熔融纺丝成形理论应用及聚合物光学纤维开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据纤维具体纺丝成形机理及纺丝成形基本数学模型,结合纺丝实验结果,唯象研究高聚物在快速形变过程中的流动特征及取向、结晶机理,拟合优化模型参数,建立更广义的纤维纺丝成形数学模型。设计不同工艺路线,研究工艺参数对纤维成形机理的影响,进一步验证模型及其参数的合理性,从而将模型用于指导新材料、新工艺、新产品的研制与开发。除此之外,将传统的熔融纺丝方法引入到聚合物光学材料的生产,探讨光学材料熔融纺丝最优工艺,并初步加工了几种简单的聚合光学材料,为工业化低成本生产聚合光子晶体纤维提供指导。
     首先,针对目前的模型依据的试验数据重复性差,缺少系统性,用于模拟的研究体系少,模型参数也不完整的实际,提炼了可用于一般熔融纺丝加工的含有未知模型参数的基本模式模型,并依据较易得到的产品最终性能的试验数值,利用逆向拟合方法得到未知的模型参数,完善模型,并利用所建立的完整的模型,指导实际生产。以模型参数较完整的聚对苯二甲酸乙醇酯(PET)为例,采用四阶龙格一库塔(Runge-Kutta)法模拟PET的熔融纺丝动力学过程,求取纺线上各点盈度、速度、张力、结晶、取向变化以及径向温度、取向的分布,为基本唯象动力学模型的具体应用奠定基础。
     其次,将基本的熔融纺丝唯象动力学模型拓展应用到聚对苯二甲酸丙二醇酯(PTT)及各种异形纤维的熔融纺丝加工中。基于前人对PTT的研究,得到PTT已知的物性参数,并利用逆向拟合的方法取得未知的PTT物性参数如应力光学系故,结晶诱导取向系数。模拟PTT的熔融纺丝过程,探讨纺丝工艺条件对圆形PTT的结构性能的影响,推导PTT凝固点位置的计算公式,改变了由于某些PTT物性参数的未知性而无法对PTT熔融纺丝进行模拟的现状。工业化生产圆形截面3.30dex的PTT短纤维,缓和的控制纺丝计量泵泵供量、纺丝温度、环吹风温蔓、牵伸比等工艺条件,以利于PTT原丝的取向度和结晶度缓慢增长。最佳的加工工艺为:计量泵泵供量770g/min,纺丝温度250-253℃,环吹风温度25℃,卷绕速度1100-1130m/min,牵伸比1.02。开发生产的PTT短纤维,质量指标优良、稳定,纤维断裂强度高、断裂伸长率大、纤维弹性回复性优良,是国内目前日口质较好的棉型PTT短纤维。与此同时,利用单位时间内由于表面积的减少所引起的能量差与系统内伴随流动过程而散逸的能量相等的关系,引进由喷丝孔形状所决定的形状系数C及考虑到膨化效应的补正系数G,建立异形纤维纺丝动力学模型,模拟异形度在纺程上的变化,探讨并验证了各纺丝条件对于异形度的影响,首次分析了不同空间位置的丝条的异形度以及凝固点的差异。工业化生产了三叶形、三角形、十字形、双十字形、U字形、王字形聚酯短纤及长丝,并以U字形涤纶长丝为例,介绍新产品开发的具体方案及产品性能分析及应用情况。所加工的U形长丝截面外观轮廓呈不规则状,使织物有蓬松感,改善了光泽效应和手感,提高了织物吸湿性、透气性及抗起毛起球性。设计生产的棉盖涤织物,经检测具有显著的抗起毛起球性,良好的坚牢性,优越的耐洗色牢度、耐汗渍色牢度及耐摩擦色牢度及优良的舒适性和卫生性。
     再次,结合熔融纺丝基本唯象动力学模型,逆向拟和方法,仪征化纤厂的设备及工艺状态以及试验测试数据,得到涤纶短纤维纺丝工程计算机仿真系统。针对熔体从交接点到喷丝孔的实际输送流程及各单元的结构特性,将熔体输送的仿真模拟分解为管道输送模型、增压泵模型、过滤器模型、静态混合器模型、计量泵模型、纺丝组件模型等。在每个单元模型中,根据稳态流体流动的原理,建立了熔体输送过程中熔体停留时间、压力降、温升和熔体热降解(粘度降)模型,并通过计算分析了交接点的熔体流量、特性粘度、压强、温度、大小循环热媒的温度对熔体停留时间、压力降、温升和熔体粘度降的影响,并获得相应的权重因子。熔体输送过程模拟显示温度升高主要集中在增压泵、熔体过滤器及纺丝箱体内的计量泵、纺丝组件、喷丝孔处,这些地方流动阻力大,压强下降明显;熔体压强增加主要由增压泵和计量泵提供,压强降主要集中在纺丝箱体内;粘度降主要集中在管道及熔体过滤器等停留时间长、温度高处.在保证产品强度的基础上,采用较低特性粘度,较低熔体温度,较高的压力,增加产能对粘度降下降有利;熔体停留时间主要受熔体输送能力的影响,其它变量对熔体停留时间影响较小,可以忽略不计。熔体输送能力增加,熔体在管道内的停留时间呈一阶指数形式下降。在纺丝过程中,基于丝条周围冷却环吹风微单元区域的物料衡算与热量衡算,建立了冷却吹风的风速、风温分布模型,并将其与单丝模型进行耦合,首次建立适合工程模拟的涤纶短纤维复丝模型。并通过复丝模型的模拟研究了不同层丝条的纺丝速度、丝条温度、丝条周围风速、丝条周围风温等随着纺程的变化规律。探讨了工艺过程条件、结构和材料性能的基本关系,取样测试了丝束的取向度与原丝倍半伸长率,通过数据拟合得到两者的指数关系。并通过两者的关系建立起了计算机模拟与工程进行比较的桥梁。结合仪征化纤60吨/日半敞开式外坏吹和165吨/日密闭式外环吹的纺丝装置的设备参数及生产棉型短纤维的实际纺丝条件,利用计算机进行模拟计算,形成涤纶短纤维纺丝工程计算机仿真系统。所编制的系统仿真软件可以动态仿真显示熔体在输送管道中的流动状态,全流程预测及显示熔体在经过主要设备前后的熔体温度、压力及熔体特性黏度等参数;计算正常生产过程中,不同负荷下熔体主要质量指标的变化,得到各运行参数对主要质量指标影响的关系,确定最佳工艺组合;模拟不同条件下原丝的质量指标,指导工艺优化和品种开发,预测装置最大产能。计算机仿真系统模拟计算值与生产工艺实际值误差精度控制在10%以内。
     最后,利用自制的多孔喷丝板及纺海岛纤维并溶去“岛”组分加工生产多孔中空,且引入不同折射率的光学材料纺制海岛纤维。多孔喷丝板纺制多孔中空光学纤维,此方法需要精密的喷丝板加工技术,可加工性及光学性能好的材料及合理的纺丝初始条件特别是吹风条件的良好结合。纺制多孔聚甲基丙烯酸甲酯(PMMA)光学材料,最佳纺丝温度为210-215℃,最佳的纺丝速度200-300m/min,最多可纺的孔数为15孔。
     并引入日本Kuraray公司开发的Exceval作为可水溶移除的岛(芯)组分,改性的聚对苯二甲酸乙二醇酯(PETG)作为海(皮)组分,在225℃最优纺丝温度下,纺制皮芯及海岛长丝。Exceval的水解温度应不低于95℃以保证相对低的残余率。皮芯长丝在95℃的热水中6小时,芯层基本溶解,存在的主要问题是溶解温度超过皮层PETG的玻璃转变化温度,皮层发生了较大的变形,部分没有溶解的PVA,仍然留在孔内,而且在同一根纤维的不同部分,溶解程度也存在很大的差别。Exeeval的高流动系数及喷丝微孔的分布,使得海岛纤维的岛组分几乎接近于海的边缘,致使溶解后的纤维的无法保持基本原型,外围结构塌陷。解决的方法主要是选用低温可溶解且能从光学材料的侧面透出的水溶性材料,降低皮层变形,改善纤维的性能,对于海岛长丝还需设计合理的海岛喷丝板,增大外围海组分的厚度,保持溶解后的海岛纤维的基本骨架结构。ESTAMAN的改性聚酯AQ55S单丝在较低的温度下(一般是60-80℃),短时间内就能很好的分散在水中并具有较宽的加工范围及熔融可纺性能,是Exeeval极佳的替代品,在低于玻璃化转变温度下(70℃),PETG/AQ55S皮芯长丝只能部分溶解,而在90℃的热水中,除了少量杂质及异常丝条外,绝大部分已溶解。在同样的加工条件下纺制了PETG/AQ55S海岛长丝外层岛部分溶解,而内层的AQ55S在短时间内仍然无法透出,因而聚合加工极佳的集水溶性及熔融纺丝性能为一体的新型材料,是溶解法加工多孔光学长丝的唯一出路。
     同时,以折射率为1.57的PETG为岛(芯),折射率为1.49的L40(PMMA)为海(皮),在220℃的纺丝温度下,加工不同比例的L40/PETG皮芯及海岛纤维。利用Infrared Thermometer测得皮芯纤维最长的光传输距离为55cm,短于25cm的样品,光大部分可以通过,而海岛纤维光大部分仅可以通过短于10cm的样品。利用不同折射率的材料熔融纺制光学纤维,所得的光的传输距离较短,主要原因是选用的单组分材料经过熔融纺丝所得的丝条本身的光传输距离的限制。要提高光传输距离,最有效的方法是设计直径较粗的喷丝板及强冷装置,快速冷却丝条,并经多级低温缓慢牵伸,得到所需的直径的光学纤维。
On basis of fundamental and mathematical model of melt spinning,in combination of experimental results,the flow characteristic and mechanics of orientation and crystallization in rapid deformation of polymer were investigated phenomenologically.The extensive models of melt spinning were established through fitting and optimizing parameters.The models were verified and become the guidance of new technologies and products.Besides,traditional melt spinning was introduced to the process of polymer optical fibers and the spinnability of these optical polymers was discussed,as well as the optimized spinning conditions.Different kinds of polymer optical fibers were directly obtained via melt spinning which open the door to high volume low-cost production of polymer optical fibers.
     Converse-fit method was introduced to obtain the unknown model parameters by use of experimental results of final products that can be easily get through experiment in order to obtain the integral models,acting as guidance for practical production.The phenomenological melt spinning models were used to describe the thin-filament, steady-state model of poly(ethylene terephthalate)(PET) melt spinning with relatively integral model parameters and the filament temperature,velocity,tension, crystallinity and birefringence along the spinning line as well as the distribution of radial orientation and temperature were depicted by use of the fourth order Runge-Kutta algorithm.
     The phenomenological melt spinning models were successfully applied in the model of poly(trimethylene terephthalate)(PTT) fiber and different shape fibers.The method,in principle of the box complex algorithm was adopted to obtain stress-induced crystallization coefficient,strain-optical coefficient and some parameters related to elongational viscosity of poly(trimethylene terephthalate)(PTT) fiber.The vitrification distance as a function of the take-up velocity and mass throughput was formulated and the effects of spinning conditions on the properties of as-spun fibers as well as the effect of viscoelasticity on take-up velocity had been calculated and discussed.Appropriately controlling the spinning condition such as throughput,spinning temperature,quench air temperature,quench air velocity and draw ratio,is very convenient to the growth of crystallinity and birefringence.The optimized process parameters are set as throughput of 770g/min,quench air temperature of 25℃,draw ratio as 1.02,spinning temperature from 250 to 253℃and spinning velocity from 1100 to 1130m/min.The circular PTT staple is superior to other similar products with high tensile stress,good elongation and excellent elasticity.
     On the other hand,variety of cross-sectional shape along the spin line was incorporated adopting a formulation in which energy dissipation by viscous flow in the plane perpendicular to the fiber axis by the introduction of shape index related to spinneret design and revised coefficient of elastic effect.Diverse vitrification distances due to different quench air conditions had been depicted for the first time and the influence of processing parameters on the cross-sectional shape was discussed and verified.Different types of shape fibers,such as trefoil,triangle,crisscross,are produced and "U" shape filament had been taken as example to explain the method of development of new products.Irregular profile of "U" shape filament offers fabric with bulk effect,improved luster,handing,good moisture permeability and air perviousness.The T-shirt from this filament have been proved to have excellent anti-fuzzing and anti-pill,great strength,super fastness to washing,perspiration and rubbing and wonderful comfort and hygienic.
     Besides,the phenomenological melt spinning models were introduced in the industrial production of PET staple fiber successfully.The models for melt transportation were classified into six categories,pipe,booster pump,melt filter,static mixer,metering pump and spinning pack by investigation of melt flowing and device structure.The sub classified models of retention time,pressure drop,temperature enhancement and melt heat degradation were obtained according to the each melt model.The effects of melt throughput,intrinsic viscosity,pressure,melt temperature and circular thermal coal temperature on them were analyzed and corresponding proportions had been obtained.Simulation results of melt transportation show that major part of temperature increase are focused on the booster pump,melt filter and spinning pack,which also results in main decrease of pressure.However,long transportation pipe and melt filter lead to most proportion of viscosity degradation, which increases under low initial intrinsic viscosity and temperature,as well as high initial pressure and throughput at the same strength of final product.The intention time are mostly up to initial throughput as a function of first order exponential decay. In the melt spinning process,accounting for air drag as well as the heat uptake, distribution models of the quench air temperature and the quench air velocity suitabl to multifilament of PET staple fiber were presented on basic of fundamental of single filament model.The temperature,velocity,quench air velocity and quench air temperature of filament located at different position as function of spinning path were investigated and the relationship among spinning condition,structure and property of as-spun fibers were formulated by the experimental results of birefringence and elongation.
     The PET staple fiber simulation system was obtained by further understanding of machine operating and spinning parameters from 60t/d half-closed and 165t/d fully closed circular air-blowing spinning device of Yizheng Chemical Fiber Co.,Ltd.The flowing melt in the transportation pipe was pictured vividly and varieties of melt temperature,pressure and viscosity in the whole process,especially near the main equipments,were effectively predicted.The properties of melts and as-spun fibers were predicted and spinning conditions were optimized within 10 percent error.In general,with this set of simulation system,the optimization of current spinning condition,guidance of new product and prediction of maximum capacity are easily carried out.
     Three methods were introduced to produce polymer optical fiber,including holey fiber through multi-hole spinneret,holey fiber from removing sea component from bi-component fiber and sea-island fiber of two polymers with different refractive index.Good-quality holey fiber from multi-hole spinneret is a careful balance between sophisticated technology of spinneret design,optical polymer with excellent thermoforming properties and transparency and proper spinning conditions especially quench air condition.The Polymethyle methacrylate(PMMA) fiber was extruded successfully and the optimized temperature and spinning velocity are from 210 to 215℃and from 200 to 300m/min respectively with maximum holey number of 15.
     The water-soluble polymer Exceval developed by Kuraray specifically for the melt-molding application was introduced as island(core) component,while PETG (Polytetrafluoroethylene) which is one of the toughest transparent materials with excellent thermoforming properties acted as sea(sheath) component.Under optimized temperature of 225℃,the sea-island and sheath-core fibers were obtained.The water dissolving condition should be above 95℃to ensure relatively low residual rate of Exceval.Most of the Exceval were removed from bi-component at condition of 95℃hot water for 6 hours.However,the severe deformation of the PETG is still unavoidable due to the relatively lower glass temperature(80℃) compared with dissolving conditions of 95℃hot water and longitudinal unevenness of dissolution still exists in every experimental filament.For sea-island filaments,the outer sea component is too thin to support the whole structure,as a result,the outer sea component collapses and severely destroy the whole structure.The effective ways to improve the quality of holey filament are rapid cooling to reduce the crystallization, new sea-island or other holey spin pack with thick outer sea component to ensure integrity of the structure and new water soluble material with lower water dissolving conditions and better spinnability.As a substitute,ESTAMAN modified PET(AQ55S) has advantage of spinnability and water soluble.Part of AQ55S in PETG/AQ55S sheath-core fibers dissolved below glass temperature of PETG(70℃) and most of them were removed at temperature of 90℃.For PETG/AQ55S sea-island fibers,some of the outer islands were removed at 90℃,while inner islands still need more time and higher temperature to get rid of.In our opinion,brand new water soluble materials with excellent water solution and spinnability of melt spinning will be the best way to offer good quality multi-hole filament.
     L40(PMMA) and PETG with refractive index of 1.57 and 1.49 respectivel were introduced as component of sea-island and sheath-core fibers.Some fibers of different ratios were produced with maximum light transmitted light of 55cm from infrared thermometer for sheath-core fiber.And the majority light transmitted lengths of sheath-core and sea-island fibers are 25cm and 10cm respectively.The limitation of light transmitted length of single polymer via melt spinning mainly results in the short transmitted length.Designing the spinneret with relatively large holes,rapid cooling device and multi-drawing with low temperature and ration may help to improve the transmitted length.
引文
[1]A.Ziabicki.Studies on the Orientation Phenomena by Fiber Formation from Polymer Melts.Part Ⅱ.Theoretical Considerations[J].JAppl.Polym.Sci.,1959,2(4),24-31
    [2]A.Ziabicki and K.Kedzierska.Studies on the Orientation Phenomena by Fiber Formation from Polymer Melts.Ⅲ Effect of Structure on Orientation.Condensation Polymers[J],J.Appl.Polym.Sci.,1962,6(19),111-119
    [3]A.Ziabicki and K.Kedzierska.Studies on the Orientation Phenomena by Fiber Formation from Polymer Melts.IV.Effect of Molecular Structure on Orientation.Polyethylene and Polystyrene[J].JAppl.Polym.Sci.,1962,6(21),361-367
    [4]S.Kase and T.Matsuo.Studies on melt spinning.I.Fundamental Equations on the Dynamics of Melt Spinning[J].JPolym.Sci:PartA,1965,3(7),2541-2554
    [5]S.Kase and T.Matsuo.Studies on Melt Spinning.Ⅱ.Steady-state and Transient Solutions of Fundamental Equations Compared with Experimental Results[J].J Appl.Polym.Sci.,1967,11(2),251-287
    [6]A.Ziabicki.High-Speed Fiber Spinning Science and Engineering Aspects[M].John-Wiley,New York,1985,67-75
    [7]J.S.Denton,J.A.Cuculo and P.A.Tucker.Computer Simulation of High-Speed Spinning of PET[J].J Appl.Polym.Sci.,1995,57,935-951
    [8]J.E.Hotter,J.A.Cuculo and Tucker P A.Effect of Modified Air Quenches On the High-Speed Melt Spinning Process[J].JAppl.Polym.Sci.,1991,43,1511-1520
    [9]C.Y.Lin,P.A.Tucker and J.A.Cuculo.Poly(Ethylene Terephthalate)melt Spinning Via Controlled Threadline Dynamics[J].JAppl.Polym.Sci.,1992,46,531-552
    [10]JH.Bheda and J.E.Spruiell.Dynamics and structure development during high speed melt spinning of nylon 6.I.On-line experimental measurements[J].J Appl.Polym.Sci.,1990,39,447-463
    [11]R.M.Patel,J.H.Bheda and J.E.Spruiell.Dynamics and structure development during high-speed melt spinning of nylon 6.Ⅱ.Mathematical modeling[J].J Appl.Polym.Sci.,1991,42,1671-1682
    [12]胡学超,黄建华,邵惠丽,侯培民.PET吸管冷却熔融纺丝动力学及计算机模拟[J],合成纤维 工业,1992,02,1-4
    [13]虞鑫海,黄南薰,唐志廉,候培民,徐晓辰,丁仁忠.热管纺丝工艺的模型研究[J],合成纤维工业,1997,10,20-24
    [14]李燕立,余天富,陈昀.对熔法纺丝模拟计算的再认识[J],北京服装学院学报,1998,04,44-48
    [15]王华平,朱建民,胡学超.涤纶高速纺不对称结构形成的理论研究及纺丝动力学模型[J],合成纤维,2000,09,5-9
    [16]杨涛锋,陈大俊,李瑶君.弹性纤维熔纺动力学模型及模拟计算[J],中国纺织大学学报,2000,10,24-27
    [17]王华平.熔融纺丝成形理论及HMLS涤纶纤维的研制,2001,东华大学博士论文
    [18]H.P.Wang,X.W.Yu and X.CH.Hu.Computer Simulation of Unsymmetry of the Melt-spinning Hollow Fiber[J],Journal of China Textile Universtiy,1999,16(2),7-10
    [19]李宏伟.关丁聚对苯二甲酸丙二酯高速熔融纺丝纤维结构与性能的研究,北京化工大学,硕士论文,2002
    [20]G.Wu,H.W.Li,Y.Q.Wu and A.John.Cuculo,Structure and property studies of poly(trimethylene terephthalate) high-speed melt spun fibers[J],polymer,2002,43,4915-4922
    [21]陈克权,张飚,张伟,聚对苯二甲酸丙二酯熔体拉伸流变性能研究,合成纤维,2004,33(2),4-6
    [22]陈克权.PTT纤维的结构与性能,合成纤维工业[J],2001,6,37-40
    [23]K.Q.Chen,J.Shen and X.Z.Tang.Rheological properties of poly(trimethylene terephthalate) in capillary flow[J],J Appl.Polym.Sci.,2005,97(2),705-709
    [24]董红霞,徐晓辰,黄彬彬.聚对苯二甲酸丙二醇酯流变性能的研究[J],合成纤维工业,2001,24(1),25-27
    [25]J.M.Huang and F.C.Chang.Crystallization kinetics of poly(trimethylene tercphthalate)[J],Polym Sci Part B:Polym Phys,2000,38,934.
    [26]M.Pyda,A.Boller,J.Grebowicz,H.Chuah and B.V.Lebedev.Wunderlich B.Heat capacity of poly(trimethylene terephthalate)[J],Polym Sci Part B:Polym Phys,1998,36,2499.
    [27]J.S.Grebowicz,H.Brown,H.Chuah,J.M.Olvera,A.Wasiak,P.Sajkiewicz and A.Ziabicki.Deformation of undrawn poly(trimethylene terephthalate)(PTT) fiber[J],Polymer,2001,42,7153-7160
    [28]J.Wu,M.S.Jerold,M.S.Joshua,B.P.Adriano,H.Ch.Hoe.In situ study of structure development during continuous hot-drawing of poly(trimethylene terephthalate)fibers by simultaneous synchrotron small-and wide-angle X-ray scattering[J],Polymer,2001,42,7161-7160
    [29]C.D.Han,J.Y.Park.A Study of Shaped Fiber Formation[J].JAppl.Polym.Sci.,1973,17,187-200
    [30]W.Takarada,H.Ito,T.Kikutani and N.Okui.Studies on High-Speed Melt Spinning of Nonciroular Cross-Section Fibers.I.Structural Analysis of As-Spun Fibers[J].J,Appl.PolyrM.Sci.,2001,80,1575-1581
    [31]W.Takarada,H.Ito,T.Kikutani and N.Okui.Studies on High-Speed Melt Spinning of Noncircular Cross-Section Fibers.Ⅱ.On-Line Measurement of the Spin Line,Including Change in Cross-Sectional Shape[J].JAppl.Polym.Sci.,2001,80,1582-1588
    [32]W.Takarada,H.Ito,T.Kikutani and N.Okui.Studies on High-Speed Melt Spinning of Noncircular Cross-Section Fibers.Ⅲ.Modeling of Melt Spinning Process Incroporating Change in Cross-Sectional Shaped[J].J,Appl.Polym.Sci.,2001,80,1589-1600
    [33]S.P.Rwei.Formation of Hollow fibers in the melt-Spinning Process[J].JAppl.Polym.Sci.,2001,82,2896-2902
    [34]A.D.Rovere,B.P.Grady and R.L.Shambaugh.The Influence of Processing Parameters on the Properties of Melt-Spun Polypropylene Hollow Fibers[J].JAppl.Polym.Sci.,2001,83,1759-1772
    [35]王华平,张瑜.单丝纤度对涤纶细旦中空纤维结构与性能的影响[J].合成纤维,1995,4,12-15
    [36]杨元坤.高速纺涤纶中空长丝的研制[J].合成纤维工业,2002,10,47-50
    [37]B.D.Freeman,M.M.Denn,R.K.Keunings,G.E.Molau and J.Ramos.Profile Development in drawn Hollow Tubes[J].Journal of Polymer Engineering.1986,6,172-186
    [38]T.H.Oh,S.M.Lee,S.Y.Kim and H.J.Shim.Studies on Melt-Spinning Process of Hollow Fiber[J],J Appl.Polym.Sci.,1996,68,1209-1217
    [39]T.H.Oh,S.M.Lee and S.Y.Kim.Numerical Simulation of the Melt Spinning of Hollow Fibers[J].Textile Research Journal,1998,06,449-456
    [40]T.H.Oh.Studies on Melt-Spinning Process of Hollow Polyethylene Terephthalate Fibers[J].Polymer Engineering and Science,2006,46,609-616
    [41]王华平,余晓蔚,韩淑丽.熔纺中空纤维皮芯结构的动力学模拟[J].纺织学报,1999,4,71-74
    [42]王华平,余晓蔚,朱建民.熔纺中空纤维皮芯结构的形成原理及动力学模拟[J].合成纤维工 业,1999,10,1-4
    [43]H.Ishihara,S.Hayashi and H.Ikeuchi.Computer Simulation of Multifilament Air Jet Melt Spinning[J],Intern.Polymer Processing,1989,4,91
    [44]A.Dutta.Role of quench air proles in multilament melt spinning of PET[J],Textile Res.J.,1987,57,13
    [45]A.Dutta.Melt spinning of(multifilament) poly(ethylene terephthalate) fibers:A simulation approach[J],Polymer Science andEngineering,1987,27(14),1050-1058
    [46]E.Yablonovitch.Inhibited Spontaneous Emission in Solid-State Physics and Electronics[J],Phys.Rev.Lett.,1987,58,2059-2062
    [47]S.John.Strong Localization of Photons in Certain Disordered Dielectric Super Lattices[J],Phys.Rev.Lett.,1987,58,2486-2489
    [48]T.A.Birks,J.C.Knight,P.St.J.Russell.Endlessly single-mode photonic crystal fiber.Opt.Lett,22,1997:961-963
    [49]J.C.Knight,T.A.Birks,P.St.J.Russell.Properties of photonic crystal fiber and the effective index model.J.Opt.Soc.,Am.A,1998,15(3):748-752
    [50]J.Canning.Grating confinement in a photonic crystal fibre.Optical Communication,2000,176:121-124
    [51]P.St.J.Russell.Photonic crystal fibers,Science,2003,299:358-362
    [52]J.C.Knight.Photonic crystal fibres,Nature,2003,424:847-851
    [53]刘晓东,宋邵远,倪正华,刘兆伦,侯蓝田.聚合物光子晶体光纤[J],光通信技术2004,7,16-19
    [54]达宁,杨旅云,夏金安,陈丹平,邱建荣.光子晶体光纤的研究新进展[J],激光与光子电子学进展,2005,42(8),6-12
    [55]李启成.光子晶体光纤的原理、结构、制作及潜在应用[J],应用光学,2005,26(6),49-52
    [56]郭巍,关于微结构光纤制备的研究,硕士学位论文,燕山大学,2006,3
    [57]M.Mignanelli,K.Wani,J.Ballato,S.Foulger and EBrown.Polymer microstructured fibers by one-step extrusion,Optics Express,2007,15(10):6183-6189
    [58]A.Argyros,I.M.Bassett,M.A.V Eijkelenborg,M.C.J.Large and J.Zagari.Ring structures in microstructured polymer optical fibres,Optics Express,2001,9(13):813-820
    [59]M.A.van.Eijkelenborg,A.Argyros,G.W.Barton and I.M.Bassett.Recent progress in microstructured polymer optical fiber fabrication and characterization.Optical Fiber Technology,2003,9(4):199-209
    [60]GW.Barton,M.A.van.Eijkelenborg,G.Henry,M.C.J.Large and J.Zagari.Fabrication of microstructured polymer optical fibres,Optical Fiber Technology,2004,10:325-335
    [61]W.E.P.Padden and M.A.van.Eijkelenborg.Coupling in a twin-core microstructured polymer optical fiber,Applied Physics Letters,2004,84(10),1689-1691
    [62]R.J.Yu,B.Zhang,M.Y.Chen,L.Huo,Z.GTian and X.Z.Bai.A new solution of reducing polymer optical fiber losses,Optics Communication,2006,266:536-540
    [63]E.Pone,C.Dubois,N.Guo,Y.Gao,A.Dupuis,F.Boismenu,S.Lacroix and M.Skorobogatiy.Drawing of the hollow all-polymer Bragg fibers,Optics Express,2006,14(13):5838-5852
    [64]马辉,明海.聚合物光纤的最新研究进展[J],光通信,2003,5,20-23
    [65]张亚妮,任立勇,王丽莉,苗润才.高双折射光子晶体保偏光纤研究进展[J],量子电子学报2006,23(5),577-581
    [66]吴静,商海英.微结构聚合物光纤制造和性能方面的最新进展[J],光纤光缆传输术2004,1:9-13
    [1]R.大卫.萨利姆.聚合物纤维结构的形成[M],化学工业出版社,2004,北京,第二章
    [2]A.谢皮斯基.纤维成形基本原理[M],上海科学技术出版社,1983,上海,第二章
    [3]S.Kase.Studies on melt spinning.Ⅲ.Velocity field within the thread[J],JAppl.Polym.Sci.,1974,18(11),3267-3278
    [4]A.Ziabicki.High-Speed Fiber Spinning Science and Engineering Aspects[M].John-Wiley,New York,1985,181
    [5]G.S.Y.Yeh,K.Z.Hong.Strain-induced crystallization,Part Ⅲ:Theory[J],Polymer Engineering and Science,1979,19(6),395-400
    [6]G.S.Y.Yeh,K.Z.Hong and D.L.Krueger.Strain-induced crystallization,Part IV:Induction time analysis[J],Polymer Engineering and Science,1979,19(6),401-405
    [7]K.Nakamura,T.Watanabe,K.Katayama and T.Amano.Some aspects of nonisothermal crystallization of polymers.I.Relationship between crystallization temperature,crystallinity,and cooling conditions[J],JAppl.Polym.Sci.,1972,16(5),1077-1091
    [8]K.Nakamura,K.Katayama and T.Amano.Some aspects of nonisothermal crystallization of polymers.Ⅱ.Consideration of the isokinetic condition[J],J Appl.Polym.Sci.,1973,17(4),1031-1041
    [9]S.Kase and T.Matsuo.Studies on melt spinning.I.Fundamental equations on the dynamics of melt spinning[J],Journal of Polymer Science Part A:General Papers,1965,3(7),2541-2554
    [10]J.H.Bheda and J.E.Spruiell.Dynamics and structure development during high speed melt spinning of nylon 6.I.On-line experimental measurements[J],J.Appl.Polym.Sci.,1990,39,447-463
    [11]R.M.Patel,J.H.Bheda and J.E.Spruiell.Dynamics and structure development during high-speed melt spinning of nylon 6.Ⅱ.Mathematical modeling measurements[J],.J.Appl.Polym.Sci.,1991,42,1671-1682
    [12]王华平,熔融纺丝成形理论及HMLS涤纶纤维的研制,博士论文,2001,东华大学,28
    [13]M.D.Brian.Computer Simulation of the Melt Fiber Spinning Process,Doctor Dissertation,1982,University of Notre Dame,10-23
    [14]S.D.Jeffrey,A.C.John and A.T.Paul.Computer simulation of high-speed spinning of PET[J],J.Appl.Polym.Sci.,1995,57(8),939-951
    [15]J.S.Kim and S.Y.Kim.Neeking behavior in high-speed melt spinning of poly(ethylene terephthalate)[J],Appl.Polym.Sci.,2000,76(4),446-456
    [16]A.ziabicki.The Mechanisms of"Neck-Like"Deformation in High-Speed Melt Spinning.Ⅱ.EffectS of Polymer Crystallization[J],J.Non-Newton.Fluid Mech.,1988,30,157-168
    [17]A.Dutta.Role of quench air proles in multilament meIt spinning of PET[J],Textile Res.J.,1987,57,13
    [18]A.Dutta.Melt spinning of(multifilament)poly(ethylene terephthalate)fibers:A simulation approach[J],Polymer Science and Engineering,1987,27(4),1050-1058
    [19]F.Z.Kenneth and E.S.Joseph.On-line studies and computer simulation of the melt spinning ofnylon-66 filaments[J],Appl.Polym.Sci.1988,35(8),2223-2245
    [20]M.P.Rajen,H.B.Jayendra and E.S.Joseph.Dynamics and structure development during high-speed melt spinning of nylon 6.Ⅱ.Mathematical modeling[J],Appl.Polym.Sci,1991,42(6),1671-1682
    [21]H.GHenry.Model of steady-state melt spinning at intermediate take-up speeds[J],Polymer Engineering and Science,1982,22(5),292-299
    [22]D.Acierno,J.N.Dalton,J.M.Rodriguez and J.L.White.Rheological and heat transfer aspects of the melt spinning of monofilament fibers of polyethylene and polyStyrene[J],J.Appl.Polym.Sci,1971,15(10),2395-2415
    [23]王华平,余晓蔚,韩淑丽.熔纺中空纤维皮芯结构的动力学模拟[J].纺织学报,1999,4,71-74
    [24]王华平,余晓蔚,朱建民.熔纺中空纤维皮芯结构的形成原理及动力学模拟[J].合成纤维工业,1999,10,1-4
    [25]H.P.Wang,X.W.Yu and X.Ch.Hu.Computer Simulation of Unsymmetry of the Melt-spinning Hollow Fiber,Journal of China Textile Universtiy,1999,16(2),7-10
    [26]H.P.Wang and B.Wang.Studies on the Kinetics of Orientation and Crystallization of Nylon-66 During High-speed Melt Spinning[J].J.Appl.Polym.Sci,,2001,82(13),3157-3163
    [27]k.Oda,L.W.James,S.C.Edward.Influence of melt deformation history on orientation in vitrified polymers[J],Polymer Engineering and Science,1978,18(1),53-59
    [28]H.J.Kriegl,Polymer Melt Rheology and FloW Birefringence[M],Springer-Verlag,New York,1983
    [29]L.W.James and E.S.Joseph.Specification of biaxial orientation in amorphous and crystalline polymers[J],PolymerEngineeringandScience,1981,21(13),859-868
    [30]S.S.Richard.The X-ray diffraction,birefringence,and infrared dichroism of stretched polyethylene.Ⅱ.Generalized uniaxial crystal orientation[J],Appl.Polym.Sci.,1958,31(123),327-334
    [31]S.S.RJchard and H.N.Forrest.The x-ray diffraction,birefringence,and infrared dichroism of stretched polyethylene[J],J.Appl.Polym.Sci.,1956,21(99),381-396
    [32]A.Ziabiclcki.Fundamental of Fibet Formation[M],Wiley,London,1976
    [33]T.Ozawa.Kinetics of non-isothermal crystaIization[J],Polymer,1971,12(3),150-158
    [34]K.Keinosuke and ToshioN,Crystallization of sheared polymer melts[J],Journal,of Macromolecular Science,PartB,1970,4(2),331-345
    [35]R.K.Musa and C.Edward.Isothermal and nonisothermal crystallization of polyethylene Polyethylene[J],,Polymer Engineering and Science,1983,23(1),27-31
    [36]N.V.Chris and C.S.James.Crystallization kinetics of polyetheretherketone(peek)matrices[J],Polymer Engineering and Science,1986,26(22),1574-1581
    [37]C.PeggY.Alaplication of the parallel Avrami model to crystallization of poly(etheretherketone)[J],PolymerEngineering andScience,1988,28(18),1192-1197
    [38]J.Sun,S.Subbiah,J.M.Marchal.Numerical analysis of nonisothermal viScoelastic melt spinning with ongoing crystallization[J],Journal,of Non-Newtonian Fluid Mechtanics,2000,93(1),133-151
    [39]A.V Shenoy Using Poly(ethylene Terephthalate)Melt Spinning Simulation for Process Optimization[J],Textile Research Journal,1984,54(11),778-783
    [1]王华平.熔融纺丝成形理论及HMLS涤纶纤维的研制,2001,东华大学
    [2]虞鑫海,黄南薰.PET在TCS纺丝线上的结构发展[J],合成纤维,1999,28(3),11-16
    [3]虞鑫海,唐志廉.TCS纺丝工艺中的管段模拟计算[J],合成纤维,1998,27(5),3-8
    [4]虞鑫海,候培民.热管纺丝工艺的模型研究[J],合成纤维,1997,20(5),20-24
    [5]虞鑫海,黄南薰.TCS工艺中热管温度对管内PET纤维的影响[J],广东化纤,1999,3,21-24
    [6]杨崇倡,吕文军.花色纺丝I.冷管这纺丝纤维成形及结构发展机理[J],合成纤维,2001,24(6),26-29
    [7]王华平,余晓蔚,韩淑丽.熔纺中空纤维皮芯结构的动力学模拟[J].纺织学报,1999,4,71-74
    [8]王华平,余晓蔚,朱建民.熔纺中空纤维皮芯结构的形成原理及动力学模拟[J],合成纤维工业1999,10,1-4
    [9]李宏伟.关于聚对苯二甲酸丙二酯高速熔融纺丝纤维结构与性能的研究,北京化工大0学,硕士论文,2002
    [10]陈克权,张飚,张伟,聚对苯二甲酸丙二酯熔体拉伸流变性能研究,合成纤维,2004,33(2),4-6
    [11]陈克权.PTT纤维的结构与性能,合成纤维工业[J],2001,6,37-40
    [12]董红霞,徐晓辰,黄彬彬.聚对苯二甲酸丙二醇酯流变性能的研究[J],合成纤维工业,2001,24(1),25-27
    [13]A.Ziabicki.High-Speed Fiber Spinning Science and Engineering Aspects[M].John-Wiley,New York,1985,67-75
    [14]M.Pyda,A.Boller,J.Grebowicz,H.Chuah and B.V.Lebedev.Wunderlich B.Heat capacity of poly(trimethylene terephthalate)[J],Polym Sci Part B:Polym Phys,1998,36,2499
    [15]J.Wu.Ph.D.Dissertation,Uni.of Delaware,2002
    [16]S Pitt,D Nujalee,S Phornphon and N Manit.Nonisothermal melt-crystallization kinetics for three linear aromatic polyesters,Thermochimica Acta,2003,406,207
    [17]J.S.Grebowicz,H.Brown,H.Chuah,J.M.Olvera,A.Wasiak,P.Sajkiewiez and A.Ziabicki.Deformation of undrawn poly(trimethylene terephthalate)(PTT) fiber[J],Polymer,2001,42
    [18]J.L Zhang.Study of poly(trimethylene terephthalate) as an engineering thermoplastics material,J Appl.Polym.Sci.,2004,91,1657
    [19]H.H Chuah.Crystallization kinetics of poly(trimethylene terephthalate),Polym Eng Sci,2001,41,308
    [20]P.D.Hong,W.T.Chung and CH.F.Hsu.Crystallization kinetics and morphology of poly(trimethylene terephthalate),2002,43(11),3335-3343
    [21]K.Q.Chen,J.Shen and X.Z.Tang.Rheological properties of poly(trimethylene terephthalate) in capillary flow[J],J Appl.Polym.Sci.,2005,97(2),705-709
    [22]J.M.Huang and F.C.Chang.Crystallization kinetics of poly(trimethylene terephthalate)[J],Polym Sci Part B:Polym Phys,2000,38,934.
    [23]J.Wu,M.S.Jerold,M.S.Joshua,B.P.Adriano,H.Ch.Hoe.In situ study of structure development during continuous hot-drawing of poly(trimethylene terephthalate)fibers by simultaneous synchrotron small-and wide-angle X-ray scattering[J],Polymer,2O01,42,7161-7160
    [24]侯翠灵.聚对苯二甲酸丙二醇酯(PTT)熔融纺丝机理模拟及工程开发,东华大学,2006
    [25]梁冬.聚酯切片质量对FDY可纺性及丝条质量的影响[J],广东化纤,2003,3,8-10
    [26]王华平,张瑜.单丝纤度对涤纶细旦中空纤维结构与性能的影响[J].合成纤维1995,4,12-15
    [27]杨元坤.高速纺涤纶中空长丝的研制[J].合成纤维工业,2002,10,47-50
    [28]林明晖.5.0dtex中空纤维的开发及生产工艺设计[J],合成技术及应用,1999,15(2),41-44
    [29]刘鑫,陈志静,王锐等.高中空度PP中空纤维制造技术[J],北京服装学院学报,2004,24(4),17-21
    [30]谢兵民.拉伸条件对涤纶三维卷曲中空纤维质量指标的影响[J],合成技术及应用,1996,11(3),44-47
    [31]董建华.中空纤维熔体纺丝[J],北京化纤,1998,2,7-10
    [32]李朝忠.中空纤维喷丝板的微孔设计[J],合成纤维工业,2002,25(5),55-58
    [33]崔岩.熔纺中空纤维喷丝板的设计与应用[J],河南化工,2002,11,33-35
    [34]B.D.Freeman,M.M.Denn,R.K.Keunings,G.E.Molau and J.Ramos.Profile Development in drawn Hollow Tubes[J].J Polym Eng,1986,16,172-186
    [35]W.Takarada,H.Ito,T.Kikutani and N.Okui.Studies on High-Speed Melt Spinning of Noncircular Cross-Section Fibers.Ⅰ.Structural Analysis of As-Spun Fibers[J].JAppl.Polym.Sci.,2001,80,1575-1581
    [36]W.Takarada,H.Ito,T.Kikutani and N.OKui.Studies on High-Speed Melt Spinning of Noncircular Cross-Section Fibers.Ⅱ.On-Line Measurement of the Spin Line,Including Change in Cross-Sectional Shape[J].J Appl.Polym.Sci.,2001,80,1582-1588
    [37]W.Takarada,H.Ito,T.Kikutani and N.Okui.Studies on High-Speed Melt Spinning of Noncircular Cross-Section Fibers.Ⅲ.Modeling of Melt Spinning Process Incroporating Change in Cross-Sectional Shaped[J].J Appl.Polym.Sci.,2001,80,1589-1600
    [38]B.D.Freeman,M.M.Denn,R.K.Keunings,G.E.Molau and J.Ramos.Profile Development in drawn Hollow Tubes[J].Journal of Polymer Engineering.1986,6,172-186
    [39]T.H.Oh,S.M.Lee,S.Y.Kim and H.J.Shim.Studies on Melt-Spinning Process of Hollow Fiber[J].J.Appl.Polym.Sci.,1996,68,1209-1217
    [40]T.H.Oh,S.M.Lee and S.Y.Kim.Numerical Simulation of the Melt Spinning of Hollow Fibers[J].Textile Research Journal,1998,06,449-456
    [41]T.H.Oh.Studies on Melt-Spinning Process of Hollow Polyethylene Terephthalate Fibers[J].Polymer Engineering and Science,2006,46,609-616
    [42]王华平,余晓蔚,韩淑丽.熔纺中空纤维皮芯结构的动力学模拟[J].纺织学报,1999,4,71-74
    [43]王华平,余晓蔚,朱建民.熔纺中空纤维皮芯结构的形成原理及动力学模拟[J].合成纤维工业1999,10,1-4
    [44]R.L.Kruse.Extrudate swelling of molten polypropylene from an extrusion rheometer[J].J Polym Sci Part B:Polym Lett 1964,2(9),841-843
    [45]松尾达树,纤维的形成与结构[J],化学增刊,1971,50,3-14(日文)
    [46]Dutta A,Melt Spinning of(Multifilament) Poly(Ethylene Terephthalate) Fibers:A Simulation Approach[J],Polym Eng Sci,1987,27(14),1050-1058
    [1]李旭,王鸣义.大容量短丝直接纺熔体输送工艺探索[J],金山油化纤,2005,2,33-36
    [2]孙成桂,高宏保.浅谈PET熔体输送管道的工艺设计[J],聚酯工业,1996,4:54-59
    [3]高宏保,孙成桂.对PET短纤维直接纺丝熔体输送工艺条件的探讨[J],合成纤维工业,1995,18(4),6-9
    [4]郭英.合成纤维熔融纺丝装置设计基本知识第一讲熔融纺丝用纺丝箱体的设计计算[J],合成纤维,1994,2,31-33
    [5]W.施纳贝尔.聚合物降解原理及应用[M],化学工业山版社,1988,22-23
    [6]S.V.Levchik,E.D.Weil.A review on thermal decomposition and combustion of thermoplastic polyesters[J],Polym.Adv.Technol.,2004,15,691-700
    [7]董纪震.合成纤维生产工艺学[M],纺织工业山版社,北京,1991
    [8]敦大生,王文科.聚酯纤维科学与工程[M],中国纺织出版社,北京,2001
    [9]郭英.合成纤维熔融纺丝装置设计基本知识第二讲熔融纺丝组件的设计计算[J],合成纤维,1994,2,36
    [10]许漪.熔纺喷丝板的设计[J],合成纤维,1991,6,47
    [11]骆江豪.直接纺聚酯熔体流变行为的动态模拟分析[J],合成纤维,2001,30(1),47-49
    [12]杨涛.15kt/a直纺涤纶短纤维装置熔体输送能力的研究[J],合成纤维工业,2003,26(4),24-26
    [13]李振峰.涤纶短纤维生产[M],南京,东南大学山版社,1991,78-82
    [14]上海市合成纤维研究所.合成纤维工厂设计资料汇编上册涤纶[M],全国合成纤维工业科技情报站,1982
    [15]上海市合成纤维研究所.合成纤维工厂设计资料汇编下册涤纶[M],全国合成纤维工业科技情报站,1982
    [16]天津化学纤维试验厂,涤纶短纤维纺丝工艺与操作[M],北京-轻工业出版社,1974
    [17]A.Dutta.Role of quench air proles in multilament melt spinning of PET[J],Textile Res.J.,1987,57,13
    [18]A.Dutta.Melt spinning of(multifilament) poly(ethylene terephthalate) fibers:A simulation approach[J],Polymer Science and Engineering,1987,27(14),1050 -1058
    [1]A.Ziabicki.High-Speed Fiber Spinning Science and Engineering Aspects[M].John-Wiley,New York,1985,67-75
    [2]吴静,商海英.微结构聚合物光纤制造和性能方面的最新进展[J],光纤光缆传输术,2004,1:9-13
    [3]郭国谊.PMMA成型工艺分析[J],模具工业,2006,32(7):64-68
    [4]Katayama et al.Thermoplastic Polyvinyl Alcohol Fibers and Method for Producing Them,United States Patent,US 6,552,123 Bl,2003
    [5]M.Mignanelli,K.Wani,J.Ballato,S.Foulger and P.Brown.Polymer microstructured fibers by one-step extrusion,Optics Express,2007,15(10):6183-6189
    [6]D.W.Debra,P.L.Eugene and L.G.Jeremy.The effect of processing conditions on the properties of Poly(methyl methacrylate) Fibers,J Biomed Mater Res,2002,63(2):152-160
    [7]L.M.Shtyagina,V.M.Vainburg and L.E.Vinogradova.Acetalization of Polyvinyle Alcohol Fiber with Aldehyde-containing Polyvinyl Alcohol Fiber,Russian Journal of Applied Chemistry,2001,74(8):1408-1409
    [8]T.H.Ku and C.A.Lin.Reheological properties of thermoplastic poly-vinyle alcohol and polypropylene blend melts in capillary extrusions.J.Polym.Res,2005,12(1):23-29
    [9]C.A.Lin,H.C.Tsai,and T.H Ku.Manufacturing Process and Application of Pseudo-thermoplastic Polyvinyl Alcohol,Polymer-Plastics Technology and Engineering,2007,46:689-693

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700