Anethum graveolens L. essential oil and acetone extract:Part 52. Journal of Food Science,2005,70:208-215
    189. Soylu S, Soylu EM, Evrendilek GA. Chemical Composition and Antibacterial Activity of Essential Oils of Bitter Fennel (Foeniculum Yulgare Mill. Var. Vulgare) and Dill (Anethum Graveolens L.) against the Growth of Food-Borne and Seed-Borne Pathogenic Bacteria. Italian Journal of Food Science,2009,21:347-355
    190. Soeur J, Marrot L, Perez P,et al.Selective cytotoxicity of Aniba rosaeodora essential oil towards epidermoid cancer cells through induction of apoptosis, Mutation Research,2011,718:24-32.
    191. Szabo MR, Radu D, Gavrilas S, et al. Antioxidant and Antimicrobial Properties of Selected Spice Extracts. International Journal of Food Properties,2010,13:535-545
    192. Tampieri MP, Galuppi R, Macchioni F, et al. The inhibition of Candida albicans by selected essential oils and their major components. Mycopathologia,2005,159:339-345.
    193. Tan TY, Tan AL, Tee NW, et al. The increased role of non-albicans species in candidaemia: results from a 3-year surveillance study. Mycoses,2009,53:515-521.
    194. Tang XQ, Feng JQ, Chen J, et al. Protection of oxidative preconditioning against apoptosis induced by H2O2 in PC 12 cells:Mechanisms via MMP, ROS, and Bcl-2. Brain res,2005, 1057:57-64.
    195. Takeuchi J, Fujimuro M, Yokosawa H, et al. Rpn is required for efficient assembly of the yeast 26S proteasome. Mol Cell Biol,1999,19(10):6575-6584
    196. Tao-Xiang N, Zhi-Cheng L, Soa-Mao W, et al. Analysis of dermatomycoses in Lanzhou district of northwestern China. Mycopathologia,2005,160:281-284.
    197. Tavares CB, Pina-Vaz C, Rodrigues AG, et al. The fungicidal activity of eugenol on Candida spp. results from a primary lesion of the cell membrane. Clin Microbiol Infect.2003,9:89-92
    198. Theodore C, Kieren A, Raleigh A. Clinical,cellular,and molecular factors that contribute toantifungal drug resistantce.Clln Microbio Rev,1998,11(2):382
    199. Tortorano AM, Peman J, Bernhardt H, et al. Epidemiology of candidaemia in Europe:results of 28-month European Confederation of Medical Mycology (ECMM) hospital-based surveillance study. Eur J Clin Microbiol Infect Dis,2004,23(4):317-322
    200. Tzakou O, Pitarokili D, Chinou IB, et al. Composition andantimicrobial activity of essential oil of Salvia ringens. Planta Medica,2001,67:81-83
    201.Ueki M, Taniguchi M. The mode of action of UK-2A andUK-3A, novel antifungal antibiotics from Streptomyces sp,517-02. J Antibiot,1997,50:1052-1058.
    202. Uren AG, O'Rourke K, Aravind LA, et al. Identification of paracaspases and metacaspases:two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell,2000,6:961-967.
    203. Utsugi T, Hirata A, Sekiguchi Y, et al. Yeast tomlmutant exhibits pleiotropic defects in nuclear division, maintenance of nuclear structure and nucleocytoplasmic transport at high temperatures. Gene,1999,234:285-295
    204. Vander Heiden MG, Thompson CB. Bcl-2 proteins:regulators of apoptosisor of mitochondrial homeostasis? Nat Cell Biol,1999,1:E209-E216
    205. Valtcho D, Zheljazkov, Lyle E, et al. Effects of Cd, Pb, and Cu on growth and essential oil contents in dill, peppermint, and basil. Environmental and Experimental Botany,2006,58:9-16
    206. Wahba NM, Ahmed AS, Ebraheim ZZ. Antimicrobial Effects of Pepper, Parsley, and Dill and Their Roles in the Microbiological Quality Enhancement of Traditional Egyptian Kareish Cheese. Foodborne Pathogens and Disease,2010,7:411-418
    207. Wander JGN, Bouwmeester HJ. Effects of nitrogen fertilization on dill(Anethum graveolens L.) seed and carvone production,Industrial Crops and Products,1998,7:211-216.
    208. Welsh O, Welsh E, Ocampo Candiani J, et al. Dermatophytoses in Monterrey, Mexico. Mycoses, 2006,49:119-123.
    209. Wissing S, Ludovico P, Herker E, et al. An AIF orthologue regulates apoptosis in yeast. J Cell Biol,2004,166:969-974.
    210. Weinberger M, Leibovici L, Perez S, et al. Characteristics of candidaemia with Candida albicans compared with non-albicans Candida species and predictors of mortality. J Hosp Infect, 2005,61(2):146-154
    211.Wu XZ, Chang WQ, Cheng AX, et al. Plagiochin E, an antifungal active macrocyclic bis (bibenzyl), induced apoptosis in Candida albicans through a metacaspase-dependent apoptotic pathway,2010,1800:439-447.
    212. Yang VW, Clausen CA. Antifungal effect of essential oils on southern yellow pine. International Biodeterioration & Biodegradation,2007,59:302-306
    213. Yazdanparast R, Alavi M. Antihyperlipidaemic and antihypercholesterolaemic effects of Anethum graveolens leaves after the removal of furocoumarins. Cytobios,2001,105:185-191
    214. Yazdanparast R, Bahramikia S. Evaluation of the effect of Anethum graveolens L. crude extracts on serum lipids and lipoproteins profiles in hypercholesterolaemic rats. Daru Journal of Faculty of Pharmacy,2008,16:88-94
    215. Yili A, Aisa HA, Maksimov VV, et al. Chemical composition and antimicrobial activity of essential oil from seeds of Anethum graveolens growing in Uzebkistan. Chemistry of Natural Compounds,2009,45:280-281.
    216. Zaidi SFH, Yamada K, Kadowaki M, et al. Bactericidal activity of medicinal plants, employed for the treatment of gastrointestinal ailments, against Helicobacter pylori. Journal of Ethnopharmacology,2009,121:86-91
    217. Zamzami N, Susin SA, Marchetti P, et al.Mitochondrial control of nuclear apoptosis. J Exp Med, 1996,83:1533-1544.
    218. Zawirska-Wojtasiak R, Wasowicz E.Estimation of the main dill seeds odorant carvone by solid-phase microextraction and gas chromatography. Nahrung-Food,2002,46:357-359
    219. Zoratti M, Szabo I. The mitochondrial permeability transition. Biochim Biophys Acta,1995, 1241:139-176.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700