唾液腺腺样囊性癌XT-Ⅰ与XT-Ⅱ基因共沉默的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     唾液腺腺样囊性癌(salivary adenoid cystic carcinoma, SACC)是最常见的唾液腺恶性肿瘤之一,侵袭性强,可转移,易复发,预后不佳,迄今尚无较理想的治疗措施。
     SACC中的肿瘤性肌上皮细胞(neoplastic myoepithelial cells, NMCs)可以分泌蛋白多糖(proteoglycans, PGs),构成肿瘤的细胞外基质(extracellular matrix, ECM)。在SACC中,过多的ECM逐渐堆积,形成囊腔样结构,从而呈现出SACC特有的组织学特点。富含PGs的ECM,构成了SACC细胞的大分子微环境(macromolecules microenvironment)。SACC细胞在这一微环境内生存,继而进展,出现增殖、分化、侵袭、转移、复发等一系列生物学行为。目前认为,PGs是SACC的形态学表现和生物学行为必不可少的物质基础,参与肿瘤的发生和发展过程。
     人木糖基转移酶(xylosyltransferase, XT)是人体PGs生物合成的起始酶和限速酶,催化此合成过程的效率—限制阶段(rate-limited step),它的活性真实反映PGs的生物合成率。人XT有两个亚型(isoform):XT-I和XT-II,催化作用几乎相同,但是在人体不同细胞的表达有所差异。
     RNA干扰(RNA interference, RNAi)是目前最有效的基因沉默(genesilencing)技术,可以特异、高效地阻断特定基因的表达。腺病毒载体是将外源基因导入细胞内的常用媒介,同时表达一个以上目的基因的腺病毒载体,可同时发挥多个基因的功能,提高了腺病毒载体的利用率。
     本研究拟构建一个同时沉默XT-I和XT-II基因的质粒载体,即编码2条shRNA的干扰质粒,腺病毒包装,获得重组腺病毒rAd5-shRNA-WJ7+WJ4;通过感染SACC-83细胞,干扰XT-I和XT-II的表达,阻抑PGs合成,检测其沉默效果;建立SACC-83的裸鼠移植瘤模型,瘤体内注射重组腺病毒,观察其对移植瘤凋亡的影响。旨在探讨SACC中XT-I和XT-II对PGs的调控作用,以及XT-I和XT-II共沉默对细胞凋亡的影响,并为唾液腺肌上皮性肿瘤的生物治疗提供更多的依据。
     方法:
     1构建分别靶向抑制人XT-I基因和人XT-II基因的两个重组质粒
     设计靶向抑制人XT-I基因的shRNA-WJ4和靶向抑制人XT-II基因的shRNA-WJ7的干扰位点和引物序列,合成shRNA-WJ4和shRNA-WJ7的单链目的基因片段,分别与质粒pGenesil-1.2和pGenesil-1.1的线性化载体连接,扩增质粒,酶切鉴定,确定获得重组质粒pGenesil-1.2-shRNA-WJ4和pGenesil-1.1-shRNA-WJ7。
     2构建同时靶向抑制人XT-I基因和人XT-II基因的共沉默质粒
     双酶切以上两个重组质粒,回收大小片段,WJ7大片段与WJ4小片段的连接,扩增质粒,酶切鉴定,测序验证共沉默质粒shRNA-WJ7+WJ4。
     3重组腺病毒质粒的制备
     从质粒pGenesil上通过LR体外同源重组将shRNA-WJ7+WJ4表达框转移至pGSadeno腺病毒表达载体上,扩增质粒,酶切鉴定。
     4包装共沉默重组腺病毒
     制备线性化腺病毒DNA,连接重组腺病毒质粒片段,转染HEK293细胞,放大培养共沉默重组腺病毒rAd5-shRNA-WJ7+WJ4。
     5构建阴性对照重组腺病毒rAd5-shRNA-HK
     6重组腺病毒感染细胞
     培养SACC-83细胞,分3组:SACC-83-WJ7+WJ4组(沉默组)、SACC-83-HK组(空载体组)、SACC-83组(未感染组),确定最佳MOI值为100,细胞感染48h的荧光最强,计算感染率。
     7检测感染48h后3组细胞XT-I和XT-I mRNA的表达
     TRIzol法提取细胞总RNA,测定RNA纯度、浓度、完整性,逆转录合成cDNA第一链,实时荧光定量PCR(Real-Time PCR)检测3组细胞XT-I和XT-I mRNA的相对表达量,计算沉默率。
     8检测感染48h后3组细胞培养液中PGs的含量
     用标准品建立浓度-吸光度标准曲线,生物染色法测定PGs含量,计算抑制率。
     9裸鼠移植瘤模型的建立及分组
     4周龄雌性BALB/c-nu裸小鼠32只,14~15g,无特定病原体(specificpathogen-free, SPF)条件饲养,每只于左侧背部接种SACC-83细胞2.5×106个/250μl;62d后,选取瘤体最长径在1cm以上的24只,随机数字表法分为3组:SACC-83-WJ7+WJ4组(沉默组)、SACC-83-HK组(空载体组)、SACC-83组(未感染组),每组8只。
     10重组腺病毒裸鼠移植瘤内注射
     接种肿瘤细胞后62d,首次瘤内注射重组腺病毒,SACC-83-WJ7+WJ4组(沉默组)注射共沉默腺病毒rAd5-shRNA-WJ7+WJ4,SACC-83-HK组(空载体组)注射阴性对照腺病毒rAd5-shRNA-HK,SACC-83组(未感染组)注射PBS,每只4×109PFU/200μl,每周注射一次,共5次。
     11标本采集
     3组裸鼠首次注射腺病毒5周后断颈处死,分离移植瘤,测量体积,新鲜瘤组织立即分切为4份,1份80C冻存,3份用于以下实验。
     12流式细胞术样品制备和凋亡检测
     70%乙醇固定标本,剪碎法+网搓法制备单细胞悬液,PI染色,流式细胞术检测3组样品的细胞凋亡情况。
     13HE染色样品制备和观察
     10%福尔马林固定标本、石蜡包埋、切片、HE染色、光学显微镜观察3组标本的形态学变化。
     14透射电镜超薄切片样品制备和观察
     标本分切至小于1mm3,4%戊二醛前固定、1%锇酸后固定、环氧树脂包埋、超薄切片、醋酸铀和柠檬酸铅双重染色30min、透射电镜观察细胞凋亡情况。
     结果:
     1分别靶向XT-I、XT-II和阴性对照的siRNA序列设计结果shRNA-WJ4CAGGCAGCCCATCAAACCTshRNA-WJ7CGTCTCCTCAAGGCCGTTTATshRNA-HK GACTTCATAAGGCGCATGC
     2酶切和琼脂糖凝胶电泳鉴定结果、测序验证结果均证明质粒正确。
     3重组腺病毒感染SACC-83细胞的效率
     重组腺病毒感染后48h,以表达绿色荧光的细胞作为成功感染的细胞,SACC-83-WJ7+WJ4组(沉默组)与SACC-83-HK组(空载体组)的感染率分别为98.7%和99.1%。
     4Real-Time PCR检测XT-I和XT-II的沉默效果
     感染后48h,SACC-83-WJ7+WJ4组(沉默组)XT-I和XT-II的mRNA相对表达量明显低于SACC-83-HK组(空载体组)与SACC-83组(未感染组),SACC-83-HK组与SACC-83组之间无差别。SACC-83-WJ7+WJ4组XT-I和XT-II的沉默率分别为97.3%和88.0%。
     5XT-I和XT-II基因共沉默对SACC-83细胞PGs合成分泌的影响
     感染后48h,SACC-83-WJ7+WJ4组(沉默组)细胞培养液中PGs含量明显低于SACC-83-HK组(空载体组)和SACC-83组(未感染组),抑制率为68.61%,SACC-83-HK组PGs未受到抑制。
     6裸鼠移植瘤最终体积
     首次注射腺病毒后5周,3组裸鼠移植瘤体积无统计学差异。
     7流式细胞术测定裸鼠移植瘤细胞凋亡率
     首次注射腺病毒后5周,3组裸鼠移植瘤细胞凋亡率无统计学差异。
     8光学显微镜观察裸鼠移植瘤形态学变化
     首次注射腺病毒后5周,光镜观察裸鼠移植瘤HE染色石蜡切片,3组间未见明显的形态学差异,均未观察到显著的细胞凋亡现象。
     9透射电镜观察裸鼠移植瘤细胞凋亡现象
     首次注射腺病毒后5周,SACC-83-WJ7+WJ4组(沉默组)易见细胞凋亡现象,其余两组较少。
     结论:
     1重组腺病毒rAd5-shRNA-WJ7+WJ4能够有效诱导SACC-83细胞XT-I和XT-II基因沉默,并阻抑PGs合成分泌。
     2裸鼠SACC-83移植瘤内注射沉默XT-I和XT-II基因5周,沉默组出现细胞凋亡,但无统计学意义。
Objectives:
     Salivary adenoid cystic carcinoma (SACC) is one of the most commonsalivary malignant tumors with the tendency of invasion, metastasis, andrecurrence. More ideal therapeutic measures for this neoplasm of poorprognosis are desired yet.
     Proteoglycans (PGs) secreted from neoplastic myoepithelial cells (NMCs)in SACC contribute to extracellular matrix (ECM). Abundant PGs maketypical cribriform structures full with proteoglycans and provide nutrition andmacromolecules microenvironment for the biological behaviors of SACC,including surviving, proliferation, differentiation, invasion, metastasis, andrecurrence. Serving as an indispensible material basis of morphologicalcharateristics and biological behaviors, PGs are believed to be involved intumorigenesis and development of SACC.
     As the initiative and rate-limited enzyme of PGs biosynthesis in vivo,human xylosyltransferases (XT) catalysis the rate-limited step in thebiosynthesis. Accordingly, the activity of XT represents the biosynthetic rateof PGs literally. XT-I and XT-II, two isoforms of XT, with unequal expressionin various tissues, play an identical catalytic role.
     RNA interference (RNAi) is recently regarded as the most efficient genesilencing method for its high specificity and high performance as well inblocking particular target gene expression. Adenoviral vector is generallytaken as a common medium to deliver exogenous gene to intra-cellularcircumstance. In addition, an adenoviral vector expressing multiple targetgenes may maximize availability of a vetor.
     In present study, to silence XT-I and XT-II simultaneously, an interferingplasmid encoding two shRNAs was designed, and then the corresponding recombinant adenoviral vector rAd5-shRNA-WJ7+WJ4was constructed.After SACC-83cell infection by the recombinant adenoviral vector, XT-I andXT-II mRNA level and PGs content were detected to assess silencingeffectiveness. SACC-83tumor-burdened mice were established prior tointra-tumor injection of recombinant adenoviral vector and followingobservation for apoptosis. These experiments were undertaken to investigatethe regulation of XT-I and XT-II on PGs in SACC and the effect ofco-silencing on apoptosis, so as to provide more evidence for biotherapy ofsalivary myoepithelial tumors.
     Methods:
     1Construction of two recombinant interfering plasmids respectively targetinghuman XT-I gene and human XT-II gene
     The interfering sites and primer sequences of plasmids namedshRNA-WJ4and shRNA-WJ7were designed and synthesized to suppresshuman XT-I gene and human XT-II gene, which was followed by respectiveconjunction to linearized vectors of pGenesil-1.2and pGenesil-1.1. Throughplasmid amplification and digestive identification, the obtaining ofrecombinant plasmids, pGenesil-1.2-shRNA-WJ4andpGenesil-1.1-shRNA-WJ7, were determined.
     2Construction of recombinant co-silencing plasmid simultaneously targetinghuman XT-I gene and human XT-II gene
     Following double digestion of both plasmids above, fragments wererecovered and connected. Plasmid amplification, digestive identification, andsequencing were performed to verify the recombinant co-silencing plasmid,pGenesil-1.1+2-shRNA-WJ7+WJ4.
     3Preparation of recombinant adenoviral plasmid
     The expressing box shRNA-WJ7+WJ4was transferred from plasmidpGenesil to adenoviral expressing vector pGSadeno by LR homologousrecombination in vitro, plasmid amplification and digestive identification wasoperated then.
     4Enclosing of recombinant adenoviral vector
     HEK293cells were tranfected by the connector of linearized adenoviralDNA with recombinant adenoviral plasmid fragments, and co-silencingrecombinant adenoviral vector rAd5-shRNA-WJ7+WJ4was obtained andamplified.
     5Synthesis of recombinant adenoviral vector rAd5-shRNA-HK as negativecontrol
     6Infection of SACC-83cells by recombinant adenoviral vectors
     SACC-83cells were cultivated and divided into3groups: groupSACC-83-WJ7+WJ4(silencing group), group SACC-83-HK (blank vectorgroup), and group SACC-83(non-infection group). The best MOI (100) andthe moment of the best fluorescence (48h after infection) were determined,and infection rate was calculated.
     7Detection of XT-I and XT-I mRNA level (48h after infection)
     Total RNA extraction by TRIzol was followed by determination of purity,concentration, and integrity. After RT-PCR and Real-Time PCR in turn, therelative quantity of XT-I and XT-I mRNA in all groups and then silencing ratewere acquired.
     8Determination of PGs content in culture media of all groups (48h afterinfection)
     Based on the standard curve of concentration-optical density usingstandard substance, PGs content was determined by bio-staining andinhibitory rate was measured.
     9Establishment of tumor-burdened mice and grouping
     Thirty-two four-week-old female BALB/c-nu nude mice,14~15g, wereraised under SPF condition.250μl cell suspension containing2.5×106SACC-83cells was injected subcutaneously at the left back of each animal. Atthe62nd day after injection of cell suspension, twenty-four tumor-burdenedanimals with mass of long diameter more than1cm were internalized anddivided, in accordance with the random number table, into3groups of8miceeach: group SACC-83-WJ7+WJ4(silencing group), group SACC-83-HK(blank vector group), and group SACC-83(non-infection group).
     10Intra-tumor injection of recombinant adenoviral vectors
     The sixty-second day after inoculation of tumor cells,the first intra-tumorinjection of recombinant adenoviral vectors was performed, includingco-silencing adenoviral vector rAd5-shRNA-WJ7+WJ4for groupSACC-83-WJ7+WJ4(silencing group), negative control adenoviral vectorrAd5-shRNA-HK for group SACC-83-HK (blank vector group), and PBS forgroup SACC-83(non-infection group).4×109PFU/200μl was injected foreach animal. Such injection was taken once a week for5times totally.
     11Sample collection
     In the fifth week after the first intra-tumor injection,3groups oftumor-burdened mice were killed. Each mass was separated and measured forthe volume. Following instant quartering dissection of fresh neoplastic tissue,a quarter was preserved at80C, the others were used in the experimentsbelow.
     12Sample preparation for flow cytometry (FCM) and detection of apoptosisby FCM
     70%Ethanol-fixed specimens were sheared and rubbed to obtain singlecell suspension, which underwent propidium iodide (PI) staining subsequently.apoptosis of three groups were detected by FCM.
     13Preparation and observation of formalin-fixed/paraffin-embeddedspecimens
     Formalin-fixed/paraffin-embedded specimens were prepared by ordinaryprocedures, sections were stained with hematoxylin and eosin (HE), and thenexamined microscopically to evaluate morphological changes.
     14Preparation and observation of ultrathin section for transmission electronmicroscopy
     Specimens less than1mm3were successively fixed in4%glutaraldehydeand1%osmic acid, embedded in epoxy resin, sectioned into ultrathin slices,stained by uranium acetate and lead citrate respectively30min, and finallyexamined by transmission electron microscope (TEM) to evaluate cell1apoptosis.
     Results:
     1Designed siRNA sequences respectively targeting XT-I, XT-II, and negativecontrol
     shRNA-WJ4CAGGCAGCCCATCAAACCT
     shRNA-WJ7CGTCTCCTCAAGGCCGTTTAT
     shRNA-HK GACTTCATAAGGCGCATGC
     2Conbinant plasmids were proved correct by enzyme digestion, agarose gelelectrophoresis, and sequencing.
     3Infection efficiency of SACC-83cells by recombinant adenovirus
     48h after recombinant adenovirus infection, according to expression ofgreen fluorescent taken as successful infection, the infection rate of groupSACC-83-WJ7+WJ4(silencing group) and group SACC-83-HK (blank vectorgroup) was98.7%and99.1%respectively.
     4Detection of XT-I and XT-II silencing effect by Real-Time PCR
     48h after infection, the relative expression of XT-I mRNA and XT-IImRNA in group SACC-83-WJ7+WJ4(silencing group) considerablydecreased compared with those in group SACC-83-HK (blank vector group)and group SACC-83(non-infection group), no difference was found betweengroup SACC-83-HK (blank vector group) and group SACC-83(non-infectiongroup). Silencing rate of XT-I and XT-II in group SACC-83-WJ7+WJ4(silencing group) was97.3%and88.0%respectively.
     5Effect of SACC-83cell XT-I and XT-II gene co-silencing on PGs synthesisand secretion
     48h after infection, PGs content of culture media from groupSACC-83-WJ7+WJ4(silencing group) decreased compared with those fromgroup SACC-83-HK (blank vector group) and group SACC-83(non-infectiongroup), with the inhibitory rate of68.61%. PGs from group SACC-83-HK wasnot inhibited.
     6Final volumes of transplantation tumors from tumor-burdened mice
     Five weeks after the first injection of adenovirus, the final volumes oftransplanted tumors from three groups of tumor-burdened mice showed no statistical difference.
     7Determination of apoptosis rate of transplantation tumor cell by flowcytometry (FCM)
     Five weeks after the first injection of adenovirus, apoptotic rates oftransplanted tumor cells from three groups of tumor-burdened mice showed nostatistical difference.
     8Morphological observation of nude mice transplantation tumor by opticalmicroscopic
     Five weeks after the first injection of adenovirus, among all groups,neither remarkable morphological differences nor significant apoptosis werefound in HE-stained formalin-fixed/paraffin-embedded specimens oftransplantation tumors form all groups.
     9Evaluation of transplantation tumor cell apoptosis by transmission electronmicroscope (TEM)
     Five weeks after the first injection of adenovirus, apoptosis is easy to findin group SACC-83-WJ7+WJ4(silencing group), but relatively rare in theother two groups.
     Conclusions:
     1Recombinant adenovirus rAd5-shRNA-WJ7+WJ4can effectively induceXT-I and XT-II gene silencing and inhibit PGs synthesis and secretion inSACC-83cells.
     2Five weeks after intra-tumor injection to silence XT-I and XT-II gene, cellapoptosis arose in group SACC-83-WJ7+WJ4(silencing group), but withoutstatistical significance.
引文
1贾弘禔,冯作化.生物化学与分子生物学(第2版).人民卫生出版社,2010,67-76
    2Shi H, Wang J, Dong F S, et al. The effect of proteoglycans inhibited byRNA interference on metastatic characters of human salivary adenoidcystic carcinoma. BMC Cancer,2009,9:456
    3G tting C, Kuhn J, Kleesiek K. Human xylosyltransferases in health anddisease. Cell Mol Life Sci,2007,64(12):1498-1517
    4G tting C, Kuhn J, Zahn R, et al. Molecular cloning and expression ofhuman UDP-D-xylose: proteoglycan core protein β-D-xylosyltransferaseand its first isoform XT-II. J. Mol. Biol,2000,304(4):517-528
    5Casanova JC, Roch C, Kuhn J, et al. First in-gel detection and purificationof human xylosyltransferase II. Biochem Biophys Res Commun,2009,379(2):243-248
    6Voglmeir J, Voglauer R, Wilson IB. XT-II, the second isoform of humanpeptide-O-xylosyltransferase, displays enzymatic activity. J Biol Chem,2007,282(9):5984-5990
    7P nighaus C, Ambrosius M, Casanova JC, et al. Human xylosyltransferaseII is involved in the biosynthesis of the uniform tetrasaccharide linkageregion in chondroitin sulphate and heparan sulphate proteoglycans. J BiolChem,2007,282(8):5201-5206
    8Prante C, Bieback K, Funke C, et al. The formation of extracellular matrixduring chondrogenic differentiation of mesenchymal stem cells correlateswith increased levels of xylosyltransferase I. Stem Cells,2006,24(10):2252-2261
    9Roch C, Kuhn J, Kleesiek K, et al. Differences in gene expression ofhuman xylosyltransferases and determination of acceptor specificities forvarious proteoglycans. Biochem Biophys Res Commun,2010,391(1):685-691
    10Zlotorynski E. RNA interference: microRNAs suppress transposons. NatRev Mol Cell Biol,2014,15(5):298-299
    11Haynes M, Huang L. Hepatic RNA interference: delivery by syntheticvectors. Drug Deliv Transl Res,2014,4(1):61-73
    12Grimm D, Streetz KL, Jopling CL, et al. Fatality in mice due tooversaturation of cellular microRNA/short hairpin RNA pathways. Nature,2006,441(7092):537-541
    13Reetz J, Herchenr der O, Pützer BM. Peptide-based technologies to alteradenoviral vector tropism: ways and means for systemic treatment ofcancer. Viruses,2014,6(4):1540-1563
    14Khare R, Chen CY, Weaver EA, et al. Advances and future challenges inadenoviral vector pharmacology and targeting. Curr Gene Ther,2011,11(4):241-58
    15李宁,袁育康,吴军.人CTLA4Ig, IKβ双基因共表达腺病毒载体的构建.第三军医大学学报,2005,27(2):102-105
    16Tuschl T, Zamore PD, Lehmann R, et al. Targeted mRNA degradation bydouble-stranded RNA in vitro. Gene Devel,1999,13(24):3191-3197
    17石宏,王洁,王旭,等.靶向抑制人木糖基转移酶﹣I基因的shRNA真核表达载体的构建.华西口腔医学杂志,2008,26(2):219-224
    18Guo S, Kenneth J, Kemphues. par-1, a gene required for establishingpolarity in C. elegans embryos, encodes a putative Ser/Thr kinase that isasymmetrically distributed. Cell,1995,81(4):611-620
    19Fire A, Xu S, Montgomery MK, et al. Potent and specific geneticinterference by double-strained RNA in Caenorhabditis elegans. Nature,1998,391(6669):806-811
    20Tabara H, Grishok A, Mello CC, et al. RNAi in C. elegans: soaking in thegenome sequence. Science,1998,282(5388):430-431
    21Elbashir SM, Harborth J, Weber K, et al. Analysis of gene functioninsomatic mammalian cells using small interfering RNAs. Methods,2002,26(2):199-213
    22Caudy AA, Bernstein E, Hammond SM, et al. Role for a bidentateribonuclease in the initiation step of RNA interference. Nature,2001,409(1818):363-366
    23Jimenez V, Mu oz S, Casana E, et al. In vivo adeno-associated viralvector-mediated genetic engineering of white and brown adipose tissue inadult mice. Diabetes,2013,62(12):4012-4022
    24Chen MJ, Lu Y, Hamazaki T, et al. Reprogramming adipose tissue-derivedmesenchymal stem cells into pluripotent stem cells by a mutantadeno-associated viral vector. Hum Gene Ther Methods,201425(1):72-82
    25季平,李庆妹,张福军. RNAi沉默c-erbB-2、c-raf-1表达对人舌鳞癌Tca8113细胞的干预作用.重庆医科大学学报,2004,29(5):567-571
    26王燕,陈始明,肖伯奎,等.多基因共沉默治疗人喉鳞癌裸鼠移植瘤.中华病理学杂志,2008,37(12):831-836
    27周雪峰,王建军,王家顺,等.血管内皮生长因子-C和人表皮因子受体2共沉默对人肺腺癌细胞生物学行为的影响.中华实验外科杂志,2009,26(1):79-81
    28宋英,董明敏,杨海峰.多基因共沉默对鼻咽癌细胞裸鼠移植瘤影响的研究.中华耳鼻咽喉头颈外科杂志,2010,45(11):935-940
    29Zhang Y N, Wang J, Dong F S, et al. The effect of proteoglycans inhibitedon the neurotropic growth of salivary adenoid cystic carcinoma. J OralPathol Med,2010,40(6):476-482
    30Kumiko UT, Naito Y, Takahashi F, et al. Guidelines for the selection ofhighly effective siRNA sequences for mammalian and chick RNAinterference. Nucleic Acids Res,2004,32(3):936
    1于世凤.口腔组织病理学(第7版).人民卫生出版社,2010,313-314
    2Zhou X, Huang S, Jiang L, et al. Expression of RECK and MMP-2insalivary adenoid cystic carcinoma: Correlation with tumor progression andpatient prognosis. Oncol Lett,2014,7(5):1549-1555
    3Zhang Y N, Wang J, Dong F S, et al. The effect of proteoglycans inhibitedon the neurotropic growth of salivary adenoid cystic carcinoma. J OralPathol Med,2010,40(6):476-482
    4Venkatesan N, Tsuchiya K, Kolb M, et al.Glycosyltransferases andglycosaminoglycans in bleomycin and transforming growth factor-β1-induced pulmonary fibrosis. Am J Respir Cell Mol Biol,2014,50(3):583-594
    5G tting C, Kuhn J, Kleesiek K. Human xylosyltransferases in health anddisease. Cell Mol Life Sci,2007,64(12):1498-1517
    6Roch C, Kuhn J, Kleesiek K, et al. Differences in gene expression ofhuman xylosyltransferases and determination of acceptor specificities forvarious proteoglycans. Biochem Biophys Res Commun,2010,391(1):685-691
    7G tting C, Kuhn J, Zahn R, et al. Molecular cloning and expression ofhuman UDP-D-xylose: proteoglycan core protein β-D-xylosyltransferaseand its first isoform XT-II. J. Mol. Biol,2000,304(4):517-528
    8Voglmeir J, Voglauer R, Wilson IB. XT-II, the second isoform of humanpeptide-O-xylosyltransferase, displays enzymatic activity. J Biol Chem,2007,282(9):5984-5990
    9Müller S, Sch ttler M, Sch n S, et al. Human xylosyltransferase I:functional and biochemical characterization of cysteine residues requiredfor enzymic activity. Biochem J,2005,386(Pt2):227-236
    10Casanova JC, Roch C, Kuhn J, et al. First in-gel detection and purificationof human xylosyltransferase II. Biochem Biophys Res Commun,2009,379(2):243-248
    11Wilson IB. The never-ending story of peptide O-xylosyltransferase. CellMol Life Sci.2004,61(7-8):794-809
    12Roch C, Kuhn J, Kleesiek K, et al. Differences in gene expression ofhuman xylosyltransferases and determination of acceptor specificities forvarious proteoglycans. Biochem Biophys Res Commun,2010,391(1):685-691
    13Casanova JC, Kuhn J, Kleesiek K, et al. Heterologous expression andbiochemical characterization of soluble human xylosyltransferase II.Biochem Biophys Res Commun,2008,365(4):678-684
    14Sch n S, Prante C, Bahr C, et al. Cloning and recombinant expression ofactive full-length xylosyltransferase I (XT-I) and characterization ofsubcellular localization of XT-I and XT-II. J Biol Chem,2006,281(20):14224-14231
    15Bame KJ, Venkatesan I, Stelling HD, et al. The spacing of S-domains onHS glycosaminoglycans determines whether the chain is a substrate forintracellular heparanases. Glycobiology,2000,10(7):715-726
    16Sugahara K, Kitagawa H. Heparin and heparan sulfate biosynthesis.IUBMB Life,2002,54(4):163-175
    17Prante C, Bieback K, Funke C, et al. The formation of extracellular matrixduring chondrogenic differentiation of mesenchymal stem cells correlateswith increased levels of xylosyltransferase I. Stem Cells,2006,24(10):2252-2261
    18P nighaus C, Ambrosius M, Casanova JC, et al. Human xylosyltransferaseII is involved in the biosynthesis of the uniform tetrasaccharide linkageregion in chondroitin sulphate and heparan sulphate proteoglycans. J BiolChem,2007,282(8):5201-5206
    19Condac E, Dale GL, Bender-Neal D, et al. Xylosyltransferase II is asignificant contributor of circulating xylosyltransferase levels and plateletsconstitute an important source of xylosyltransferase in serum.Glycobiology,2009,19(8):829-833
    20G tting C, Müller S, Sch ttler M, et al. Analysis of the DXD motifs inhuman xylosyltransferase I required for enzyme activity. J Biol Chem,2004,279(41):42566-42573
    21Müller S, Disse J, Sch ttler M, et al. Human xylosyltransferase I andN-terminal truncated forms: functional characterization of the core enzyme.Biochem J,2006,394(Pt1):163-171
    22Pfeil U, Wenzel KW. Purification and some properties ofUDP-xylosyltransferase of rat ear cartilage. Glycobiology,2000,10(8):803-807
    23Wilson IB. Functional characterization of Drosophila melanogaster peptideO-xylosyltransferase, the key enzyme for proteoglycan chain initiation andmember of the core2/I N-acetylglucosaminyltransferase family. J BiolChem,2002,277(24):21207-21212
    24Shi H, Wang J, Dong F S, et al. The effect of proteoglycans inhibited byRNA interference on metastatic characters of human salivary adenoidcystic carcinoma. BMC Cancer,2009,9:456
    25刘慧娟.人类XT-I与XT-I&XT-II沉默SACC蛋白多糖效率的比较.河北医科大学硕士研究生毕业论文,2012
    1Zhang Y N, Wang J, Dong F S, et al. The effect of proteoglycans inhibitedon the neurotropic growth of salivary adenoid cystic carcinoma. J OralPathol Med,2010,40(6):476-482
    2Shi H, Wang J, Dong F S, et al. The effect of proteoglycans inhibited byRNA interference on metastatic characters of human salivary adenoidcystic carcinoma. BMC Cancer,2009,9:456
    3李妍,王海,张铎,等.碘化丙啶染色流式细胞术分析肿瘤细胞凋亡的方法学探讨.中国实验诊断学,2012,16(6):799
    4于世凤.口腔组织病理学(第7版).人民卫生出版社,2010,313-314
    5Cheng TH, Chung TK, Lo KW, et al. Apoptosis-related proteins in cervicalintraepithelial neoplasia and squamous cell carcinoma of the cervix.Gynecol Oncol,2002,86:14-18
    6Xu J, Xu Z, Jiang Y, et al. Crypt or chidism induces mouse testicular germcell apoptosis and changes in bcl-2and bax protein expression. J EnvironPathol Toxicol Oncol,2000,19(1-2):25-33
    7Jiang LC, Huang SY, Zhang DS, et al. Expression of beclin1in primarysalivary adenoid cystic carcinoma and its relation to Bcl-2and p53andprognosis. Braz J Med Biol Res,2014,29: in press
    8Guan X, Nishikawa M, Li H, et al. Comparison of antigen expression fromplasmid DNA in tumor-free and antigen-expressing tumor-bearing mice.Human Vaccines Immunotherap,2012,8(2):194-200
    9Hayata K, Iwahashi M, Ojima T, et al. Inhibition of IL-17A in tumormicroenvironment augments cytotoxicity of tumor-infiltrating lymphocytesin tumor-bearing mice. Plos One,2013,8(1): e53131
    10王洁,董福生,董青,等.裸鼠体内人腺样囊性癌细胞凋亡的研究.中华口腔医学杂志,2003,38(5):358-360
    11王洁,董福生,顾洪涛,等.涎腺腺样囊性癌细胞凋亡的诱导与P53基因的修复.现代口腔医学杂志,2004,18(6):492-495
    12于利洁,王洁,董福生,等.短发夹状RNA沉默H-Ras基因对人涎腺腺样囊性癌细胞增殖的影响.中华口腔医学杂志,2008,43(2):113-117
    13于利洁,王洁,董福生,等.沉默H-ras基因对人腺样囊性癌裸鼠移植瘤的抑制作用.肿瘤,2008,28(2):104-107,112
    14侯亚丽,王洁,田燕,等.腺病毒介导HSV-tk/GCV与IL-2基因对人涎腺腺样囊性癌的抑制作用.现代口腔医学杂志,2010,24(5):359-363
    15王旭,王洁,董福生,等. P53与HSV-tk基因对涎腺多形性腺瘤细胞的杀伤作用.华西口腔医学杂志,2005,23(1):65-68
    16王洁,董福生,王旭,等. HSV-tk自杀基因对涎腺多形性腺瘤细胞治疗的实验研究.现代口腔医学杂志,2005,19(1):49-53
    1Shi H, Wang J, Dong F S, et al. The effect of proteoglycans inhibited byRNA interference on metastatic characters of human salivary adenoidcystic carcinoma. BMC Cancer,2009,9:456
    2Bui C, Huber C, Tuysuz B, et al. XYLT1mutations in Desbuquoisdysplasia type2. Am J Hum Genet,2014,94(3):405-414.
    3Mis EK, Liem KF Jr, Kong Y, et al. Forward genetics defines Xylt1as akey, conserved regulator of early chondrocyte maturation and skeletallength. Devel Biol,2014,385(1):67-82
    4Casanova JC, Ambrosius M, Kuhn J, et al. Analysis of xylosyltransferase IIbinding to the anticoagulant heparin. Biochem Biophys Res Commun,2009,383(1):4-10
    5G tting C, Kuhn J, Zahn R, et al. Molecular cloning and expression ofhuman UDP-D-xylose: proteoglycan core protein β-D-xylosyltransferaseand its first isoform XT-II. J. Mol. Biol,2000,304(4):517-528
    6Voglmeir J, Voglauer R, Wilson IB. XT-II, the second isoform of humanpeptide-O-xylosyltransferase, displays enzymatic activity. J Biol Chem,2007,282(9):5984-5990
    7Müller S, Sch ttler M, Sch n S, et al. Human xylosyltransferase I:functional and biochemical characterization of cysteine residues requiredfor enzymic activity. Biochem J,2005,386(Pt2):227-236
    8Casanova JC, Roch C, Kuhn J, et al. First in-gel detection and purificationof human xylosyltransferase II. Biochem Biophys Res Commun,2009,379(2):243-248
    9Wilson IB. The never-ending story of peptide O-xylosyltransferase. CellMol Life Sci.2004,61(7-8):794-809
    10Roch C, Kuhn J, Kleesiek K, et al. Differences in gene expression ofhuman xylosyltransferases and determination of acceptor specificities forvarious proteoglycans. Biochem Biophys Res Commun,2010,391(1):685-691
    11Casanova JC, Kuhn J, Kleesiek K, et al. Heterologous expression andbiochemical characterization of soluble human xylosyltransferase II.Biochem Biophys Res Commun,2008,365(4):678-684
    12Sch n S, Prante C, Bahr C, et al. Cloning and recombinant expression ofactive full-length xylosyltransferase I (XT-I) and characterization ofsubcellular localization of XT-I and XT-II. J Biol Chem,2006,281(20):14224-14231
    13Bame KJ, Venkatesan I, Stelling HD, et al. The spacing of S-domains onHS glycosaminoglycans determines whether the chain is a substrate forintracellular heparanases. Glycobiology,2000,10(7):715-726
    14Sugahara K, Kitagawa H. Heparin and heparan sulfate biosynthesis.IUBMB Life,2002,54(4):163-175
    15Prante C, Bieback K, Funke C, et al. The formation of extracellular matrixduring chondrogenic differentiation of mesenchymal stem cells correlateswith increased levels of xylosyltransferase I. Stem Cells,2006,24(10):2252-2261
    16P nighaus C, Ambrosius M, Casanova JC, et al. Human xylosyltransferaseII is involved in the biosynthesis of the uniform tetrasaccharide linkageregion in chondroitin sulphate and heparan sulphate proteoglycans. J BiolChem,2007,282(8):5201-5206
    17Condac E, Dale GL, Bender-Neal D, et al. Xylosyltransferase II is asignificant contributor of circulating xylosyltransferase levels and plateletsconstitute an important source of xylosyltransferase in serum.Glycobiology,2009,19(8):829-833
    18G tting C, Müller S, Sch ttler M, et al. Analysis of the DXD motifs inhuman xylosyltransferase I required for enzyme activity. J Biol Chem,2004,279(41):42566-42573
    19Müller S, Disse J, Sch ttler M, et al. Human xylosyltransferase I andN-terminal truncated forms: functional characterization of the core enzyme.Biochem J,2006,394(Pt1):163-171
    20Pfeil U, Wenzel KW. Purification and some properties of UDP-xylosyltransferase of rat ear cartilage. Glycobiology,2000,10(8):803-807
    21Wilson IB. Functional characterization of Drosophila melanogaster peptideO-xylosyltransferase, the key enzyme for proteoglycan chain initiation andmember of the core2/I N-acetylglucosaminyltransferase family. J BiolChem,2002,277(24):21207-21212
    22Kuhn J, Schn lzer M, Sch n S, et al. Xylosyltransferase I acceptorproperties of fibroblast growth factor and its fragment bFGF (1-24).Biochem Biophys Res Commun,2005,333(1):156-166
    23Joachim K, Christian G, Martina S, et al. First isolation of humanUDP-D-xylose: proteoglycan core protein beta-D-xylosyltransferasesecreted from cultured JAR choriocarcinoma cells. J Biol Chem,2001,276(7):4940-4947
    24Kuhn J, M lle K, Brinkmann T, et al. High-density tissue-like cultivationof JAR choriocarcinoma cells for the in vitro production of humanxylosyltransferase. J Biotechnol,2003,103(2):191-196
    25Kuhn J, Müller S, Schn lzer M, et al. High-level expression andpurification of human xylosyltransferase I in High Five insect cells asbiochemically active form. Bio Res Com,2003,312(3):537-544
    26贾弘禔,冯作化.生物化学与分子生物学(第2版).人民卫生出版社,2010,67-76
    27宫锋,张晓,李晋萍.硫酸肝素蛋白多糖在疾病中的作用.中国科学:生命科学,2010,40(3):187-201
    28钱桐荪.关于Heparan sulfate和Heparin sulfate的译名问题.中华肾脏病杂志,2003,19(6):354
    29Netelenbos T, Zuijderduijn S, Van Den Born J, et al. Proteoglycans guideSDF-1-induced migration of hematopoietic progenitor cells. J Leukoc Biol,2002,72(2):353-362
    30Aricescu AR, McKinnell IW, Halfter W, et al. Heparan sulfateproteoglycans are ligands for receptor protein tyrosion phosphatase sigma.Mol Cell Biol,2002,22(6):1881-1892
    31Ferrara N. Vascular endothelial growth factor: basic science and clinicalprogress. Endocr Rev,2004,25(4):581-611
    32Baeg GH, Perrimon N. Functional binding of secreted molecules toheparan sulfate proteoglvcans in Drosophila. Curr Opin Cell Biol,2000,12(2):575-580
    33Ai X, Do AT, Lozynska O, et al. QSulf1remodels the6-O sulfation statesof cell surface heparan sulfate proteoglycans to promote Wnt signaling. JCell Biol,2003,162(2):341-351
    34Iozzo RV. Matrix proteoglycans: from molecular design to cellular function.Annu Rev Biochem,1998,67:609-652
    35于世凤.口腔组织病理学(第7版).人民卫生出版社,2010,297
    36Sternlicht MD, Safarians S, Rivera SP, et al. Characterizations of theextracellular matrix and proteinase inhibitor content of humanmyoepithelial tumors. Lab Invest,1996,74(4):781-796
    37Kawahara A, Harada H, Kage M, et al. Extracellular material in adenoidcystic carcinoma of the salivary glands: a comparative cytological studywith other salivary myoepithelial tumors. Diagn Cytopathol,2004,31(1):14-18
    38王洁,吴奇光,孙开华,等.腺样囊性癌组织学类型与蛋白多糖形成的关系.中华医学杂志,1994,74(7):434-435
    39王洁,吴奇光,孙开华,等.唾液腺多形性腺瘤组织发生的探讨.中华口腔医学杂志,1995,30(2):70-71,127
    40王洁,吴奇光,孙开华,等.唾液腺肌上皮瘤中蛋白多糖的电镜组织化学研究.中华口腔医学杂志,1995,30(4):215-217,256
    41Wang J, Wu Q, Sun K, et al. Quantitative multivariate analysis ofmyoepithelioma and myoepithelial carcinoma. Int J Oral Maxillofac Surg,1995,24(2):153-157
    42Zhao M, Takata T, Ogawa I, et al. Localization of glycoaminoglycans(GAGss) in pleomorphic adenoma (PA) of salivary glands: an immuno-histochemical and histochemical evaluation. J Oral Pathol Med,1998,27(6):272-277
    43Zhao M, Takata T, Ogawa I, et al. Immunohistochemical evaluation of thesmall and large proteoglycans in pleomorphic adenoma of salivary glands.J Oral Pathol Med,1999,28(1):37-42
    44石宏,王洁.蛋白多糖与唾液腺肿瘤.现代口腔医学杂志,2010,24(6):460-463
    45王洁,张艳宁.蛋白多糖阻抑:唾液腺肿瘤治疗的新思路.中国耳鼻咽喉头颈外科,2011,18(3):125-127
    46Gonzalez AD, Kaya M, Shi W, et al. OCI-5/GPC3, a glypican encoded by agene that is mutated in the Simpson-Golabi-Behmel overgrowth syndrome,induces apoptosis in a cell line-specific manner. J Cell Biol,1998,141(6):1407-1414
    47Kusafuka K, Ishiwata T, Sugisaki Y, et al. Lumican expression is associatedwith the formation of mesenchyme-like elements in salivary pleomorphicadenomas. J Pathol,2004,203(4):953-960
    48Barsky SH. Myoepithelial mRNA expression profiling reveals a commontumor-suppressor phenotype. Exp Mol Pathl,2003,74(2):113-122
    49Enescu AS, M rg ritescu CL, Cr i oiu MM, et al. The involvement ofgrowth differentiation factor5(GDF5) and aggrecan in the epithelial-mesenchymal transition of salivary gland pleomorphic adenoma. Rom JMorphol Embryol,2013,54(4):969-976
    50Zhao D, Yang K, Tang XF, et al. Expression of integrin-linked kinase inadenoid cystic carcinoma of salivary glands correlates with epithelial-mesenchymal transition markers and tumor progression. Med Oncol,2013,30(3):619
    51Tang YL, Fan YL, Jiang J, et al. C-kit induces epithelial-mesenchymaltransition and contributes to salivary adenoid cystic cancer progression.Oncotarget,2014,5(6):1491-1501
    52Tímár J, Lapis K, Dudás J, et al. Proteoglycans and tumor progression:Janus-faced molecules with contradictory functions in cancer. SeminCancer Biol,2002,12(3):173-186
    53Zhang Y N, Wang J, Dong F S, et al. The effect of proteoglycans inhibitedon the neurotropic growth of salivary adenoid cystic carcinoma. J OralPathol Med,2010,40(6):476-482
    54Prante C, Kuhn J, Kleesiek K, et al. High xylosyltransferase activity inchildren and during mineralization of osteoblast-like SAOS-2cells.Glycoconj J,2009,26(2):219-227
    55Sch n S, Schülz V, Prante C, et al. Polymorphisms in thexylosyltransferase genes cause higher serum XT-I activity in patients withpseudoxanthoma elasticum (PXE) and are involved in a severe diseasecourse. J Med Genet,2006,43(9):745-749
    56Schülz V, Hendig D, Henjakovic M, et al. Mutational analysis of theABCC6gene and the proximal ABCC6gene promoter in German patientswith pseudoxanthoma elasticum (PXE). Hum Mutat,2006,27(8):831
    57G tting C, Kuhn J, Kleesiek K. Human xylosyltransferases in health anddisease. Cell Mol Life Sci,2007,64(12):1498-1517
    58G tting C, Kuhn J, Sollberg S, et al. Elevated serum xylosyltransferaseactivity correlates with a high level of hyaluronate in patients with systemicsclerosis. Acta Derm Venereol,2000,80(1):60-61
    59G tting C, Hendig D, Adam A, et al. Elevated xylosyltransferase Iactivities in pseudoxanthoma elasticum (PXE) patients as a marker ofstimulated proteoglycan biosynthesis. J Mol Med (Berl),2005,83(12):984-992
    60Venkatesan N, Tsuchiya K, Kolb M, et al.Glycosyltransferases andglycosaminoglycans in bleomycin and transforming growth factor-β1-induced pulmonary fibrosis. Am J Respir Cell Mol Biol,2014,50(3):583-594
    61Faust I, Roch C, Kuhn J, et al. Human xylosyltransferase-I–A new markerfor myofibroblast differentiation in skin fibrosis. Biochem Biophys ResCommun,2013,436(3):449-454
    62G tting C, Kuhn J, Brinkmann T, et al. Xylosyltransferase activity inseminal plasma of infertile men. Clin Chim Acta,2002,317(1-2):199-202
    63Müller B, Prante C, Gastens M, et al. Increased levels of xylosyltransferaseI correlate with the mineralization of the extracellular matrix duringosteogenic differentiation of mesenchymal stem cells. Matrix Biol,2008,27(2):139-149
    64Sch n S, Prante C, Bahr C, et al. The xylosyltransferase I genepolymorphism c.343G>T (p.A125S) is a risk factor for diabeticnephropathy in type1diabetes. Diabetes Care,2006,29(10):2295-2299
    65Bahr C, Sch n S, Kuhn J, et al. Novel sequence variants in the humanxylosyltransferase I gene and their role in diabetic nephropathy. DiabetMed,2006,23(6):681-684
    66Hendig D, Tarnow L, Kuhn J et al. Identification of a xylosyltransferase IIgene haplotype marker for diabetic nephropathy in type1diabetes. ClinChim Acta,2008,398(1-2):90-94
    67Condac E, Silasi-Mansat R, Kosanke S, et al. Polycystic disease caused bydeficiency in xylosyltransferase2, an initiating enzyme of glycosamino-glycan biosynthesis. Proc Natl Acad Sci USA,2007,104(22):9416-9421
    68Inamori K, Yoshida-Moriguchi T, Hara Y. Dystroglycan function requiresxylosyl-and glucuronyltransferase activities of LARGE. Science,2012,335(6064):93-96

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700