植物激素的新型样品前处理及色谱分离分析方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物激素(plant hormone, PH)是植株体内合成的一系列小分子有机化合物,几乎能调控植物生长周期的每个生理过程。对PHs含量的准确测定,有助于探究各类激素间的相互关系、认识激素调控植株生长发育及其对环境适应的机制,这对于植物生理、品质调控以及遗传育种等方面的研究具有重要的指导意义。
     当前,色谱技术的快速发展使其在PHs分析中的应用越来越广泛。鉴于内源激素在植株内含量甚微(通常在ng/g鲜重,甚至pg/g水平上)且干扰物多,因此,寻求廉价、简便、高效的样品前处理新方法与色谱技术联用,以期实现激素的超微定量检测有着很好的应用前景。本论文主要采用多种新型的样品前处理技术对一些影响植物生长的PHs进行纯化和富集,并结合色谱以及质谱分析方法实现了PHs高灵敏度、高通量的检测。
     论文分为三个部分,共八章。
     第一部分,即论文的第一章,介绍了PHs的概念和分类,并对其主要样品前处理方法和检测技术进行综述,特别介绍了新型样品预处理技术在激素检测中的最新研究进展,最后概括了本课题的主要研究工作。
     第二部分,包括论文的第二、三、四章,主要研究了传统样品前处理方法结合液相色谱-质谱技术在PHs分析中的应用。
     在第二章中,以C18填充柱为分离通道,采用固相萃取-加压毛细管电色谱-紫外检测技术(solid phase extraction-pressurized capillary electrochromatography-ultravioletdetection, SPE-pCEC-UV)对5种内源和外源PHs进行定性和定量分析。在最优实验条件下,方法的线性范围为0.8-100μg/mL,检测限介于0.2-0.8μg/mL之间,平均回收率高于81.0%,并将建立的方法用于拟南芥样品的分析。将pCEC与微柱液相色谱法比较,发现pCEC的分析速度更快、柱效更高。
     在第三章中,采用SPE前处理技术,结合液相色谱-离子阱质谱法(liquidchromatography-ion trap mass spectrometry, LC-ITMS)实现了三种激素的同时分离分析。为研究内源激素在植物遭遇逆境环境时的含量变化和相互作用,以水仙为实际材料进行盐胁迫试验,分析了三种激素的含量变化趋势。结果显示,随着NaCl浓度的增加和胁迫处理时间的延长,吲哚乙酸和赤霉酸含量减少,而脱落酸(abscisic acid,ABA)的含量明显增加。本章重点探讨了ABA在逆境应答中的作用。
     论文的第四章,发展了LC-ITMS/MS法用于生长素(Auxin,Aux)的快速分离和高灵敏检测。在优化的实验条件下,4种目标物在7min内完全分离,最低检测限为8.0ng/mL。选择液液萃取(liquid-liquid extraction, LLE)法处理样品。经多步的旋转蒸发和溶剂分配,尽管未能在白菜中检测到内源激素,但方法的加标回收率在77.5-99.8%范围内,结果相对满意。
     第三部分,即论文的第五、六、七、八章,主要是对新型样品预处理技术在PHs分析中的应用进行研究。重点试验了分散液液微萃取(dispersive liquid-liquidmicroextraction, DLLME)、悬浮固化微萃取(solidification of floating organic dropmicroextraction, SFODME)以及基于悬浮固化的分散液液微萃取法(dispersiveliquid-liquid microextraction based on the solidification of floating organic dropmicroextraction, DLLME-SFO)这三种新技术,为激素的痕量分析提供了新方法和新思路。
     在第五章中,为克服传统的SPE和LLE存在处理时间长、有机溶剂消耗大等缺点,首次将DLLME方法引入植物样品的预处理中,结合荧光检测器(fluorescencedetector, FLD)强选择性和高灵敏度的特点,建立了4种常见Aux的DLLME-HPLC-FLD分析方法。此法具有富集倍数高(约50倍)、重现性好(相对标准偏差<5.64%)、操作简便(不需辅助设备)、环境友好(仅消耗微升级有机溶剂)及处理时间短(萃取时间<1min)等优点,因而具有广泛的应用性。
     论文的第六章,为简化植物激素的预处理过程,选择30.0μL氯仿和800μL四氢呋喃的预混溶液,注入5.0mL样品溶液(pH3.0)中,经过相分离,吸取20μL下层有机相。经过DLLME法净化和富集两种激素后,进行LC-ITMS测定。以“越南宁平”桃为试材,揭示了不同生长阶段的桃子果实中两种激素的含量变化,对外源施用类似激素具有指导作用。
     论文的第七章,使用低毒有机溶剂代替DLLME方法中常用的高毒性卤代烃,将SFODME新技术应用于植物激素预处理中。首次建立了SFODME-HPLC-UV同时检测两类激素的新方法。该技术操作重现性好、浓缩倍数高达130-200。方法的线性范围超过两个数量级,相关系数在0.9985-0.9994范围内,检测限达到0.5ng/mL,并成功用于实际样品的检测。
     第八章中,将高效DLLME和低毒SFODME方法相结合,发展了DLLME-SFO法。以两种Aux为研究对象,考察了DLLME-SFO萃取技术的影响因素和富集效果。并对三种前处理方式(即DLLME、SFODME、DLLME-SFO)从重现性和富集效果等方面进行了全部的比较。
Plant hormones (PHs), a series of low-molecular-weight organic compoundssynthesized in plants, can control almost every physiological process during the plant’s lifecycle. Accurate quantitation of PHs will be favorable for the research on the interactionamong different hormones, the mechanism of PHs in plant’s development and adaption toenvironment. These researches have practical guidance significance to physiologicaltechniques, quality control and genetic breeding in plants.
     Recently, with the rapid development of chromatography technology, its wideapplication in PHs analysis is involved. Due to very low amounts of PHs (usually ng/gfresh weight, and even to pg/g) and many interfering substances coexisting in plants,therefore, searching for new pretreatment techniques with low cost, simplicity andeffectiveness is of vital importance and has extensive application prospect for tracequantitation of related hormones. In this thesis, some new sample pretreatment methodscoupling with chromatography/mass spectrometry were adopted to purify and enrichmultiple PHs affecting plants growth, then sensitive and high-throughput determination ofPHs were established and realized.
     This thesis consists of three parts, including eight chapters.
     The first part is chapter1. In this chapter, the general definition and classifications ofPHs were introduced, respectively. Pretreatment procedures and main detecting techniquesfor hormones analysis were reviewed, especially the latest research progress on applicationof novel sample pretreatment assays. Lastly, main research works of this thesis were alsodescribed.
     The second part includes chapters2-4. In this part, the applications of traditionalsample pretreatment methods combined with liquid chromatography-mass spectrometrytechnology in analyzing PHs were investigated.
     In chapter2, solid phase extraction-pressurized capillary electrochromatography-ultraviolet detection (SPE-pCEC-UV) was developed for qualitative and quantitative analysis of five kinds of endogenetic and ectogenic PHs with a packed C18capillarycolumn as the separation channel. Under the optimum conditions, this assay presentedgood linearity (0.8-100μg/mL), with LOD of0.2-0.8μg/mL and mean recoveries higherthan81.0%. The pCEC method was also applied to analysis of Arabidopsis thalianasample. Comparied with microcolumn liquid chromatography, it was found that pCEC hadfaster analyses speed and higher column efficiency.
     In chapter3, a quantitative method consisting of SPE followed by liquidchromatography-ion trap mass spectrometry (LC-ITMS) was developed for simultaneousseparation of three endogenous hormones. Narcissus was selected as real sample to studythe content variation and interaction of above hormones under salty stress. Researchshowed that with the increase of NaCl concentration and processing time, level ofindole-3-acetic acid and gibberellic acid diminished to some extent, while abscissic acid(ABA) upgraded clearly. ABA was considered to play a central part in stress response andits role was emphasized in this part.
     In chapter4, fast separation and sensitive detection of auxins (Aux) by LC-ITMS wasperformed. Under optimum experimental conditions, four target compounds werecompetely separated in7min with a minimum detection limit of8.0ng/mL. Liquid-liquidextraction (LLE) was involved in this research for sample preparation. Endogenichormones could not be detected in Chinese cabbage after multiple vacuum concentrationsand solvent distribution, however, the recoveries of spiked samples ranged from77.5%to99.8%, thus relatively satisfactory results were obtained.
     Chapters5-8consist of the third part of this thesis. This part focused on theapplication of new sample pretreatment methods for PHs investigation. Three types ofassays, namely dispersive liquid-liquid microextraction (DLLME), solidification offloating organic drop microextraction (SFODME), and dispersive liquid-liquidmicroextraction based on the solidification of floating organic drop microextraction(DLLME-SFO) were studied in detail. These researches would provide new approach andstrategy for PHs analyses.
     In chapter5, traditional LLE and SPE processes are usually time-consuming withconsiderable organic solvent consumption. To overcome these weaknesses, DLLME wasintroduced into the pretreatment of plant matrix for the first time. Combined with the highselectivity and sensitivity of fluorescence detector (FLD), a DLLME-HPLC-FLD methodfor detection of four common Aux was proposed. DLLME had several advantages such aspowerful preconcentration (about50-fold enrichment), good reproducibility (relative standard deviation <5.64%), simple operation (no auxiliary equipments), environmentalfriendly (only a few micro liters of organic solvent), and quick analysis (extraction time <1min), so wide application of this method was obtained.
     In chapter6, to simplify PHs pretreatment, we still adopted DLLME to extract andenrich two hormones.30μL CHCl3and800μL THF were mixed and injected into5.0mLsample solution (pH3.0). After phase separation, the sedimented organic phase (about20μL) was directly withdrawn for HPLC-ITMS determination. Peach (from Ninh Binh,Vietnam) was used as real sample, and the content changes of two hormones indevelopment of peach were revealed, which would provide a guide for exogenousapplication of similar hormone.
     In chapter7, highly toxic halogenated hydrocarbons were frequently used asextraction solvents in DLLME procedure. To solve this problem, organic solvents with lowtoxicity were expected to adopt, therefore, SFODME technique was used to plant hormoneanalysis. SFODME-HPLC-UV method was firstly established for simultaneous analysis oftwo types of hormones with good repeatability and high enrichment factor (about130-200).Linear ranges of this method were over two orders of magnitude, with correlationcoefficient in range of0.9985-0.9994and detection limit of0.5ng/mL, respectively.Finally, this method was applied to analysis of real samples successfully.
     In chapter8, dispersive liquid-liquid microextraction based on the solidification offloating organic drop (DLLME-SFO) combines the advantages of DLLME (shortextraction time) and SFODME (no comsumption of highly toxic solvent). Two auxins wereselected as research abjects; extraction factors and enrichment influence for DLLME-SFOsystem were optimized. Lastly, repeatability and enrichment results of three pretreatmentmethods (DLLME-SFO, DLLME and SFODME) were evaluated and compared,respectively.
引文
[1]许智宏,李家洋.中国植物激素研究:过去、现在和未来.植物学通报,2006,23:433-442.
    [2]王忠.植物生理学(第2版).北京:中国农业出版社,2000.303-365.
    [3]李合生.现代植物生理学.北京:高等教育出版社,2002.231-279.
    [4]白玉,杜甫佑,刘虎威.植物激素检测技术研究进展.生命科学,2010,22(1):36-44.
    [5]张继澍.植物生理学.北京:高等教育出版社,2006.231-288.
    [6] Brenner M L. Modern methods for plant growth substance analysis. Annual Review of PlantPhysiology,1981,32:511-538.
    [7]黄晓荣,张平治,吴新杰,等.植物内源激素测定方法研究进展.中国农学通报,2009,25:84-87.
    [8]吴伯千,沈生荣,潘根生.茶树内源激素IAA和ABA提取方法研究.浙江农业大学学报,1992,18:95-98.
    [9]于玉梅,刘春香,朱妍妍,等.高效液相色谱法在黄瓜果实内源激素测定上的应用及改进.山东农业科学,2008,7:97-99.
    [10]杨途熙,魏安智,郑元,等.高效液相色谱法同时分离测定仁用杏花芽中的8种植物激素.分析化学,2007,35(9):1359-1361.
    [11]王若仲,萧浪涛,蔺万煌,等.亚种间杂交稻内源激素的高效液相色谱测定法.色谱,2002,20(2):148-150.
    [12] Hou S J, Zhu J, Ding M, et al. Simultaneous determination of gibberellic acid, indole-3-acetic acidand abscisic acid in wheat extracts by solid-phase extraction and liquid chromatography-electrospraytandem mass spectrometry. Talanta,2008,76:798-802.
    [13]张有林,党娅,张静,等.高效液相色谱法同时测定银凤桃中的赤霉素和脱落酸.西北植物学报,2005,25:1467-1471.
    [14] Liu B F, Zhong X H, Lu Y T. Analysis of plant hormones in tobacco flowers by micellarelectrokinetic capillary chromatography coupled with on-line large volume sample stacking. Journal ofChromatography A,2002,945:257-265.
    [15] Novák O, Hauserová E, Amakorová P, et al. Cytokinin profiling in plant tissues usingultra-performance liquid chromatography-electrospray tandem mass spectrometry. Phytochemistry,2008,69:2214-2224.
    [16] Hoyerová K, Gaudinová A, Malbeck J, et al. Efficiency of different methods of extraction andpurification of cytokinins. Phytochemistry,2006,67:1151-1159.
    [17] Hradecká V, Novák O, Havlí ek L, et al. Immunoaffinity chromatography of abscisic acidcombined with electrospray liquid chromatography-mass spectrometry. Journal of Chromatography B,2007,847:162-173.
    [18]刘贤明,梁锦添,秦绪雄.用高效液相色谱分析植物内源激素吲哚-3-乙酸、脱落酸和玉米素.色谱,1990,8:340-341.
    [19] Marta L C, Jáuregui O. A rapid method for analysis of abscisic acid (ABA) in crude extracts ofwater stressed Arabidopsis thaliana plants by liquid chromatography-mass spectrometry in tandemmode. Plant Physiology and Biochemistry,2005,43:407-411.
    [20] Zhou R, Squires T, Ambrose S, et al. Rapid extraction of abscisic acid and its metabolites for liquidchromatography-tandem mass spectrometry. Journal of Chromatography A,2003,1010:75-85.
    [21] Engelberth J, Schmelz E A, Alborn H T, et al. Simultaneous quantification of jasmonic acid andsalicylic acid in plants by vapor-phase extraction and gas chromatography-chemical ionization-massspectrometry. Analytical Biochemistry,2003,312:242-250.
    [22] Majcherczyk A, Rakoczy L, Hüttermann A. Improvements in methods for determination of abscisicacid and indole-3-acetic acid by high-performance liquid chromatography. Journal of ChromatographyA,1986,357:399-408.
    [23]陈雪梅,王沙生. HPLC法定量分析植物组织中ABA, IAA和NAA.植物生理学通讯,1992,28(5):368-371.
    [24]费维扬.面向21世纪的溶剂萃取技术.化工进展,2000,1:11-13.
    [25]丁静,沈镇德,方亦雄,等.植物内源激素的提取分离和生物鉴定.植物生理学通讯,1979,2:27-40.
    [26]陈冰,何金兰.植物生长素与细胞激动素毛细管电泳分离研究.化学通报,2001,4:247-250.
    [27]谢君,张义正.植物内源激素的反相高效液相色谱法测定.分析测试学报,2001,20:60-62.
    [28]高桂枝,徐爱军,虞梅,等.高效液相色谱切变波长法测定艾蒿中内源激素.现代农业科技,2007,3:9-11.
    [29]王世平,阮小凤.四种植物激素的分离和纯化.植物生理学通讯,1987,5:48-51.
    [30]李功科,胡玉玲,阮贵华.样品前处理仪器与装置.北京:化学工业出版社,2007.12-15.
    [31] Chen Y, Guo Z P, Wang X Y, et al. Sample preparation. Journal of Chromatography A,2008,1184:191-219.
    [32] Ge L Y, Yong J W H, Goh N K, et al. Identification of kinetin and kinetin riboside in coconut(Cocos nucifera L.) water using a combined approach of liquid chromatography-tandem massspectrometry, high performance liquid chromatography and capillary electrophoresis. Journal ofChromatography B,2005,829:26-34.
    [33] Ge L Y, Yong J W H, Tan S N, et al. Analysis of positional isomers of hydroxylated aromaticcytokinins by micellar electrokinetic chromatography. Electrophoresis,2005,26,1768-1777.
    [34] Novák O, Tarkowski P, Tarkowská D, et al. Quantitative analysis of cytokinins in plants by liquidchromatography-single-quadrupole mass spectrometry. Analytica Chimica Acta,2003,480:207-218.
    [35] Tarkowski P, Vaclavikova K, Novak O, et al. Analysis of2-methylthio-derivatives of isoprenoidcytokinins by liquid chromatography-tandem mass spectrometry. Analytica Chimica Acta,2010,680:86-91.
    [36] Kai K, Horita J, Wakasa K, et al. Three oxidative metabolites of indole-3-acetic acid fromArabidopsis thaliana. Phytochemistry,2007,68:1651-1663.
    [37]陈华君,张风娟,任琴,等.植物材料中茉莉酸的提取、纯化及其定量方法的研究.分析测试学报,2005,24:138-140.
    [38]沈波,平霄飞,汤富彬.高压液相色谱法检测水稻根系伤流液中细胞分裂素类物质.中国水稻科学,2004,18:362-364.
    [39]侯升杰,朱江,丁明玉.液相色谱-电喷雾串联质谱法测定冬青芽中的脱落酸.分析试验室,2009,28:96-98.
    [40] Ma Z, Ge L Y, Lee A S Y, et al. Simultaneous analysis of different classes of phytohormones incoconut (Cocos nucifera L.) water using high-performance liquid chromatography and liquidchromatography-tandem mass spectrometry after solid-phase extraction. Analytica Chimica Acta,2008,610:274-281.
    [41] Ge L Y, Yong J W H, Tan S N, et al. Analysis of some cytokinins in coconut (Cocos nucifera L.)water by micellar electrokinetic capillary chromatography after solid-phase extraction. Journal ofChromatography A,2004,1048:119-126.
    [42]侯升杰.植物营养元素和植物激素的色谱相关分析方法研究:[硕士学位论文].合肥:安徽农业大学资源与环境学院,2008.
    [43] Olsson J C, Andersson P E, Karlberg B, et al. Determination of plant indoles by capillaryelectrophoresis with amperometric detection. Journal of Chromatography A,1996,755:289-298.
    [44] Abrams S R, Ambrose S J, Cutler A J, et al. A method for profiling classes of plant hormones andtheir metabolites using liquid chromatography-electrospray ionization tandem mass spectrometry: ananalysis of hormone regulation of thermodormancy of lettuce (Lactuca sativa L.) seeds. The PlantJournal,2003,35:405-417.
    [45] Matsuda F, Miyazawa H, Wakasa K, et al. Quantification of indole-acetic acid and amino acidconjugates in rice by liquid chromatography-electrospray ionization-tandem mass spectrometry.Bioscience Biotechnology Biochemistry,2005,69:778-783.
    [46] Dobrev P I, Kamínek M. Fast and efficient separation of cytokinins from auxin and abscisic acidand their purification using mixed-mode solid-phase extraction. Journal of Chromatography A,2002,950:21-29.
    [47] Dobrev P I, Havlicek L, Vágner M, et al. Purification and determination of plant hormones auxinand abscisic acid using solid phase extraction and two-dimensional high performance liquidchromatography. Journal of Chromatography A,2005,1075:159-166.
    [48] Ross A R S, Ambrose S J, Cutler A J, et al. Determination of endogenous and supplied deuteratedabscisic acid in plant tissues by high-performance liquid chromatography-electrospray ionizationtandem mass spectrometry with multiple reaction monitoring. Analytical Biochemistry,2004,329:324-333.
    [49] Rhijn J A, Heskamp H H, Davelaar E, et al. Quantitative determination of glycosylated and aglyconisoprenoid cytokinins at sub-picomolar levels by microcolumn liquid chromatography combined withelectrospray tandem mass spectrometry. Journal of Chromatography A,2001,929:31-42.
    [50] Ge L Y, Yong J W H, Tan S N, et al. Analysis of cytokinin nucleotides in coconut (Cocos nuciferaL.) water using capillary zone electrophoresis-tandem mass spectrometry after solid-phase extraction.Journal of Chromatography A,2006,1133:322-331.
    [51] Izumi Y, Okazawa A Bamba T, et al. Development of a method for comprehensive andquantitative analysis of plant hormones by highly sensitive nanoflow liquidchromatography-electrospray ionization-ion trap mass spectrometry. Analytica Chimica Acta,2009,648:215-225.
    [52] Ge L Y, Peh C Y C, Yong J W H, et al. Analyses of gibberellins by capillary electrophoresis-massspectrometry combined with solid-phase extraction. Journal of Chromatography A,2007,1159:242-249.
    [53] Jeannot M A, Cantwell F F. Solvent microextraction into a single drop. Analytical Chemistry,1996,68:2236-2240.
    [54] He Y, Lee H K. Liquid-phase microextraction in a single drop of organic solvent by using aconventional microsyringe. Analytical Chemistry,1997,69:4634-4640.
    [55] Psillakis E, Kalogerakis N. Developments in liquid-phase microextraction. Trends in AnalyticalChemistry,2003,22:565-574.
    [56] Sarafraz-Yazdi A, Amiri A. Liquid-phase microextraction. Trends in Analytical Chemistry,2010,29:1-14.
    [57] Liu H, Dasgupta P K. Analytical chemistry in a drop solvent extraction in a microdrop. AnalyticalChemistry,1996,68:1817-1821.
    [58] Li X, Basheer C, Lee H K. Developments in single-drop microextraction. Journal ofChromatography A,2007,1152:184-192.
    [59] Zhao L M, Lee H K. Application of static liquid-phase microextraction to the analysis oforganochlorine pesticides in water. Journal of Chromatography A,2001,919:381-388.
    [60]王金玲,李义坤,赵京杨,等.单滴微萃取-气相色谱-质谱联用测定水中的硝基咪唑类药物.分析试验室,2010,29:107-110.
    [61] He Y, Kang Y J. Single drop liquid-liquid-liquid microextraction of methamphetamine andamphetamine in urine. Journal of Chromatography A,2006,1133:35-40.
    [62] Saraji M. Dynamic headspace liquid-phase microextraction of alcohols. Journal ofChromatography A,2005,1062:15-21.
    [63] Zhang J, Su T, Lee H K. Headspace water-based liquid-phase microextraction. AnalyticalChemistry,2005,77:1988-1992.
    [64] Zhang J, Lee H K. Headspace ionic liquid-based microdrop liquid-phase microextraction followedby microdrop thermal desorption-gas chromatographic analysis. Talanta,2010,81:537-542.
    [65] Pedersen-Bjergaard S, Rasmussen K E. Liquid-liquid-liquid microextraction for sample preparationof biological fluids prior to capillary electrophoresis. Analytical Chemistry,1999,71:2650-2656.
    [66] Basheer C, Lee H K. Analysis of endocrine disrupting alkylphenols, chlorophenols and bisphenol Ausing hollow fiber-protected liquid-phase microextraction coupled with injection port-derivatization gaschromatography-mass spectrometry. Journal of Chromatography A,2004,1057:163-169.
    [67] Lai B W, Liu B M, Malik P K, et al. Combination of liquid-phase hollow fiber membranemicroextraction with gas chromatography-negative chemical ionization mass spectrometry for thedetermination of dichlorophenol isomers in water and urine. Analytica Chimica Acta,2006,576:61-66.
    [68] Psillakis E, Kalogerakis N. Hollow-fibre liquid-phase microextraction of phthalate esters fromwater. Journal of Chromatography A,2003,999:145-153.
    [69] Shariati S, Yamini Y, Darabi M, et al. Three phase liquid phase microextraction of phenylaceticacid and phenylpropionic acid from biological fluids. Journal of Chromatography B,2007,855:228-235.
    [70] Wu J M, Ee K H, Lee H K. Automated dynamic liquid-liquid-liquid microextraction followed byhigh-performance liquid chromatography-ultraviolet detection for the determination of phenoxy acidherbicides in environmental waters. Journal of Chromatography A,2005,1082:121-127.
    [71]衷张菁,丁健桦,邱昌福,等.浸入式三相液相微萃取-高效液相色谱法对饮料中7种有机酸的同时测定.分析测试学报,2010,29:589-593.
    [72]王春,吴秋华,王志,等.基于中空纤维的液相微萃取技术的研究进展.色谱,2006:516-523.
    [73]罗明标,刘维,李伯平,等.多孔中空纤维液相微萃取技术的研究进展.分析化学,2007,7:1071-1077.
    [74]宋吉英,李军德.浊点萃取技术的应用.化学世界,2008,5:311-314.
    [75] Purkait M K, Banerjee S, Mewara S, et al. Cloud point extraction of toxic eosin dye using TritonX-100as nonionic surfactant. Water Research,2005,39:3885-3890.
    [76] Purkait M K, DasGupta S, De S. Determination of design parameters for the cloud point extractionof congo red and eosin dyes using TX-100. Separation and Purification Technology,2006,51:137-142.
    [77] Wang L, Jiang G B, Cai Y Q, et al. Cloud point extraction coupled with HPLC-UV for thedetermination of phthalate esters in environmental water samples. Journal of Environmental Sciences,2007,19:874-878.
    [78] Ohashi A, Hashimoto T, Imura H, et al. Cloud point extraction equilibrium of lanthanum(III),europium(III) and lutetium(III) using di(2-ethylhexyl)phosphoric acid and Triton X-100. Talanta,2007,73:893-898.
    [79]马立利,秦冬梅,简秋,等.浊点萃取法在农药残留分析中的应用.农药学学报,2009,11:159-165.
    [80]申进朝,邵学广.浊点萃取技术及其在有机化合物分离分析中的应用.化学进展,2006,18:482-487.
    [81] Rezaee M, Assadi Y, Hosseini M M., et al. Determination of organic compounds in water usingdispersive liquid-liquid microextraction. Journal of Chromatography A,2006,1116:1-9.
    [82] Rezaee M, Yamini Y, Faraji M. Evolution of dispersive liquid-liquid microextraction method.Journal of Chromatography A,2010,1217:2342-2357.
    [83]臧晓欢,吴秋华,张美月,等.分散液相微萃取技术研究进展.分析化学,2009,37:161-168.
    [84] He L J, Luo X L, Jiang X M, et al. A new1,3-dibutylimidazolium hexafluorophosphate ionicliquid-based dispersive liquid-liquid microextraction to determine organophosphorus pesticides in waterand fruit samples by high-performance liquid chromatography. Journal of Chromatography A,2010,1217:5013-5020.
    [85] Kocúrová L, Balogh I S, krlíková J, et al. A novel approach in dispersive liquid-liquidmicroextraction based on the use of an auxiliary solvent for adjustment of density UV-VISspectrophotometric and graphite furnace atomic absorption spectrometric determination of gold basedon ion pair formation. Talanta,2010,82:1958-1964.
    [86] Biparva P, Ranjbari E, Hadjmohammadi M R. Application of dispersive liquid-liquidmicroextraction and spectrophotometric detection to the rapid determination of rhodamine6G inindustrial effluents. Analytica Chimica Acta,2010,674:206-210.
    [87] Kagaya S, Takata D, Yoshimori T, et al. A sensitive and selective method for determination of gold(III) based on electrothermal atomic absorption spectrometry in combination with dispersiveliquid-liquid microextraction using dicyclohexylamine. Talanta,2010,80:1364-1370.
    [88] Anthemidis A N., Ioannou K G. Development of a sequential injection dispersive liquid-liquidmicroextraction system for electrothermal atomic absorption spectrometry by using a hydrophobicsorbent material: Determination of lead and cadmium in natural waters. Analytica Chimica Acta,2010,668:35-40.
    [89] Bernardo M, Goncalves M, Lapa N, et al. Determination of alkylphenols in eluates from pyrolysissolid residues using dispersive liquid-liquid microextraction. Chemosphere,2010,79:1026-1032.
    [90] Tarazona I, Chisvert A, León Z, et al. Determination of hydroxylated benzophenone UV filters insea water samples by dispersive liquid-liquid microextraction followed by gas chromatography-massspectrometry. Journal of Chromatography A,2010,1217:4771-4778.
    [91] Luo S S, Fang L, Wang X W, et al. Determination of octylphenol and nonylphenol in aqueoussample using simultaneous derivatization and dispersive liquid-liquid microextraction followed by gaschromatography-mass spectrometry. Journal of Chromatography A,2010,1217:6762-6768.
    [92] Wang Y, You J Y, Ren R B, et al. Determination of triazines in honey by dispersive liquid-liquidmicroextraction high-performance liquid chromatography. Journal of Chromatography A,2010,1217:4241-4246.
    [93] Yousefi S R, Shemirani F. Development of a robust ionic liquid-based dispersive liquid-liquidmicroextraction against high concentration of salt for preconcentration of trace metals in saline aqueoussamples: Application to the determination of Pb and Cd. Analytica Chimica Acta,2010,669:25-31.
    [94] Tabrizi A B. Development of a dispersive liquid-liquid microextraction method for iron speciationand determination in different water samples. Journal of Hazardous Materials,2010,183:688-693.
    [95] Grze kowiak A Z. Dispersive liquid-liquid microextraction applied to isolation and concentrationof alkylphenols and their short-chained ethoxylates in water samples. Journal of Chromatography A,2010,1217:1761-1766.
    [96] Liang P, Zhang L L, Zhao E. Displacement-dispersive liquid-liquid microextraction coupled withgraphite furnace atomic absorption spectrometry for the selective determination of trace silver inenvironmental and geological samples. Talanta,2010,82:993-996.
    [97] Campillo N, Vi as P, Cacho J I, et al. Evaluation of dispersive liquid-liquid microextraction for thesimultaneous determination of chlorophenols and haloanisoles in wines and cork stoppers using gaschromatography-mass spectrometry. Journal of Chromatography A,2010,1217:7323-7330.
    [98] Mallah M H, Shemirani F, Maragheh M G, et al. Evaluation of synergism in dispersiveliquid-liquid microextraction for simultaneous preconcentration of some lanthanoids. Journal ofMolecular Liquids,2010,151:122-124.
    [99] Shokoufi N, Hamdamali A. Laser induced-thermal lens spectrometry in combination withdispersive liquid-liquid microextraction for trace analysis. Analytica Chimica Acta,2010,681:56-62.
    [100] Leong M, Chang C C, Fuh M R, et al. Low toxic dispersive liquid-liquid microextraction usinghalosolvents for extraction of polycyclic aromatic hydrocarbons in water samples. Journal ofChromatography A,2010,1217:5455-5461.
    [101] Chen H, Chen R W, Li S Q. Low-density extraction solvent-based solvent terminated dispersiveliquid-liquid microextraction combined with gas chromatography-tandem mass spectrometry for thedetermination of carbamate pesticides in water samples. Journal of Chromatography A,2010,1217:1244-1248.
    [102] Hu X Z, Wu J H, Feng Y Q. Molecular complex-based dispersive liquid-liquid microextraction:Analysis of polar compounds in aqueous solution. Journal of Chromatography A,2010,1217:7010-7016.
    [103] Pizarro C Sáenz-González C, Perez-del-Notario N, et al. Optimisation of a dispersive liquid-liquidmicroextraction method for the simultaneous determination of halophenols and haloanisoles in wines.Journal of Chromatography A,2010,1217:7630-7637.
    [104] Karimi M, Sereshti H, Samadi S, et al. Optimization of dispersive liquid-liquid microextractionand improvement of detection limit of methyl tert-butyl ether in water with the aid of chemometrics.Journal of Chromatography A,2010,1217:7017-7023.
    [105] Cunh S C, Fernandes J O. Quantification of free and total bisphenol A and bisphenol B in humanurine by dispersive liquid-liquid microextraction (DLLME) and heart-cutting multidimensional gaschromatography-mass spectrometry (MD-GC/MS). Talanta,2010,83:117-125.
    [106] Sobhi H R, Kashtiaray A, Farahani H, et al. Quantitation of mononitrotoluenes in aquaticenvironment using dispersive liquid-liquid microextraction followed by gas chromatography-flameionization detection. Journal of Hazardous Materials,2010,175:279-283.
    [107] Hashemi P, Raeisi F, Ghiasvand A R, et al. Reversed-phase dispersive liquid-liquidmicroextraction with central composite design optimization for preconcentration and HPLCdetermination of oleuropein. Talanta,2010,80:1926-1931.
    [108] Zacharis C K, Tzanavaras P D, Roubos K, et al. Solvent-based de-emulsification dispersiveliquid-liquid microextraction combined with gas chromatography-mass spectrometry for determinationof trace organochlorine pesticides in environmental water samples. Journal of Chromatography A,2010,1217:5896-5900.
    [109] Najafi N M, Tavakoli H, Alizadeh R, et al. Speciation and determination of ultra trace amounts ofinorganic tellurium in environmental water samples by dispersive liquid-liquid microextraction andelectrothermal atomic absorption spectrometry. Analytica Chimica Acta,2010,670:18-23.
    [110] Rezaee M, Yamini Y, Moradi M, et al. Supercritical fluid extraction combined with dispersiveliquid-liquid microextraction as a sensitive and efficient sample preparation method for determination oforganic compounds in solid samples. Journal of Supercritical Fluids,2010,55:161-168.
    [111] Zhang H F, Shi Y P. Temperature-assisted ionic liquid dispersive liquid-liquid microextractioncombined with high performance liquid chromatography for the determination of anthraquinones inRadix et Rhizoma Rhei samples. Talanta,2010,82:1010-1016.
    [112] Caldas S S, Costa F P, Primel E G. Validation of method for determination of different classes ofpesticides in aqueous samples by dispersive liquid-liquid microextraction with liquidchromatography-tandem mass spectrometric detection. Analytica Chimica Acta,2010,665:55-62.
    [113] Shi Z G, Lee H K. Dispersive liquid-liquid microextraction coupled with dispersive μ-solid-phaseextraction for the fast determination of polycyclic aromatic hydrocarbons in environmental watersamples. Analytical Chemistry,2010,82:1540-1545.
    [114] Jofré V P, Assof M V, Fanzone M L, et al. Optimization of ultrasound assisted-emulsification-dispersive liquid-liquid microextraction by experimental design methodologies for thedetermination of sulfur compounds in wines by gas chromatography-mass spectrometry. AnalyticaChimica Acta,2010,683:126-135.
    [115] Zanjani M R K, Yamini Y, Shariati S, et al. A new liquid-phase microextraction method based onsolidification of floating organic drop. Analytica Chimica Acta,2007,585:286-293.
    [116] Farahania H, Yaminia Y, Shariatib S, et al. Development of liquid phase microextraction methodbased on solidification of floated organic drop for extraction and preconcentration of organochlorinepesticides in water samples. Analytica Chimica Acta,2008,626:166-173.
    [117]周建科,刘瑞英,宋歌,等.液面悬浮单滴微萃取-高效液相色谱法测定果汁中两类农药残留.食品工业科技,2009,30:317-319.
    [118] Xu H, Ding Z Q, Lv L L, et al. A novel dispersive liquid-liquid microextraction based onsolidification of floating organic droplet method for determination of polycyclic aromatic hydrocarbonsin aqueous samples. Analytica Chimica Acta,2009,636:28-33.
    [119] Jian Y H, Hu Y, Wang T, et al. Dispersive liquid-liquid microextraction based on solidification offloating organic drop with high performance liquid chromatography for determination ofdecabrominated diphenyl ether in surficial sediments. Chinese Journal of Analytical Chemistry,2010,38:62-66.
    [120] Leong M I, Huang S D. Dispersive liquid-liquid microextraction method based on solidificationof floating organic drop combined with gas chromatography with electron-capture or mass spectrometrydetection. Journal of Chromatography A,2008,1211:8-12.
    [121] Leong M I, Huang S D. Dispersive liquid-liquid microextraction method based on solidificationof floating organic drop for extraction of organochlorine pesticides in water samples. Journal ofChromatography A,2009,1216:7645-7650.
    [122] Rezaee M, Yamini Y, Khanchi A, et al. A simple and rapid new dispersive liquid-liquidmicroextraction based on solidification of floating organic drop combined with inductively coupledplasma-optical emission spectrometry for preconcentration and determination of aluminium in watersamples. Journal of Hazardous Materials,2010,178:766-770.
    [123] Chang C C, Huang S D. Determination of the steroid hormone levels in water samples bydispersive liquid-liquid microextraction with solidification of a floating organic drop followed byhigh-performance liquid chromatography. Analytica Chimica Acta,2010,662:39-43.
    [124] Hashemi P, Beyranvand S, Mansur R S, et al. Development of a simple device for dispersiveliquid-liquid microextraction with lighter than water organic solvents: Isolation and enrichment ofglycyrrhizic acid from licorice. Analytica Chimica Acta,2009,655:60-65.
    [125] Yamini Y, Rezaee M, Khanchi A, et al. Dispersive liquid-liquid microextraction based on thesolidification of floating organic drop followed by inductively coupled plasma-optical emissionspectrometry as a fast technique for the simultaneous determination of heavy metals. Journal ofChromatography A,2010,1217:2358-2364.
    [126] Afzali D, Mohadesi A, Jahromi B B, et al. Separation of trace amount of silver using dispersiveliquid-liquid based on solidification of floating organic drop microextraction. Analytica Chimica Acta,2011,684:54-58.
    [127] Asadollahi T, Dadfarnia S, Shabani A M H. Separation/preconcentration and determination ofvanadium with dispersive liquid-liquid microextraction based on solidification of floating organic drop(DLLME-SFO) and electrothermal atomic absorption spectrometry. Talanta,2010,82:208-212.
    [128] Wu C X, Wu Q H, Wang C, et al. A novel method for the determination of trace copper in cerealsby dispersive liquid-liquid microextraction based on solidification of floating organic drop coupled withflame atomic absorption spectrometry. Chinese Chemical Letters,2011,22:473-476.
    [129] Dai L P, Cheng J, Matsadiq G, et al. Dispersive liquid-liquid microextraction based on thesolidification of floating organic droplet for the determination of polychlorinated biphenyls in aqueoussamples. Analytica Chimica Acta,2010,674:201-205.
    [130] Wang C, Wu Q H, Wu C X, et al. Application of dispersion-solidification liquid-liquidmicroextraction for the determination of triazole fungicides in environmental water samples byhigh-performance liquid chromatography. Journal of Hazardous Materials,2011,185:71-76.
    [131] Lv L L, Xu H, Song D D, et al. Analysis of volatile aldehyde biomarkers in human blood byderivatization and dispersive liquid-liquid microextraction based on solidification of floating organicdroplet method by high performance liquid chromatography. Journal of Chromatography A,2010,1217:2365-2370.
    [132] Author C L, Pawliszyn J. Solid phase microextraction with thermal desorption using fused silicaoptical fibers. Analytical Chemistry,1990,62:2145-2148.
    [133] Mullett W M, Pawliszyn J. Direct determination of benzodiazepines in biological fluids byrestricted-access solid-phase microextraction. Analytical Chemistry,2002,74:1081-1087.
    [134] Droge S T J, Sinnige T L, Hermens J L M. Analysis of freely dissolved alcohol ethoxylatehomologues in various seawater matrixes using solid-phase microextraction. Analytical Chemistry,2007,79:2885-2891.
    [135] Kataoka H, Matsuura E, Mitani K. Determination of cortisol in human saliva by automatedin-tube solid-phase microextraction coupled with liquid chromatography-mass spectrometry. Journal ofPharmaceutical and Biomedical Analysis,2007,44:160-165.
    [136] Mitani K, Fujioka M, Uchida A, et al. Analysis of abietic acid and dehydroabietic acid in foodsamples by in-tube solid-phase microextraction coupled with liquid chromatography-mass spectrometry.Journal of Chromatography A,2007,1146:61-66.
    [137] Neng N R, Pinto M L, Pires J, et al. Development, optimisation and application of polyurethanefoams as new polymeric phases for stir bar sorptive extraction. Journal of Chromatography A,2007,1171:8-14.
    [138] Deschamps M B, Daudin J J, Barriuso E. An experimental design approach to optimise thedetermination of polycyclic aromatic hydrocarbons from rainfall water using stir bar sorptive extractionand high performance liquid chromatography-fluorescence detection. Journal of Chromatography A,2007,1167:143-153.
    [139] Vílchez J L, Prieto A, Araujo L, et al. Determination of fipronil by solid-phase microextractionand gas chromatography-mass spectrometry. Journal of Chromatography A,2001,919:215-221.
    [140] Rodńguez R, Mańes J, Pico Y. Off-line solid-phase microextraction and capillary electrophoresismass spectrometry to determine acidic pesticides in fruits. Analytical Chemistry,2003,75:452-459.
    [141] Vesely P, Lusk L, Basarova G, et al. Analysis of aldehydes in beer using solid-phasemicroextraction with on-fiber derivatization and gas chromatography/mass spectrometry. Journal ofAgricultural and Food Chemistry,2003,51:6941-6944.
    [142] Lord H, Pawliszyn J. Evolution of solid-phase microextraction technology. Journal ofChromatography A,2000,885:153-193.
    [143] Kataoka H, Lord H L, Pawliszyn J. Applications of solid-phase microextraction in food analysis.Journal of Chromatography A,2000,880:35-62.
    [144] Theodoridis G, Koster E H M, Jong G J. Solid-phase microextraction for the analysis ofbiological samples. Journal of Chromatography B,2000,745:49-82.
    [145] Ulrich S. Solid-phase microextraction in biomedical analysis. Journal of Chromatography A,2000,902:167-194.
    [146] Vuckovic D, Zhang X, Cudjoe E, et al. Solid-phase microextraction in bioanalysis: New devicesand directions. Journal of Chromatography A,2010,1217:4041-4060.
    [147] Mester Z, Sturgeon R. Trace element speciation using solid phase microextraction.Spectrochimica Acta Part B,2005,60:1243-1269.
    [148]龙文清.浊点萃取-胶束增稳室温嶙光法测定水样中痕量β-萘乙酸.分析化学,2005,7:1013-1015.
    [149]龙文清.浊点萃取预富集胶束增稳室温磷光法测定吲哚-3-丁酸.分析测试学报,2007,26:77-80.
    [150] Yin X B, Guo J M, Wei W. Dual-cloud point extraction and tertiary amine labeling for selectiveand sensitive capillary electrophoresis-electrochemiluminescent detection of auxins. Journal ofChromatography A,2010,1217:1399-1406.
    [151] Zadra C, Borgogni A, Marucchini C. Quantification of jasmonic acid by SPME in tomato plantsstressed by ozone. Journal of Agricultural and Food Chemistry,2006,54:9317-9321.
    [152] Liu H T, Li Y F, Luan T G, et al. Simultaneous determination of phytohormones in plant extractsusing SPME and HPLC. Chromatographia,2007,66:515-520.
    [153] Wu Y L, Hu B. Simultaneous determination of several phytohormones in natural coconut juice byhollow fiber-based liquid-liquid-liquid microextraction-high performance liquid chromatography.Journal of Chromatography A,2009,1216:7657-7663.
    [154] Hedden P. Modern methods for the quantitative analysis of plant hormones. Plant Physiology andPlant Molecular Biology,1993,44:107-129.
    [155]李素梅,张自立,姚彦如.植物激素检测技术的研究进展.安徽农业大学学报,2003,30:227-230.
    [156]李雨薇,肖浪涛.植物激素检测技术的现状和发展.生命科学仪器,2007,5:10-14.
    [157]郑炳松.现代植物生理生化研究技术.北京:气象出版社,2006.248-251.
    [158]杨晓达,常文保,慈云祥.免疫分析法进展.化学进展,1995,7:83-97.
    [159]周燮,徐义俊,陈婉芬.脱落酸的放射免疫测定法.南京农业大学学报,1985,1:89-91.
    [160]张能刚,徐义俊,周燮.脱落酸间接酶联免疫检测法的建立.南京农业大学学报,1991,14:21-24.
    [161]周燮,徐义俊.植物生长调节剂免疫测定技术的研究进展.南京农业大学学报,1987,2:9-14.
    [162]张能刚,周燮,吴颂如.吲哚乙酸间接酶联免疫法的建立.南京农业大大学学报,1990,13:116-119.
    [163] Wang S C, Xu L L, Li G J, et al. An ELISA for the determination of salicylic acid in plants usinga monoclonal antibody. Plant Science,2002,162:529-535.
    [164]吴颂如,万寅生,周燮.植物小分子物质的免疫测定技术.植物生理学通讯,1989,5:68-72.
    [165]吴颂如,陈婉芬,周燮.酶联免疫法(ELISA)测定内源植物激素.植物生理学通讯,1988,5:53-57.
    [166]赫冬梅,胡国公,穆琳.烟草内源激素的酶联免疫吸附法(ELISA)测定.烟草科技,2000,5:41-42.
    [167] Li J, Xiao L T, Zeng G M, et al. et al. A novel piezoelectric biosensor for the detection ofphytohormone indole acetic acid. Analytical Sciences,2002,18:403-407.
    [168] Li J, Xiao L T, Zeng G M, et al. Immunosensor for rapid detection of gibberellin acid in the ricegrain. Journal of Agricultural and Food Chemistry,2005,53:1348-1353.
    [169] Li J, Xiao L T, Zeng G M, et al. A renewable amperometric im munosensor for phytohormones-indole acetic acid assay. Analytica Chimica Acta,2003,494:177-185.
    [170]李春香.基于巯基自组装单层膜的植物生长激素吲哚乙酸电化学免疫传感器的研究.化学学报,2003,61:790-794.
    [171] Li J, Xiao L T, Zeng G M, et al. Amperometric immunosensor based onpolypyrrole/poly(m-pheylenediamine) multilayer on glassy carbon electrode for cytokininN6-(Δ2-isopentenyl) adenosine assay. Analytical Biochemistry,2003,321:89-95.
    [172] Hradechá V, Novák O, Havlíěk L, et al. Immunoaffinity chromatography of abscisic acidcombined with electrospray liquid chromatog raphy-mass spectrometry. Journal of Chromatography B,2007,847:162-173.
    [173]印天寿,陈世勇,于群英,等.赤霉素的快速分光光度测定法的研究.分析化学,1990,18:966-969.
    [174]吴少伯.赤霉素荧光测定的光谱特征.植物生理学通讯,1990,4:56-58.
    [175]吴翚,宛瑜.脱落酸(ABA)荧光性质的研究.徐州师范大学学报,2002,20:39-41.
    [176]黄春芳,龙文清,陈华龙,等.人工神经网络光致发光法同时测定α-萘乙酸和吲哚-3-乙酸.分析科学学报,2008,24:197-200.
    [177]朱若华,刘长松.纸基质室温磷光法测定痕量6-苄氨基嘌呤的研究.分析化学,1992,20(10):1131-1134.
    [178]徐文婷,朱若华.同步-导数固体基质室温磷光光谱法快速同时分析a-萘乙酸和6-苄氨基嘌呤.分析实验室,2009,28:99-102.
    [179]龙文清.无保护流体室温磷光法同时测定α-萘乙酸和吲哚-3-乙酸.分析科学学报,2005,21:399-401.
    [180]张韶虹,郗娟,何治柯. Ru(phen)32+-Ce(Ⅳ)化学发光体系检测吲哚乙酸的研究.分析科学学报,2005,21:387-389.
    [181]王宏,胡胜水,周性尧.植物激素吲哚乙酸的电化学行为的研究.华中理工大学学报,2000,28:104-106.
    [182]李劲.植物内源激素等物质的电化学生物传感技术研究:[博士学位论文].湖南:湖南大学化学化工学院,2003.
    [183]李春香.植物生长激素吲哚乙酸等电化学生物传感器的研究:[硕士学位论文].湖南:湖南大学化学化工学院,2003.
    [184] Mancuso S, Marras A M, Magnus V, et al. Noninvasive and continuous recordings of auxin fluxesin intact root apex with a carbon nanotube-modified and self-referencing microelectrode. AnalyticalBiochemistry,2005,341:344-351.
    [185] Toledo R A, Vaz C M P. Use of a graphite-polyurethane composite electrode for electroanalyticaldetermination of indole-3-acetic acid in soil samples. Microchemical Journal,2007,86:161-165.
    [186] Hu T, Dryhurst G. Electrochemical and peroxidase O2-mediated oxidation of indole-3-acetic acidat physiological pH. Journal of Electroanalytical Chemistry,1997,432:7-18.
    [187]杜昱光,李曙光,郭红莲.高效液相色谱-电化学(库仑电极)阵列检测技术用于植物内源激素等小分子物质的差异显示.色谱,2003,21:507-509.
    [188]郭志慧,唐隆健,章竹君.碳纳米管/Nafion-吡啶钌修饰电极电化学发光法测定激动素.分析化学,2009,37:13-18.
    [189] Gan T, Hu C Q, Chen Z L, et al. Fabrication and application of a novel plant hormone sensor forthe determination of methyl jasmonate based on self-assembling of phosphotungstic acid-grapheneoxide nanohybrid on graphite electrode. Sensors and Actuators B,2010,151:8-14.
    [190]汪正范,杨树民,吴侔天,等.色谱联用技术(第2版).北京:化学工业出版社,2007.61-137.
    [191] Birkemeyer C, Kolasa A, Kopka J. Comprehensive chemical derivatization for gaschromatography-mass spectrometry-based multi-targeted profiling of the major phytohormones. Journalof Chromatography A,2003,993:89-102.
    [192]吴秀英,王瑞萍,袁晓燕,等.用高压液相色谱及气相色谱法测定几种植物的内源激素.植物学通报,1985,3:45-52.
    [193]张有林,陈锦屏,张宝善.用溴甲基五氟苯衍生气相色谱法测定葡萄浆果中的脱落酸和吲哚-3-乙酸.西北植物学报,1999,19:357-361.
    [194]柴梦颖,李秀根,张绍玲.梨幼果中脱落酸和吲哚乙酸的简易气相色谱分析.果树学报,2005,22:276-278.
    [195]杜黎明,许庆琴.气相色谱法直接测定植物生长素.色谱,2000,18:160-161.
    [196]付磊,陶燕飞.气相色谱法测定草莓中的赤霉素.武汉科技大学学报,2002,25:359-360.
    [197]郭廷翘,李晖,聂虹,等.无分流进样法测定脱落酸含量.东北林业大学学报.1992,20:89-94.
    [198]袁少敏,郑本亨,麦咏谊.脱落酸的提纯和测定方法的研究.华南师范大学学报.1990,1:57-60.
    [199]沈镇德,丁静.用气液色谱-电子捕获器测定脱落酸.植物生理学通讯,1984,3:47-49.
    [200]吕宪禹,王勇,汤兆达,等.毛细管气相色谱测定脱落酸.色谱,1988,6:233-235.
    [201]袁敏,张铭光,吴育槐.二维气相色谱法测定植物CO2及C2H4释放量.华南师范大学学报,2000,3:45-48.
    [202]马振宇,吕志华,姜廷福,等.高效液相色谱法测定菌肥中赤霉素和吲哚乙酸含量方法研究.分析测试技术与仪器,2005,11:174-177.
    [203]黄红林,刘实,张桃芝.固相萃取-高效液相色谱测定番茄中的赤霉素GA3残留.分析科学学报,2005,21:75-77.
    [204]胡建斌,李建吾,孙守如.薯蓣中内源激素的提取及高效液相色谱测定法.植物生理学通讯,2007,43:529-532.
    [205]徐爱军,高桂枝,汤莉莉.梯度洗脱测定植物源调节剂中内源激素方法探讨.分析试验室,2007,26:51-55.
    [206]吴红京,张春玲,赖钟雄.高效液相色谱法测定龙眼胚芽中的细胞分裂素.福建分析测试,2005,14(1):2096-2100.
    [207]张有林,党娅,张静,等.高效液相色谱法同时测定银凤桃中的赤霉素和脱落酸.西北植物学报,2005,25:1467-1471.
    [208] Absalan G, Akhond M, Sheikhian L. Extraction and high performance liquid chromatographicdetermination of3-indole butyric acid in pea plants by using imidazolium-based ionic liquids asextractant. Talanta,2008,77:407-411.
    [209] Stoll D R, Cohen J D, Carr P W. Fast, comprehensive online two-dimensional high performanceliquid chromatography through the use of high temperature ultra-fast gradient elution reversed-phaseliquid chromatography. Journal of Chromatography A,2006,1122:123-137.
    [210]童建华,李雨薇,黄志刚,等.高效液相色谱法同时检测棉花根中的多种植物激素.现代生物医学进展,2009,9:2476-2479.
    [211]符继红,褚金芳,王吉德,等.固相萃取反相高效液相色谱荧光检测法测定拟南芥中的生长素.分析化学,2009,37:1324-1327.
    [212]徐卉,贾丽,柳亚玲.毛细管液相色谱法分离植物内源激素.分析试验室,2009,28:30-34.
    [213] Yeo S K, Lee H K, Li S F Y. Separation of plant growth regulators by capillary electrophoresis.Journal of Chromatography A,1992,594:335-340.
    [214] Barták P, ev ík J, Adam T, et al. Study of cytokinin separation using capillary electrophoresiswith cyclodextrin additives. Journal of Chromatography A,1998,818:231-238.
    [215] Olsson J C, Andersson P E, Karlberg B, et al. Determination of plant indoles by capillaryelectrophoresis with amperometric detection. Journal of Chromatography A,1996,755:289-298.
    [216] Olsson J, Claeson K, Karlberg B. Determination of indole-3-acetic acid andindole-3-acetylaspartic acid in pea plant with capillary electrophoresis and fluorescence detection.Journal of Chromatography A,1998,824:231-239.
    [217]陈冰,何金兰.植物生长素与细胞激动素毛细管电泳分离研究.化学通报,2001,4:247-250.
    [218]袁敏,张铭光,康经武,等.植物生长激素的毛细管胶束电动色谱法分离.色谱,1997,15:482-485.
    [219]陈冠华,张玉星,杨更亮,等.胶束电动毛细管色谱法测定植物中的水杨酸.分子科学学报,2002,18:31-34.
    [220] Liu B F, Zhong X H, Lu Y T. Analysis of plant hormones in tobacco flowers by micellarelectrokinetic capillary chromatography coupled with on-line large volume sample stacking. Journal ofChromatography A,2002,945:257-265.
    [221] Liu X, Ma L, Lin Y W, et al. Determination of abscisic acid by capillary electrophoresis withlaser-induced fluorescence detection. Journal of Chromatography A,2003,1021:209-213.
    [222] Zhang Z L, Liu X, Li D F, et al. Determination of jasmonic acid in bark extracts from Heveabrasiliensis by capillary eletrophoresis with laser-induced fluorescence detection. Analytical andBioanalytical Chemistry,2005,382:1616-1619.
    [223] Pyell U. Advances in column technology and instrumentation in capillary electrochromatography.Journal of Chromatography A,2000,892:257-278.
    [224] Yin X B, Liu D Y. Polydopamine-based permanent coating capillary electrochromatography forauxin determination. Journal of Chromatography A,2008,1212:130-136.
    [225] Wang S J, Li J, Da X, et al. On-line concentration and pressurized capillaryelectrochromatographic analysis of phytohormones in corn. Journal of Separation Science,2008,31:859-864.
    [226]金幼菊.气相色谱-质谱联用技术在植物激素分析中的应用.植物生理学通讯,1992,28:72-77.
    [227] Duffield P H, Netting A G. Methods for the quantitation of abscisic acid and its precursors fromplant tissues. Analytical Biochemistry,2001,289:251-259.
    [228] Tam Y Y, Normanly J. Determination of indole-3-pyruvic acid levels in Arabidopsis thaliana bygas chromatography-selected ion monitoring-mass spectrometry. Journal of Chromatography A,1998,800:101-108.
    [229] Barkawi L S, Tam Y Y, Tillman J A, et al. A high-throughput method for the quantitative analysisof indole-3-acetic acid and other auxins from plant tissue. Analytical Biochemistry,2008,372:177-188.
    [230] Perrine F M, Rolfe B G, Hynes M F, et al. Gas chromatography-mass spectrometry analysis ofindole acetic acid and tryptophan following aqueous chloroformate derivatisation of Rhizobiumexudates. Plant Physiology and Biochemistry,2004,42:723-729.
    [231] Müller A, Düchting P, Weiler E W. A multiplex GC-MS/MS technique for the sensitive andquantitative single-run analysis of acidic phytohormones and related compounds, and its application toArabidopsis thaliana. Planta,2002,216:44-56.
    [232]王俊斌,王海凤,王海英,等.气相色谱-质谱联用仪测定植物茉莉酸含量的研究.华北农学报,2009,24:226-230.
    [233] Maksymiec W, Wianowska D, Dawidowicz A L, et al. The level of jasmonic acid in Arabidopsisthaliana and Phaseolus coccineus plants under heavy metal stress. Journal of Plant Physiology,2005,162:1338-1346.
    [234]盛龙生,苏焕华,郭丹滨.色谱质谱联用技术.北京:化学工业出版社,2005.130-150.
    [235] Pan X Q, Wang X M. Profiling of plant hormones by mass spectrometry. Journal ofChromatography B,2009,877:2806-2813.
    [236] Durgbanshi A, Arbona V, Pozo O, et al. Simultaneous determination of multiple phytohormonesin plant extracts by liquid chromatography-electrospray tandem mass spectrometry. Journal ofAgricultural and Food Chemistry,2005,53:8437-8442.
    [237] Prinsen E, Dongen W V, Esmans E L, et al. Micro and capillary liquid chromatography-tandemmass spectrometry: a new dimension in phytohormone research. Journal of Chromatography A,1998,826:25-37.
    [238] Cao J, Murch S J, O’Brien R, et al. Rapid method for accurate analysis of melatonin, serotoninand auxin in plant samples using liquid chromatography-tandem mass spectrometry. Journal ofChromatography A,2006,1134:333-337.
    [239] Pan X Q, Welti R, Wang X M. Simultaneous quantification of major phytohormones and relatedcompounds in crude plant extracts by liquid chromatography-electrospray tandem mass spectrometry.Phytochemistry,2008,69:1773-1781.
    [240] Segarra G, Jáuregui O, Casanova E, et al. Simultaneous quantitative LC-ESI-MS/MS analyses ofsalicylic acid and jasmonic acid in crude extracts of Cucumis sativus under biotic stress. Phytochemistry,2006,67:395-401.
    [241] López J S, Camaňes G, Flors V, et al. Underivatized polyamine analysis in plant samples by ionpair LC coupled with electrospray tandem mass spectrometry. Plant Physiology and Biochemistry,2009,47:592-598.
    [242] Redig P, Shaul O, Inzé D, et al. Levels of endogenous cytokinins, indole-3-acetic acid andabscisic acid during the cell cycle of synchronized tobacco BY-2cells. FEBS Letters,1996,391:175-180.
    [243] Wilbert S M, Ericsson L H, Gordon M P. Quantification of jasmonic acid, methyl jasmonate, andsalicylic acid in plants by capillary liquid chromatography electrospray tandem mass spectrometry.Analytical Biochemistry,1998,257:186-194.
    [244] Schneider G, Schmidt J. Liquid chromatography-electrospay ionization mass spectrometry foranalyzing plant hormone conjugates. Journal of Chromatography A,1996,728:371-375.
    [245] Coenen C, Lomax T L. Auxin-cytokinin interactions in higher plants: old problems and new tools.Trends in plant science.1997,2:351-356.
    [246] Wang G Y, R mheld V, Li C J, et al. Involvement of auxin and CKs in boron deficiency inducedchanges in apical dominance of pea plants (Pisum sativum L.). Journal of Plant Physiology,2006,163:591-600.
    [247] Arthur G D, Stirk W A, Novák O, et al. Occurrence of nutrients and plant hormones (cytokininsand IAA) in the water fern Salvinia molesta during growth and composting. Environmental andExperimental Botany.2007,61:137-144.
    [248] Knox J H, Grant I H. Electrochromatography in packed tubes using1.5to50μm silica gels andODS bonded silica gels. Chromatographia,1991,32,317-328.
    [249] Yan C, Dadoo R, Zare R N. Gradient elution in capillary electrochromatography. AnalyticalChemistry,1996,68:2726-2730.
    [250] Yao C Y, Tang S K, Gao R Y, et al. Enantiomer separations on a vancomycin stationary phaseand retention mechanism of pressurized capillary electrochromatography. Journal of Separation Science,2004,27:1109-1114.
    [251] Lü H X, Wu X P, Xie Z H, et al. Separation and determination of seven fluoroquinolones bypressurized capillary electrochromatography. Journal of Separation Science,2005,28:2210-2217.
    [252] Lu M H, Zhang L, Qiu B, et al. Rapid separation and sensitive detection method for β-blockers bypressure-assisted capillary electrochromatography-electrospray ionization mass spectrometry. Journal ofChromatography A,2008,1193:156-163.
    [253] Lin Z A, Xie Z H. Direct determination of amino acids by pressurized capillaryelectrochromatography with chemiluminescence detection. Journal of Separation Science,2008,31:2852-2859.
    [254] Zhang K, Gao R Y, Jiang Z J, et al. Pressurized capillary electrochromatography separation ofpeptides with strong cation exchange and hydrophilic interaction. Journal of Separation Science,2003,26:1389-1394.
    [255]邰淑彩,孙韫玉,何娟娟.应用数理统计.湖北:武汉大学出版社,2005.122-130.
    [256]师晨娟,刘勇,荆涛.植物激素抗逆性研究进展.世界林业研究,2006,19:21-26.
    [257] Zhang M C, Duan L S, Tian X L, et al. Uniconazole-induced tolerance of soybean to water deficitstress in relation to changes in photosynthesis, hormones and antioxidant system. Journal of PlantPhysiology,2007,164:709-717.
    [258] Li T H, Li S H. Leaf responses of micropropagated apple plants to water stress: changes inendogenous hormones and their influence on carbohydrate metabolism. Agricultural Sciences in China,2007,6:58-67.
    [259] Li C Z, Jiao J, Wang G X. The important roles of reactive oxygen species in the relationshipbetween ethylene and polyamines in leaves of spring wheat seedlings under root osmotic stress. PlantScience,2004,166:303-315.
    [260] Russak M J, Kaba a K, M odzińska E, et al. The role of polyamines in the regulation of theplasma membrane and the tonoplast proton pumps under salt stress. Journal of Plant Physiology,2010,167:261-269.
    [261] Zhang J H, Jia W S, Yang J C, et al. Role of ABA in integrating plant responses to drought andsalt stresses. Field Crops Research,2006,97:111-119.
    [262] Peleg Z, Blumwald E. Hormone balance and abiotic stress tolerance in crop plants. CurrentOpinion in Plant Biology,2011,14:1-6.
    [263] Tuteja N. Mechanisms of high salinity tolerance in plants. Methods in Enzymology,2007,428:419-438.
    [264] Yin C Y, Duan B L, Wang X, et al. Morphological and physiological responses of two contrastingPoplar species to drought stress and exogenous abscisic acid application. Plant Science,2004,167:1091-1097.
    [265] Kaur S, Gupta A K, Kaur N. Effect of GA3, kinetin and indole acetic acid on carbohydratemetabolism in chickpea seedlings germinating under water stress. Plant Growth Regulation,2000,30:61-70.
    [266] Rechenmann C P, Napier R M. Auxins. Vitamins&Hormones,2005,72:203-233.
    [267]陈小鹏,王秀峰,孙小镭,等.高效液相色谱测定黄瓜瓜条中赤霉素和脱落酸含量.山东农业科学,2005,1:65-67.
    [268] Koshita Y, Takahara T, Ogata T, et al. Involvement of endogenous plant hormones (IAA, ABA,GAs) in leaves and flower bud formation of satsuma mandarin (Citrus unshiu Marc.). ScientiaHorticulturae,1999,79:185-194.
    [269] Wurst M, Prikryl Z, Vokoun J. High-performance liquid chromatography of plant hormones Ⅱ.Determination of plant hormones of the indole type. Journal of Chromatography,1984,286:237-245.
    [270] Sánchez F G, Díaz A N, Pareja A G. Micellar liquid chromatography of plant growth regulatorsdetected by derivative fluorometry. Journal of Chromatography A,1996,723:227-233.
    [271]田志喜,张玉星.水杨酸对新红星苹果后熟的影响.园艺学报,2001,28:557-559.
    [272]田志喜,张玉星,于艳军,等.水杨酸对鸭梨果实PG、PME和呼吸速率的影响.果树学报,2002,19:381-384.
    [273]郭志雄,潘东明,吕柳新.油萘果实生长发育机制初步研究.中国农学通报,2006,22:330-334.
    [274] Beruter J. Effect of abscisic acid on sorbitol uptake in growing apple fruits. Journal ofExperimental Botany,1983,43:737-743.
    [275]蔡建秀,刘国强,陈伟.枇杷果实发育不同阶段内源多胺及激素含量的变化.中国农学通报,2007,9:317-322.
    [276]刘丙花,姜远茂,彭福田,等.甜樱桃果实发育过程中激素含量的变化.园艺学报,2007,34:1535-1538.
    [277]曹永庆,冷平,严志刚,等.脱落酸在桃果实成熟过程中的作用.园艺学报,2009,36:1037-1042.
    [278]张雪,刘志民,陈华君,等.桃果实缝合线软化过程中内源激素的变化.果树学报,2008,25:172-177.
    [279]谭红,李志东.植物激素脱落酸的研究与应用.中国科学院院刊,1997,4:289-290.
    [280]刘志成,苏明华,庄伊美.龙眼生理落果中的纤维素酶、果胶酶活性及脱落酸含量.热带亚热带植物学报,1997,5:39-42.
    [281] Wang Y Y, Zhao G Y, Chang Q Y, et al. Developments in liquid-phase microextraction methodbased on solidification of floating organic drop. Chinese Journal of Analytical Chemistry,2010,38:1517-1522.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700