广西部分家禽养殖场曲霉菌(Aspergillus sp.)遗传多态性及对伊曲康唑敏感性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
曲霉属的真菌是主要存在于土壤、水以及腐败的营养物的一类霉菌。它们产生大量的孢子,这些孢子通过空气能很容易的扩散到环境中,由于这类孢子的普遍存在,人和动物不断的暴露于曲霉菌孢子中。烟曲霉和黄曲霉被认为是引起人和各类动物真菌性疾病的主要病原,相比哺乳动物而言,鸟类更易感。家禽养殖场的环境条件非常适合许多真菌,包括曲霉菌的生长于繁殖。本研究的主要日的是评估广西家禽养殖场分离的主要曲霉菌的遗传多样性及对抗真菌药物的敏感性。
     研究第一部分主要对南宁的3个养殖场以及桂林的一个(包含一个孵化场)种鸡场真菌污染的情况进行调查。调查主要采集家禽咽部样品及空气样本,采样时间一般持续几周,同时对孵化场进行了三个孵化周期的监测。经表型鉴定辅助分子生物学方法鉴定,最终共收集到188份烟曲霉和159份黄曲霉。
     第二部分建立或应用多位点数目可变串联重复序列(VNTR)多态性对黄曲霉和烟曲霉进行遗传多样性分析。本研究筛选了8个VNTR位点对黄曲霉遗传多样性进行分析,并设计双重反应。利用筛选到的8个多态性位点对91份黄曲霉分离株,其中包括6个参考株进行分型分析,结果共产生78种基因型,其中71种基因型仅出现一次,辛普森多样性指数为0.993。用10个VNTR多态性位点对188个广西烟曲霉分离株进行遗传多样性分析,结果共产生142种基因型。可使用图形算法最小生成树(MST)对黄曲霉或烟曲霉进行聚类分析。这种指纹分型方法能用于很多没有精密设备的国家进行黄曲霉分子流行病学研究,此外,本研究的结果能通过网站进行共享。黄曲霉遗传多样性聚类分析结果与烟曲霉一样与地理分布存在一定的相关性。
     第三部分是对来自中国和法国的177个分离株进行抗真菌药物的敏感性分析。绝大部分中国和法国分离株对伊曲康唑敏感,其中中国分离株最小抑菌浓度在0.38~0.75微克/毫升,法国分离株的最小抑菌浓度在0.19~1微克/毫升。来自曾经用化学药物进行预防的养殖场的分离株的最小抑菌浓度并不比从未使用抗真菌药物的高。药敏试验显示4个分离株对伊曲康唑耐受:2株来自中国,2株来自法国。Cyp51A基因测序分析显示有11株分离株发生基因变异(3个耐药株和8个药敏株),共检测到20个点突变,其中11个点突变不引起氨基酸改变,9个点突变导致氨基酸序列的改变。氨基酸突变种有6种突变是已经报导的,但A116R,E130D和Q131H三个位点的突变是新发现的。对抗唑类药物的抗药率和分离耐药株频率的可能趋势应继续进行监控。农业上对于唑类药物的应用,以及环境样品的监控也同样重要。
Fungi of the genus Aspergillus are moulds, which occur most frequently in soil, water and decaying vegetation. They sporulate abundantly and the spores are easily dispersed into the environment by air. As a result of this ubiquitous presence, animals and people are constantly exposed to Aspergillus spores. Aspergillus fumigatus and A. flavus are recognized as predominant causes of fungal diseases in humans and wide range of animals. Birds are much more sensitive that mammals and in avian farms, environmental conditions are favorable to the development of many fungal species, including Aspergillus spp.The objective of the present study was to assess the genetic diversity and antifungal susceptibility of Aspergillus isolates from avian farms in Guangxi, China.
     The first part of the work related the dynamic of fungal contamination in3avian farms near the city of Nanning and one farm (including a hatchery) near the city of Guilin. Pharyngeal swabs and air samples were collected during several weeks and3cycles of hatching were monitored. The average contamination level with Aspergillus spp. and Mucorales was significantly different according to the farms. The survey allowed to collect a total number of188A. fumigatus and159A. flavus isolates.
     The second part of the work is about the genetic diversity of A. fumigatus and A. flavus. For that purpose, the Multiple Locus Variable-number tandem-repeat (VNTR) Analysis was specifically developed and used. For A. flavus,8VNTR markers were selected and a multiplex reaction was designed. A total number of91A. flavus isolates, including6reference strains were typed with the panel of8VNTRs. This analysis yielded78different genotypes, which corresponds to a combined loci index of0.993. Among all genotypes,71were only found once. The analysis of188A. fumigatus isolates using10VNTR markers led to the resolution of142distinct genotypes. Clusters of A. flavus or A. fumigatus isolates could be defined by using the graphing algorithm Minimum Spanning Tree. The typing method could be used for molecular epidemiological studies of A. flavus in many countries without the need for sophisticated equipment. Furthermore, data obtained by the present method could be easily shared in a web database. The clustering analysis was in accordance with a geographical structuring of A. flavus isolates similar to that detected in A. fumigatus.
     The third part of the work is about the antifungal susceptibility of177A. fumigatus isolates collected in avian farms in China and France. Most of the isolates from China were susceptible to itraconazole with a Minimum Inhibitory Concentration (MIC) comprised between0.38and0.75ug/mL Most of the isolates from birds and avian farms in France were susceptible to itraconazole with a MIC comprised between0.19and1μg/mL. MIC values of isolates collected in farms with antifungal chemoprophylaxis were not higher than those of isolates collected from birds that never received antifungal drugs before the sampling. Susceptibility testings demonstrated that4isolates should be considered as resistant to itraconazole:2isolates from avian farms in Guangxi, China and2isolates from avian farms in France. A modification of the Cyp51A sequence was identified in11isolates (3azole-resistant and8azole-susceptible isolates). Twenty-one nucleotidic mutations were detected.Twelve of these mutations is silent and9yielded to amino acid substitutions. Six of these substitutions had already been described whereas mutations A116R, E130D and Q131H were original. Continued surveillance of azole resistance should be maintained to determine the resistance rates and any possible trend of increase in the isolation frequency of resistant strains. Based on the association with agricultural azole use, environmental sampling remains significant as well.
引文
1. Rypien, K.L., J.P. Andras, and C. Harvell, Globally panmictic population structure in the opportunistic fungal pathogen Aspergillus sydowii. Molecular ecology,2008.17(18):p. 4068-4078.
    2. Tell, L., Aspergillosis in mammals and birds:impact on veterinary medicine. Medical Mycology,2005.43(S1):p.71-73.
    3. Arne, P., et al., Aspergillus fumigatus in Poultry. International Journal of Microbiology, 2011.2011.
    4. Mayer, A.C., Dtsch. Arch. Physiol.1:310,1815. (Cited by Renon,1897),1815.
    5. Adrian, W., T. Spraker, and R. Davies, Epornitics of aspergillosis in mallards (Anas platyrhynchos) in north central Colorado. Journal of Wildlife Diseases,1978.14(2):p. 212-217.
    6. Friend, M. and J.C. Franson, Field Manual of Wildlife Diseases. General Field Procedures and Diseasesof Birds,1999, Geological survey madison wi biological resources div.
    7. Souza, M.J. and L.A. Degernes, Mortality due to aspergillosis in wild swans in northwest Washington State,2000-02. Journal of Avian Medicine and Surgery,2005.19(2):p. 98-106.
    8. Zinkl, J., J. Hyland, and J. Hurt, Aspergillosis in common crows in Nebraska,1974. Journal of Wildlife Diseases,1977.13(2):p.191-193.
    9. Alvarez-Perez, S., et al., Polyclonal Aspergillus fumigatus infection in captive penguins. Veterinary microbiology,2010.144(3-4):p.444-449.
    10. Redig, P., Mycotic infections in birds Ⅰ:Aspergillosis, in Small animal and exotics. Proceedings of the North American Veterinary Conference, Volume 19, Orlando, Florida, USA,8-12 January,20052005. p.1192-1194.
    11. Xavier, M.O., et al., Aspergillosis:a limiting factor during recovery of captive magellanic penguins. Brazilian Journal of Microbiology,2007.38(3):p.480-484.
    12. Balseiro, A., et al., Pathological features in marine birds affected by the prestige's oil spill in the north of Spain. Journal of Wildlife Diseases,2005.41(2):p.371-8.
    13. Throne Steinlage, S.J.T., et al., Disseminated mycosis in layer cockerels and pullets. Avian diseases,2003.47(1):p.229-233.
    14. Corkish, J., Mycotic tracheites in chickens. Avian Pathology,1982.11(4):p.627-629.
    15. Martin, M.P., et al., Disseminated Aspergillus flavus infection in broiler breeder pullets. Avian diseases,2007.51(2):p.626-631.
    16. Akan, M., et al., A case of aspergillosis in a broiler breeder flock. Avian diseases,2002. 46(2):p.497-501.
    17. Zafra, R., et al., Concurrent aspergillosis and ascites with high mortality in a farm of growing broiler chickens. Avian diseases,2008.52(4):p.711-713.
    18. Cortes, P., et al., Omphalitis associated with Aspergillus fumigatus in poults. Avian diseases,2005:p.304-308.
    19. Dyar, P.,0. Fletcher, and R. Page, Aspergillosis in turkeys associated with use of contaminated litter. Avian diseases,1984:p.250-255.
    20. Olias, P., et al., Fungal pneumonia as a major cause of mortality in white stork (Ciconia ciconia) chicks. Avian diseases,2010.54(1):p.94-98.
    21. Singh, S., et al., Aspergillosis in turkey poults. Indian Journal of Veterinary Pathology, 2009.33(2):p.220-221.
    22. Planel, R., et al., Granulomes d'origine mycosique sur des canes pekin futures reproductrices. Bulletin des Groupements Techniques Veterinaires,2001.10:p., pp. 247-249.
    23. Beytut, E., K. Ozcan, and S. Erginsoy, Immunohistochemical detection of fungal elements in the tissues of goslings with pulmonary and systemic aspergillosis. Acta Veterinaria Hungarica,2004.52(1):p.71-84.
    24. Okoye, J.O., H.C. Gugnani, and C.N. Okeke, Pulmonary infections due to Aspergillus flavus in turkey poults and goslings. Mycoses,1989.32(7):p.336-9.
    25. Copetti, M., et al., Pulmonary aspergillosis outbreak in Rhea americana in southern Brazil. Mycopathologia,2004.157(3):p.269.
    26. Perelman, B. and E. Kuttin, Zygomycosis in ostriches. Avian Pathology,1992.21(4):p. 675-680.
    27. Olson, L., Case report--aspergillosis in Japanese quail. Avian diseases,1969.13(1):p. 225.
    28. Tokarzewski, S., et al., Aspergillus fumigatus infection in a pigeon flock. Bulletin-veterinary institute in pulawy,2007.51(4):p.563.
    29. d'Arc Moretti, L., et al., Time series evaluation of traumatic lesions and airsacculitis at one poultry abattoir in the state of Sao Paulo, Brazil (1996-2005). Preventive veterinary medicine,2010.94(3):p.231-239.
    30. Kunkle, R.A., "Aspergillosis", in Diseases of Poultry, Y. M. Saif, H. J. Barnes, J. R. Glisson, et al., Eds., pp.883-895. Iowa State University Press, Ames, Iowa, USA,2003.11th edition.
    31. Lupo, C., et al., Risk and indicators of condemnation of male turkey broilers in western France, February-July 2006. Preventive veterinary medicine,2010.94(3-4):p.240-250.
    32. Stuart, C., Common conditions resulting in poultry carcase condemnation. In Practice, 1980.2(2).
    33. Pasqualotto, A.C., Differences in pathogenicity and clinical syndromes due to Aspergillus fumigatus and Aspergillus flavus. Medical Mycology,2008.47(S1):p.261-270.
    34. Krishnan, S., E.K. Manavathu, and P.H. Chandrasekar, Aspergillus flavus:an emerging non-fumigatus Aspergillus species of significance. Mycoses,2009.52(3):p.206-222.
    35. Hedayati, M.T., et al., Aspergillus flavus:human pathogen, allergen and mycotoxin producer. Microbiology (Reading, England),2007.153(Pt 6):p.1677-92.
    36. Bennett, J.W. and M. Klich, Mycotoxins. Clin Microbiol Rev,2003.16(3):p.497-516.
    37. Khlangwiset, P. and F. Wu, Costs and efficacy of public health interventions to reduce aflatoxin-induced human disease. Food Addit Contam Part A Chem Anal Control Expo Risk Assess,2010.27(7):p.998-1014.
    38. Yin, Y.N., et al., Biological control of aflatoxin contamination of crops. J Zhejiang Univ Sci B,2008.9(10):p.787-92.
    39. Micheli, P., Nova plantarum genera juxta Tournefortii methodum disposita. Florence, Italy:Bernardo Paperini 1729.
    40. Thorn, C. and M.B. Church, The aspergillil926:Williams & Wilkins Baltimore.
    41. Prescott, L., J. Harley, and D. Klein, Microbiology, Second ed. William C,1993, Brown Publishers, Dubuque, Iowa.
    42. Klich, M.A., Health effects of Aspergillus in food and air. Toxicology and Industrial Health, 2009.25(9-10):p.657-667.
    43. de Hoog, G.S., et al., eds. Atlas of clinical fungi,2nd edition.2nd edition ed. Vol.2.2000.
    44. Pitt, J., The current role of Aspergillus and Penicillium in human and animal health. Medical Mycology,1994.32(S1):p.17-32.
    45. Peterson, S.W., Phylogenetic analysis of Aspergillus species using DNA sequences from four loci. Mycologia,2008.100(2):p.205-226.
    46. Klich, M.A., Identification of clinically relevant aspergilli. Medical Mycology,2006.44(S1): p.127-131.
    47. Bodey, G.P. and S. Vartivarian, Aspergillosis. European journal of clinical microbiology & infectious diseases:official publication of the European Society of Clinical Microbiology, 1989.8(5):p.413-37.
    48. Dixon, D.M. and T.J. Walsh, Human pathogenesis In:Bennett JW, Klich MA (eds). Aspergillus Biology and Industrial Applications. Boston MA:Butterworth-Heinemann, 1992.23:p.249-67.
    49. Denning, D.W., Invasive aspergillosis. Clinical infectious diseases,1998:p.781-803.
    50. Toledo-Hernandez, C., et al., Fungi in healthy and diseased sea fans (Gorgonia ventalina): is Aspergillus sydowii always the pathogen? Coral Reefs,2008.27(3):p.707-714.
    51. Taylor, J.W., et al., The evolutionary biology and population genetics underlying fungal strain typing. Clinical microbiology reviews,1999.12(1):p.126-46.
    52. Kwon-Chung, K.J. and J.A. Sugui, Sexual reproduction in Aspergillus species of medical or economical importance:why so fastidious? Trends in Microbiology,2009.17(11):p. 481-7.
    53. Ramirez-Prado, J.H., et al., Characterization and population analysis of the mating-type genes in Aspergillus flavus and Aspergillus parasiticus. Fungal genetics and biology:FG & B,2008.45(9):p.1292-9.
    54. Geiser, D.M., Sexual structures in Aspergillus:morphology, importance and genomics. Medical mycology:official publication of the International Society for Human and Animal Mycology,2009.47 Suppl 1:p. S21-6.
    55. Desoutter, A., Interet des modeles experimentaux d'aspergillose; etude particuliere des stades precoces de I'infection chez les poussins (Gallus Gallus). Ecole nationale veterinaire d'Alfort, Maissions alfort 2008.
    56. Bennett, J. and M. Klich, Aspergillus:biology and industrial applications. Biotechnology series,1992.
    57. Nesci, A., M. Morales, and M. Etcheverry, Interrelation of growth media and water activity in sclerotia characteristics of Aspergillus section Flavi. Letters in applied microbiology,2007.44(2):p.149-54.
    58. Geiser, D.M., et al., The phylogenetics of mycotoxin and sclerotium production in Aspergillus flavus and Aspergillus oryzae. Fungal Genetics and Biology,2000.31(3):p. 169-179.
    59. Freeman, S., Biological science. Vol.2.2005:Pearson Prentice Hall.Upper Saddle River, NJ.
    60. Gams, W., et al., Infrageneric taxa of Aspergillus. In:Samson RA, Pitt Jl, eds. Advances in Aspergillus systematics. New York:Plenum Press,1985:p. p 55-64.
    61. O'Gorman, C.M., H.T. Fuller, and P.S. Dyer, Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus. Nature,2008.457(7228):p. 471-474.
    62. Latge, J.-P. and W.J. Steinbach, Aspergillus fumigatus and Aspergillosis.2009:ASM press, Washington, DC 20036-2904.
    63. Nierman, W.C., et al., Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature,2005.438(7071):p.1151-1156.
    64. Samson, R.A., et al., Polyphasic taxonomy of Aspergillus section Fumigati and its teleomorph Neosartorya. Studies in mycology,2007.59:p.147-203.
    65. Balajee, S.A., et al., Molecular studies reveal frequent misidentification of Aspergillus fumigatus by morphotyping. Eukaryot Cell,2006.5(10):p.1705-12.
    66. Mellado, E., et al., New resistance mechanisms to azole drugs in Aspergillus fumigatus and emergence of antifungal drugs-resistant A. fumigatus atypical strains. Medical Mycology,2006.44(Supplement 1):p. S367-S371.
    67. Galagan, J.E., et al., Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature,2005.438(7071):p.1105-15.
    68. Rigo, K., et al., Evolutionary relationships within Aspergillus section Flavi based on sequences of the intergenic transcribed spacer regions and the 5.8S rRNA gene. The Journal of general and applied microbiology,2002.48(1):p.9-16.
    69. Chang, P.K. and K.C. Ehrlich, What does genetic diversity of Aspergillus flavus tell us about Aspergillus oryzae? International journal of food microbiology,2010.138(3):p. 189-199.
    70. Machida, M., et al., Genome sequencing and analysis of Aspergillus oryzae. Nature, 2005.438(7071):p.1157-61.
    71. Horn, B.W., J.H. Ramirez-Prado, and I. Carbone, Sexual reproduction and recombination in the aflatoxin-producing fungus Aspergillus parasiticus. Fungal Genetics and Biology, 2009.46(2):p.169-175.
    72. Gibson, A.M., et al., Predicting fungal growth:the effect of water activity on Aspergillus flavus and related species. International journal of food microbiology,1994.23(3-4):p. 419-31.
    73. Vujanovic, V., W. Smoragiewicz, and K. Krzysztyniak, Airborne fungal ecological niche determination as one of the possibilities for indirect mycotoxin risk assessment in indoor air. Environmental toxicology,2001.16(1):p.1-8.
    74. Gupta, S.K., B.M. Pereira, and A.B. Singh, Survey of airborne culturable and non-culturable fungi at different sites in Delhi metropolis. Asian Pacific journal of allergy and immunology/launched by the Allergy and Immunology Society of Thailand,1993. 11(1):p.19-28.
    75. Adhikari, A., et al., Airborne viable, non-viable, and allergenic fungi in a rural agricultural area of India:a 2-year study at five outdoor sampling stations. The Science of the total environment,2004.326(1-3):p.123-41.
    76. Calvo, A., et al., Air-borne fungi in the air of Barcelona (Spain). Ⅲ. The genus Aspergillus Link. Mycopathologia,1980.71(1):p.41-3.
    77. Guinea,J., et al., Outdoor environmental levels of Aspergillus spp. conidia over a wide geographical area. Medical mycology:official publication of the International Society for Human and Animal Mycology,2006.44(4):p.349-56.
    78. Mallea, M., et al., Census of Aspergillus colonies in the air comparison between London, Paris, Lyon, Marseilles. Acta allergologica,1972.27(4):p.273-8.
    79. Vanbreuseghem, R. and N. Nolard, Variations in fungal spores in the air during the last 10 years in Belgium. Bulletin et memoires de I'Academie royale de medecine de Belgique,1985.140(1-3):p.147-58.
    80. Latge, J.P., Aspergillus fumigatus and aspergillosis. Clinical microbiology reviews,1999. 12(2):p.310-350.
    81. Yu, J.J., et al., Genomics of economically significant Aspergillus and Fusarium species. Applied mycology and biotechnology. Volume 4:fungal genomics,2004:p.249-283.
    82. Blount, W.P., Turkey "X" disease. Journal of the British Turkey Federation,1961.9(2):p. 52-55.
    83. Forgacs, J., Mycotoxicoses-the neglected diseases. Feedstuffs,1962.34(18):p. 124-134.
    84. De Valk, H., C. Klaassen, and J. Meis, Molecular typing of Aspergillus species. Mycoses, 2008.51(6):p.463-476.
    85. Hadrich, I., et al., A Review Molecular Typing Methods for Aspergillus flavus Isolates. Mycopathologia,2011:p.1-11.
    86. Aufauvre-Brown, A., J. Cohen, and D.W. Holden, Use of randomly amplified polymorphic DNA markers to distinguish isolates of Aspergillus fumigatus. Journal of clinical microbiology,1992.30(11):p.2991.
    87. Baddley, J.W., et al., Epidemiology of Aspergillus terreus at a university hospital. Journal of clinical microbiology,2003.41(12):p.5525.
    88. Diaz-Guerra, T.M., et al., Genetic similarity among one Aspergillus flavus strain isolated from a patient who underwent heart surgery and two environmental strains obtained from the operating room. Journal of clinical microbiology,2000.38(6):p.2419.
    89. Myoken, Y, et al., Molecular epidemiology of invasive stomatitis due to Aspergillus flavus in patients with acute leukemia. Journal of oral pathology & medicine,2003. 32(4):p.215-218.
    90. Heinemann, S., et al., Environmental investigations and molecular typing of Aspergillus flavus during an outbreak of postoperative infections. Journal of Hospital Infection, 2004.57(2):p.149-155.
    91. Batista, P., et al., Genetic characterization of Brazilian strains of Aspergillus flavus using DNA markers. Genet Mol Res,2008.7:p.706-717.
    92. Girardin, H., et al., Development of DNA probes for fingerprinting Aspergillus fumigatus. Journal of clinical microbiology,1993.31(6):p.1547.
    93. Lasker, B.A., Evaluation of performance of four genotypic methods for studying the genetic epidemiology of Aspergillus fumigatus isolates. Journal of clinical microbiology, 2002.40(8):p.2886.
    94. Verweij, P.E., et al., Genotypic characterization of sequential Aspergillus fumigatus isolates from patients with cystic fibrosis. Journal of clinical microbiology,1996.34(10): p.2595.
    95. McAlpin, C.E. and B. Mannarelli, Construction and characterization of a DNA probe for distinguishing strains of Aspergillus flavus. Appl Environ Microbiol,1995.61(3):p. 1068-72.
    96. James, M.J., et al., Use of a repetitive DNA probe to type clinical and environmental isolates of Aspergillus flavus from a cluster of cutaneous infections in a neonatal intensive care unit. Journal of clinical microbiology,2000.38(10):p.3612.
    97. Buffington, J., et al., Investigation of an epidemic of invasive aspergillosis:utility of molecular typing with the use of random amplified polymorphic DNA probes. The Pediatric infectious disease journal,1994.13(5):p.386.
    98. Bagyalakshmi, R., K.L. Therese, and H.N. Madhavan, Nucleotide polymorphisms associated with Internal Transcribed Spacer (ITS) regions of ocular isolates of Aspergillus flavus. Journal of microbiological methods,2007.68(1):p.1-10.
    99. Vos, P., et al., AFLP:a new technique for DNA fingerprinting. Nucleic acids research, 1995.23(21):p.4407.
    100. Warns, A., et al., Molecular epidemiology of Aspergillus fumigatus isolates recovered from water, air, and patients shows two clusters of genetically distinct strains. Journal of clinical microbiology,2003.41(9):p.4101.
    101. Montiel, D., et al., Genetic differentiation of the Aspergillus section Flavi complex using AFLP fingerprints. Mycological research,2003.107(Pt 12):p.1427.
    102. Balajee, S.A., et al., Aspergillus lentulus sp. nov., a new sibling species of A. fumigatus. Eukaryot Cell,2005.4(3):p.625-32.
    103. Bain, J., et al., Multilocus sequence typing of the pathogenic fungus Aspergillus fumigatus. Journal of clinical microbiology,2007:p. JCM.00064-07v1.
    104.Bart-Delabesse, E., et al., Microsatellite markers for typing Aspergillus fumigatus isolates. Journal of clinical microbiology,1998.36(9):p.2413.
    105. De Valk, H.A., et al., Use of a novel panel of nine short tandem repeats for exact and high-resolution fingerprinting of Aspergillus fumigatus isolates. Journal of clinical microbiology,2005.43(8):p.4112.
    106. Lair-Fulleringer, S., et al., Differentiation between isolates of Aspergillus fumigatus from breeding turkeys and their environment by genotyping with microsatellite markers. Journal of clinical microbiology,2003.41(4):p.1798-1800.
    107. Olias, P., et al., Molecular epidemiology and virulence assessment of Aspergillus fumigatus isolates from white stork chicks and their environment. Veterinary microbiology,2011.148(2-4):p.348-355.
    108. Van Waeyenberghe, L., et al., Microsatellite typing of avian clinical and environmental isolates of Aspergillus fumigatus. Avian Pathology,2011.40(1):p.73-77.
    109. Burco, J.D., et al., Molecular sub-typing suggests that the environment of rehabilitation centers may be a potential source of Aspergillus fumigatus infecting rehabilitating seabirds. Medical mycology:official publication of the International Society for Human and Animal Mycology,2012.50(1):p.91-8.
    110. Tran-Dinh, N. and D. Carter, Characterization of microsatellite loci in the aflatoxigenic fungi Aspergillus flavus and Aspergillus parasiticus. Molecular ecology,2000.9(12):p. 2170-2172.
    111. Hadrich, I., et al., Microsatellite typing to trace Aspergillus flavus infections in a hematology unit. Journal of clinical microbiology,2010.48(7):p.2396.
    112. Esteban, A., S.U.L.I.N.L. LEONG, and N. TRAN-DINH, Isolation and characterization of six polymorphic microsatellite loci in Aspergillus niger. Molecular Ecology Notes,2005.5(2): p.375-377.
    113. Hosid, E., et al., Microsatellite markers for assessing DNA polymorphism of Emericella nidulans in nature. Molecular Ecology Notes,2005.5(3):p.647-649.
    114. Vergnaud, G. and F. Denoeud, Minisatellites:mutability and genome architecture. Genome research,2000.10(7):p.899-907.
    115. Grenouillet, F., et al., Multiple-Locus Variable-number tandem repeat Analysis for rapid typing of Candida glabrata. Journal of clinical microbiology,2007:p. JCM.01603-07v1.
    116. Thierry, S., et al., Multiple-locus variable-number tandem repeat analysis for molecular typing of Aspergillus fumigatus. BMC microbiology,2010.10(1):p.315.
    117. Beffa, T., et al., Mycological control and surveillance of biological waste and compost. Medical mycology:official publication of the International Society for Human and Animal Mycology,1998.36 Suppl 1:p.137-45.
    118. Ryckeboer, J., et al., Microbiological aspects of biowaste during composting in a monitored compost bin. Journal of applied microbiology,2003.94(1):p.127-37.
    119. Araujo, R. and A.G. Rodrigues, Variability of germinative potential among pathogenic species of Aspergillus. Journal of clinical microbiology,2004.42(9):p.4335-7.
    120. Hensel, M., et al., The role of the Aspergillus fumigatus areA gene in invasive pulmonary aspergillosis. Molecular & general genetics:MGG,1998.258(5):p.553-7.
    121. Bhabhra, R., et al., Disruption of the Aspergillus fumigatus gene encoding nucleolar protein CgrA impairs thermotolerant growth and reduces virulence. Infect Immun,2004. 72(8):p.4731-40.
    122. Panepinto, J.C., et al., Expression of the Aspergillus fumigatus rheb homologue, rhbA, is induced by nitrogen starvation. Fungal genetics and biology:FG & B,2002.36(3):p. 207-14.
    123. Abad, A., et al., What makes Aspergillus fumigatus a successful pathogen? Genes and molecules involved in invasive aspergillosis. Rev Iberoam Micol,2010.27(4):p.155-82.
    124.Latge, J.P., The pathobiology of Aspergillus fumigatus. Trends in Microbiology,2001.9(8): p.382-389.
    125. Tekaia, F. and J.P. Latge, Aspergillus fumigatus:saprophyte or pathogen? Current opinion in microbiology,2005.8(4):p.385-392.
    126. Pena, G., et al., Aspergillus fumigatus toxicity and gliotoxin levels in feedstuff for domestic animals and pets in Argentina. Letters in applied microbiology,2010.50(1):p. 77-81.
    127. Richard, J., T. Dvorak, and P. Ross, Natural occurrence of gliotoxin in turkeys infected with Aspergillus fumigatus, Fresenius. Mycopathologia,1996.134(3):p.167-170.
    128. Richard, J., W. Peden, and P. Williams, Gliotoxin inhibits transformation and its cytotoxic to turkey peripheral blood lymphocytes. Mycopathologia,1994.126(2):p.109-114.
    129. Richard, J.L. and M.C. DeBey, Production of gliotoxin during the pathogenic state in turkey poults by Aspergillus fumigatus Fresenius. Mycopathologia,1995.129(2):p. 111-115.
    130. Peden, W.M. and K.R. Rhoades, Pathogenicity differences of multiple isolates of Aspergillus fumigatus in turkeys. Avian diseases,1992:p.537-542.
    131. Park, S.J. and B. Mehrad, Innate immunity to Aspergillus species. Clin Microbiol Rev, 2009.22(4):p.535-51.
    132. Fedde, M., Relationship of structure and function of the avian respiratory system to disease susceptibility. Poultry science,1998.77(8):p.1130-1138.
    133. Brown, R.E., J.D. Brain, and N. Wang, The avian respiratory system:a unique model for studies of respiratory toxicosis and for monitoring air quality. Environmental health perspectives,1997.105(2):p.188.
    134. Reese, S., G. Dalamani, and B. Kaspers, The avian lung-associated immune system:a review. Veterinary research,2006.37(3):p.311-324.
    135. Nganpiep, L. and J. Maina, Composite cellular defence stratagem in the avian respiratory system:functional morphology of the free (surface) macrophages and specialized pulmonary epithelia. Journal of anatomy,2002.200(5):p.499-516.
    136. Corbanie, E.A., et al., Deposition of differently sized airborne microspheres in the respiratory tract of chickens. Avian Pathology,2006.35(6):p.475-485.
    137. Tell, L.A., et al., An aerosolized fluorescent microsphere technique for evaluating particle deposition in the avian respiratory tract. Avian diseases,2006.50(2):p.238-244.
    138. Richard, J., et al., Response of turkey poults to aerosolized spores of Aspergillus fumigatus and aflatoxigenic and nonaflatoxigenic strains of Aspergillus flavus. Avian diseases,1981:p.53-67.
    139. Femenia, F., et al., Effects of conidia of various Aspergillus species on apoptosis of human pneumocytes and bronchial epithelial cells. Mycopathologia,2009.167(5):p. 249-262.
    140. Klika, E., et al., Pulmonary macrophages in birds (barn owl, Tyto tyto alba), domestic fowl (Gallus gallus f. domestica), quail(Coturnix coturnix), and pigeons (Columbia livia). The Anatomical Record,1996.246(1):p.87-97.
    141. Toth, T.E., Nonspecific cellular defense of the avian respiratory system:a review. Developmental & Comparative Immunology,2000.24(2-3):p.121-139.
    142. Kunkle, R.A. and R.B. Rimler, Early pulmonary lesions in turkeys produced by nonviable Aspergillus fumigatus and/or Pasteurella multocida lipopolysaccharide. Avian diseases, 1998:p.770-780.
    143.Harmon, B.G., Avian heterophils in inflammation and disease resistance. Poultry science, 1998.77(7):p.972-977.
    144. O'Meara, D. and H. Chute, Aspergillosis experimentally produced in hatching chicks. Avian diseases,1959.3(4):p.404-406.
    145. Bennett, J.H., On the parasitic vegetable structures found growing in living animals. Transactions of the Royal Society of Edinburgh,1842.15::p.277-9.
    146. Rankin, N.E., Disseminated aspergillosis and moniliasis associated with agranulocytosis and antibiotic therapy. British medical journal,1953.1(4816):p.918-9.
    147. Stevens, D.A., et al., Practice guidelines for diseases caused by Aspergillus. Infectious Diseases Society of America. Clinical infectious diseases:an official publication of the Infectious Diseases Society of America,2000.30(4):p.696-709.
    148. Thomas, N.J., D.B. Hunter, and C.T. Atkinson, Infectious diseases of wild birds2007: Wiley-Blackwell.
    149. Cacciuttolo, E.; et al., Anatomopathological aspects of avian aspergillosis. Veterinary research communications,2009.33(6):p.521-527.
    150. Abundis-Santamaria, E., Aspergillosis in birds of prey,2003. Available at: http//www.aspergillus.man.ac.uk. Accessed 23 March 2005..2005.
    151. Kearns, K. and B. Loudis, Avian aspergillosis. Recent Advances in Avian Infectious Diseases, Int. Vet. Inf. Serv., Ithaca NY.[Links],2003.
    152. Denning, D.W. and W.W. Hope, Therapy for fungal diseases:opportunities and priorities. Trends in Microbiology,2010.18(5):p.195-204.
    153. Denning, D.W., et al., Treatment of invasive aspergillosis with itraconazole. The American journal of medicine,1989.86(6 Pt 2):p.791-800.
    154. Snelders, E., et al., Emergence of azole resistance in Aspergillus fumigatus and spread of a single resistance mechanism. PLoS medicine,2008.5(11):p. e219.
    155. Howard, S.J., et al., Frequency and evolution of Azole resistance in Aspergillus fumigatus associated with treatment failure. Emerg Infect Dis,2009.15(7):p.1068-76.
    156. Zizhi, H. and Z. Degang, Country Pasture/Forage Resource Profiles, China, FAO.2006:p. 63.
    157. Verburg, P.H. and H. Keulen, Exploring changes in the spatial distribution of livestock in China. Agricultural Systems,1999.62(1):p.51-67.
    158.Yue, T., et al., Scenarios of land cover in China. Global and Planetary Change,2007.55(4): p.317-342.
    159. Xin, X., et al., Consumption of livestock products at the regional level in China. Journal of Rural Development (Seoul),2005.28(2):p.211-233.
    160. China National Bureau of Statistics, C., bulltin of China 2011 National econimic and social development, www.stats.gov.cn/.2012.
    161. MOA, M.o.A.o.C., Statistical Yearbook of Animal Husbandry of China. China's Agricultural Press, Beijing,2003.
    162. Zhang, X., The study of development trend for livestock smallholder in China. Agricultural Outlook,2006:p.12-15.
    163. Zhang, X., A. Somwaru, and X.H. Zhang, Scale, feed utilization and efficiency in hog production in China. Sweetpotato post-harvest research and development in China. Proceedings of an International Workshop held in Chengdu, Sichuan, China on 7-8 November 2001, ed. K.O.H.M. Fuglie2004.67-82.
    164. Tian, W., Agricultural development in China.Presented to First International Seminar of the ALARN Network, Congresso Brasileiro de Agribusiness and Institute for International Trade Negotiations, Sao Paulo, Brazil,28-29 August.2007.
    165. Rae, A.N., et al., Livestock in China:commodity-specific total factor productivity decomposition using new panel data. American Journal of Agricultural Economics 88, 2006:p.680-695.
    166. Chen, J. and S. Rozelle, Market emergence and the rise and fall of backyard hog production in China. American Agricultural Economics Association annual conference, Montreal,27-30 July.,2003.
    167. Wang, J.M., Q..H. Shen, and R.R. Zhang, Trends of China broiler chicken. Today Animal Husbandry and Veterinary Medicine,2010.06.
    168. Han, Y. and T. Hertel, The puzzling state of China's meat trade. Choices,2003.18(2).
    169. Prosser, D.J., et al., Modelling the distribution of chickens, ducks, and geese in China. Agriculture, ecosystems & environment,2011.
    170. FAO, Poultry Meat & Eggs. Agribusiness handbook,2010.
    171. FAO, Report on domestic animal genetic resource in China, Beijing,2003,.2003:p.142P.
    172. Xu, G.F. and K.W. Chen, Atlas of Chinese native poultry breeds. China Agricultural Press. Vol.2003-12-1.2003.
    173. China, C.o.d.A.a.P.G.R.i., Domestic animal genetic resource in China. Beijing, China:China Agriculture Press,2004.18.
    174. Duchaine, C., et al., Assessment of particulates and bioaerosols in eastern Canadian sawmills. AIHAJ-American Industrial Hygiene Association,2000.61(5):p.727-732.
    175. Chang, C., et al., Exposure of workers to airborne microorganisms in open-air swine houses. Applied and Environmental Microbiology,2001.67(1):p.155.
    176. Cormier, Y., et al., Farming practices and the respiratory health risks of swine confinement buildings. European Respiratory Journal,2000.15(3):p.560-565.
    177. Reboux, G., S. Roussel, and F. Grenouillet, Fungi in agricultural environment. Journal de Mycologie Medicale,2006.16(4):p.248-262.
    178. Fulleringer, S., et al., Evolution of the environmental contamination by thermophilic fungi in a turkey confinement house in France. Poultry science,2006.85(11):p. 1875-1880.
    179. Collier, L., A. Balows, and M. Sussman., Topley & Wilson's Microbiology and Microbial Infections.9th ed, vol.4. Arnold, London, Sydney, Auckland, New York.,1998.
    180. Larone, D.H., Medically Important Fungi-A Guide to Identification.3rd ed. ASM Press, Washington, D.C.,1995.
    181. St-Germain, G. and R. Summerbell., Identifying Filamentous Fungi-A Clinical Laboratory Handbook.1st ed. Star Publishing Company, Belmont, California.,1996.
    182. Nieguitsila, A., et al., Relative efficiencies of two air sampling methods and three culture conditions for the assessment of airborne culturable fungi in a poultry farmhouse in France. Environmental Research,2011.
    183. Santos, R.M.D.B., et al., Keratinolytic activity of Aspergillus fumigatus Fresenius. Current microbiology,1996.33(6):p.364-370.
    184. Pinello, C.B., J.L. Richard, and L.H. Tiffany, Mycoflora of a turkey confinement brooder house. Poultry science,1977.56(6):p.1920-1926.
    185. Debey, M., et al., Effect of environmental variables in turkey confinement houses on airborne Aspergillus and mycoflora composition.1995.
    186. Huton, L., Bagasse litter as a contributory factor in avian aspergillosis. The Canadian Veterinary Journal,1966.7(6):p.117.
    187. Bacon, C. and D. Burdick, Growth of fungi in broiler houses. Poultry science,1977.56(2): p.653-661.
    188. Ghori, H. and S. Edgar, Comparative susceptibility and effect of mild Aspergillus fumigatus infection on three strains of chickens. Poultry science,1979.58(1):p.14-17.
    189. Julian, R. and M. Goryo, Pulmonary aspergillosis causing right ventricular failure and ascites in meat-type chickens. Avian Pathology,1990.19(4):p.643-654.
    190. Fate, M., et al., Efficacy of thiabendazole (Mertect 340-F) in controlling mold in turkey confinement housing. Avian diseases,1987:p.145-148.
    191. Lovett, J., J.W. Messer, and R.B. Read Jr, The microflora of Southern Ohio poultry litter. Poultry science,1971.50(3):p.746-751.
    192. Lugauskas, A., A. Krikstaponis, and L. Sveistyte, Airborne fungi in industrial environments--potential agents of respiratory diseases. Annals of agricultural and environmental medicine:AAEM,2004.11(1):p.19.
    193. Sauter, E., et al., The airborne microflora of poultry houses. Poultry science,1981.60(3): p.569-574.
    194. Gigli, A., et al., Diagnosis and evaluation of fungi presence in the air of two different ventilation sytemsfor broiler houses. Revista Brasileira de Ciencia Avicola,2005.7(4):p. 205-208.
    195. Nichita, I., et al., Evaluation of fungi presence in the air of two broiler houses with different ventilation systems. Animal Science and Biotechnologies,2010.43(1):p. 415-418.
    196. Nieguitsila, A., et al., Evaluation of fungal aerosols using temporal temperature gradient electrophoresis (TTGE) and comparison with culture. Journal of microbiological methods, 2007.70(1):p.86-95.
    197. Nieguitsila, A., et al., Molecular monitoring of fungal communities in air samples by denaturing high-performance liquid chromatography (D-HPLC). Journal of applied microbiology,2010.109(3):p.910-917.
    198. Dennis, C. and J.M. Gee, The Microviral Flora of Broiler-house Litter and Dust. Journal of General Microbiology,1973.78(1):p.101.
    199. Hamet, N., Prophylaxie de I'aspergillose dans les elevages industriels de volailles. Le Point Veterinaire,1990.22(127):p.23-31.
    200. So, D.T., et al., Mold spore populations in bark residues used as broiler litter. Poultry science,1978.57(4):p.870-874.
    201. Lovett,J., Toxigenic fungi from poultry feed and litter. Poultry science,1972.51(1):p. 309-313.
    202. Neamatallah, A., et al.,Biosafety Against Fungal Contamination of Hen's Eggs and Mycotoxins Producing Species. Meteorology, Environment and Arid Land Agriculture Sciences,2009.20(2).
    203. Enev, I., et al., Aspergillosis in birds. In "Infectiouse diseases of animals".Matcom, Sofia, 2005.
    204. Pavlov, A., I. Vushin, and H. Daskalov, Hygien, technology and veterinary-sanitary control of meat, fish and eggs. Kota, Stara Zagora,2006:p. pp.156-159.
    205. McCaskey, P. and K. Langheinrich, Zygomycosis in the duck. Avian diseases,1984:p. 791-798.
    206. Barros, S. and A. Londero, Cardiac zygomycosis in an Australian parakeet. Medical Mycology,1972.10(2):p.189-190.
    207. Bigland, C., F. Graesser, and K. Pennifold, An osteolytic mucor mycosis in a penguin. Avian diseases,1961.5(4):p.367-370.
    208. Khairallah, S.H., K.A. Byrne, and K.F. Tabbara, Fungal keratitis in Saudi Arabia. Documenta ophthalmologica,1992.79(3):p.269-276.
    209. Taj-Aldeen, S.J., A.A. Hilal, and A. Chong-Lopez, Allergic Aspergillus flavus rhinosinusitis: a case report from Qatar. European archives of oto-rhino-laryngology,2003.260(6):p. 331-335.
    210. Wong, T.Y., K.S. Fong, and D.T.H. Tan, Clinical and microbial spectrum of fungal keratitis in Singapore:a 5-year retrospective study. International ophthalmology,1997.21(3):p. 127-130.
    211. Top, J., et al., Multiple-locus variable-number tandem repeat analysis, a novel typing scheme to study the genetic relatedness and epidemiology of Enterococcus faecium isolates. Journal of clinical microbiology,2004.42(10):p.4503.
    212. Wang, Y.W., et al., Multilocus variable-number tandem repeat analysis for molecular typing and phylogenetic analysis of Shigella flexneri. BMC microbiology,2009.9(1):p. 278.
    213. Benson, G., Tandem repeats finder:a program to analyze DNA sequences. Nucleic acids research,1999.27(2):p.573-580.
    214. Hunter, P.R. and M.A. Gaston, Numerical index of the discriminatory ability of typing systems:an application of Simpson's index of diversity. Journal of clinical microbiology, 1988.26(11):p.2465-2466.
    215. Grissa, I., et al., On-line resources for bacterial micro-evolution studies using MLVA or CRISPR typing. Biochimie,2008.90(4):p.660-668.
    216. Adhikari, A., et al., Airborne viable, non-viable, and allergenic fungi in a rural agricultural area of India:a 2-year study at five outdoor sampling stations. Science of the total environment,2004.326(1-3):p.123-141.
    217. Moody, S.F. and B.M. Tyler, Restriction enzyme analysis of mitochondrial DNA of the Aspergillus flavus group:A. flavus, A. parasiticus, and A. nomius. Applied and Environmental Microbiology,1990.56(8):p.2441.
    218. Midorikawa, G., et al., Characterization of Aspergillus flavus strains from Brazilian Brazil nuts and cashew by RAPD and ribosomal DNA analysis. Letters in applied microbiology, 2008.47(1):p.12-18.
    219. Grubisha, L. and P. Cotty, Genetic isolation among sympatric vegetative compatibility groups of the aflatoxin-producing fungus Aspergillus flavus. Molecular ecology,2010. 19(2):p.269-280.
    220. Rudramurthy, S.M., et al., High Resolution Genotyping of Clinical Aspergillus flavus Isolates from India Using Microsatellites.2011.
    221. Balajee, S.A., et al., Characterization of a novel gene for strain typing reveals substructuring of Aspergillus fumigatus across North America. Eukaryot Cell,2007.6(8): p.1392-1399.
    222. Denning, D.W., et al., Itraconazole resistance in Aspergillus fumigatus. Antimicrobial agents and chemotherapy,1997.41(6):p.1364-8.
    223. Verweij, P.E., E. Mellado, and W.J.G. Melchers, Multiple-triazole-resistant aspergillosis. The New England journal of medicine,2007.356(14):p.1481-3.
    224. Bueid, A., et al., Azole antifungal resistance in Aspergillus fumigatus:2008 and 2009. The Journal of antimicrobial chemotherapy,2010.65(10):p.2116-8.
    225. van der Linden, J.W.M., et al., Clinical implications of azole resistance in Aspergillus fumigatus, The Netherlands,2007-2009. Emerg Infect Dis,2011.17(10):p.1846-54.
    226. Pfaller, M., et al., Use of epidemiological cutoff values to examine 9-year trends in susceptibility of Aspergillus species to the triazoles. Journal of clinical microbiology, 2011.49(2):p.586-590.
    227. Verweij, P.E., et al., Azole-resistance in Aspergillus:proposed nomenclature and breakpoints. Drug resistance updates,2009.12(6):p.141-7.
    228. Lockhart, S.R., et al., Azole resistance in Aspergillus fumigatus isolates from the ARTEMIS global surveillance study is primarily due to the TR/L98H mutation in the cyp51A gene. Antimicrobial agents and chemotherapy,2011.55(9):p.4465.
    229. Mellado, E., et al., A new Aspergillus fumigatus resistance mechanism conferring in vitro cross-resistance to azole antifungals involves a combination of cyp51A alterations. Antimicrobial agents and chemotherapy,2007.51(6):p.1897-904.
    230. Mortensen, K.L., et al., Environmental study of azole-resistant Aspergillus fumigatus and other aspergilli in Austria, Denmark, and Spain. Antimicrobial agents and chemotherapy, 2010.54(11):p.4545-9.
    231. Diaz-Guerra, T.M., et al., A point mutation in the 14alpha-sterol demethylase gene cyp51A contributes to itraconazole resistance in Aspergillus fumigatus. Antimicrob Agents Chemother,2003.47(3):p.1120-4.
    232. Mellado, E., et al., Identification of two different 14-alpha sterol demethylase-related genes (cyp51A and cyp51B) in Aspergillus fumigatus and other Aspergillus species. Journal of clinical microbiology,2001.39(7):p.2431.
    233. Cowen, L.E., et al., Population genomics of drug resistance in Candida albicans. Proceedings of the National Academy of Sciences of the United States of America,2002. 99(14):p.9284-9.
    234.Prasad, R. and K. Kapoor, Multidrug resistance in yeast Candida. Int Rev Cytol,2005.242: p.215-48.
    235. Leroux, P. and A.-S. Walker, Multiple mechanisms account for resistance to sterol 14alpha-demethylation inhibitors in field isolates of Mycosphaerella graminicola. Pest management science,2011.67(1):p.44-59.
    236. Wyand, R.A. and J.K.M. Brown, Sequence variation in the CYP51 gene of Blumeria graminis associated with resistance to sterol demethylase inhibiting fungicides. Fungal genetics and biology:FG & B,2005.42(8):p.726-35.
    237. Howard, S.J. and M.C. Arendrup, Acquired antifungal drug resistance in Aspergillus fumigatus:epidemiology and detection. Medical Mycology,2011.49(S1):p.90-95.
    238. Silvanose, C.D., T.A. Bailey, and A. Di Somma, Susceptibility of fungi isolated from the respiratory tract of falcons to amphotericin B, itraconazole and voriconazole. The Veterinary record,2006.159(9):p.282-4.
    239. Beernaert, L.A., et al., Avian Aspergillus fumigatus strains resistant to both itraconazole and voriconazole. Antimicrobial agents and chemotherapy,2009.53(5):p.2199-201.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700