微磁场条件下微氧活性污泥特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活性污泥法因其运行方式灵活、运行费用低、对可生化性物质处理效果好等优点而被广泛使用。但该法通常需要较高的溶解氧浓度(2.0mg/L以上),导致运行费用高。而较低溶解氧浓度下会发生污泥膨胀问题。本文研究微磁场作用下微氧条件下(溶解氧浓度低于1.0mg/L),活性污泥的理化特性及处理效果,以期为低溶解氧浓度下活性污泥的应用及降低运行成本提供参数。
     首先通过实验确定微氧活性污泥中磁粉最佳投加量。结果表明投加量为4g/L,对微生物有明显的促进作用,废水COD_(Cr)去除率达到最大值93.53%。
     然后以厌氧污泥为种泥,考察了磁粉产生的微磁场对微氧活性污泥处理效果及理化特性的影响。在磁粉添加量为4g/L,以葡萄糖模拟废水对污泥进行驯化培养。结果表明在培养过程中与不加磁粉相比,添加磁粉反应器中COD_(Cr)去除率明显高于对照组,而一个周期内pH变化幅度更大。在微氧条件下,微磁场影响下污泥具有良好的沉降性能,整个培养过程中,SVI值均低于100mL/g,而无磁粉反应器中污泥结构松散,沉降性差,SVI值高达200mL/g以上,很容易随水流出反应器。添加磁粉反应器中污泥MLSS明显高于无磁粉反应器。通过测定污泥胞外多聚物(ECPs)总量、PN/PS、絮凝能力(FA)、相对疏水性(RH)及表面电荷(SC)等指标考察微磁场对污泥絮凝性能影响,结果表明,磁粉的存在大大提高了污泥的絮凝性能。
     最后考察了微磁场作用下pH冲击和毒性废水冲击对微氧活性污泥系统的影响。结果表明磁粉的加入使得反应器具有良好的抗pH冲击和毒性废水冲击的能力,并且在恢复实验中COD_(Cr)去除率、污泥沉降絮凝性能等理化特性在短时间内即可恢复至正常水平。
The activated sludge process has been widely used because it is flexible, low in cost and without secondary pollution. However, due to its requirement of higher dissolved oxygen concentration (higher than 2.0mg/L), the operation cost was increased. The problem of sludge bulking would occur under environments with low dissolved oxygen concentration. This paper studied the physicochemical properties of activated sludge and its treatment effect in the weak magnetic environment with low dissolved oxygen concentration (lower than 1.0mg/L), hoping to provide parameters for the application of activated sludge in environments with low dissolved oxygen concentration and the reduction of operation cost.
     First, experiments were conducted to determine the optimal dosage of magnetic particles in activated sludge with low dissolved oxygen concentration. The results showed that a dosage of 4g/L will obviously promote the activity of microorganism with the removal rate of waste water COD_(Cr) reaching the peak of 93.53%.
     Then, with anaerobic sludge as the seed sludge, the paper examined the effect of the weak magnetic environment produced by magnetic particle on the treatment effect of weak aerophilic activated sludge as well as its physicochemical properties. The glucose solution was used to simulate the waste water to culture the sludge with the dosage of the magnetic particle being 4g/L. The result indicated that the reactor with magnetic particles had a higher COD_(Cr) removal rate than the one without magnetic particles. The range of variation within a period is larger. In the weak aerophilic environment, the sludge under the influence of weak magnetic field had better setting property with the average value of SVI lower than 100mL/g. In the reactor without magnetic particles, the sludge had a loose structure, poor setting property and a SVI value higher than 200mL/g. It would be very easy for it to come out of the reactor with the water. The MLSS of the sludge in the reactor with magnetic particles was obviously higher than that in the reactor without magnetic particles. The influence of the micro-magnetic field on the flocculation capability of the sludge was investigated through the testing of the indices such as the total dose of extracellular polymers (ECPs), PN/PS, flocculating ability (FA), relative hydrophobicity (RH) and surface charge (SC) and so on. The testing result showed that the existence of magnetic particles had greatly increased the sludge’s flocculating ability.
     In the end, the impact of the pH loading shock and toxic wastewater loading shock on the weak aerophilic activated sludge system with the existence of magnetic field was tested. The result showsed that the existence of magnetic particles had given the reactor the ability to offset the impact of the pH loading shock and toxic wastewater loading shock. In addition to that, the COD_(Cr) removal rate, the sludge setting and flocculating performance as well as other physiochemical properties would soon return to the normal level in the recovery experiment.
引文
[1]赖万东,填料塔反应器处理餐厅废水的理论与应用研究[D].广州:华南理工大学,2000
    [2]永丰.三废处理工程技术手册[M].北京:化学工业出版社,2000
    [3] Rohan Jain, Ashish Pathak, T.R.Sreekrishnan, et al. Autoheated thermophilic aerobic sludge digestion and metal bioleaching in a two-stage reactor system[J]. Journal of environmental sciences, 2010, 22(2): 230-236
    [4] Xia Mingfang, Wang Zhiwei, Wu Zhichao, et al. Simulation and assessment of sludge concentration and rheology in the process of waste activated sludge treatment[J]. Journal of environmental sciences, 2009, 21(12): 1639-1645
    [5] Liu He, Tang Deyou, Li Guanwei, et al. A comparable study of microbial community in aerobic granular sludge and activated sludge for wastewater treatment[J]. Journal of Environmental Science and Engineering, 2007, 1(1): 69-77
    [6]张自杰.排水工程[M].北京:中国建筑工业出版社,2000
    [7]周集体,曲媛媛.环境工程原理[J].大连:大连理工大学出版社,2008
    [8]李亚峰,佟玉衡,陈立夫.使用废水处理技术[J].北京:化学工业出版社,2007
    [9]蓝惠霞,王乐乐.废水中环氧丙烷降解菌株的培育及降解效果研究[J].四川环境,2009,28(4):28-30
    [10]李红梅.好氧生物处理污水的过程控制[J].辽宁化工,2002,31(11):479-484
    [11]张统.间歇式活性污泥法污水处理技术及工程实例[M].北京:化学工业出版社,2002
    [12]白璐,王淑莹,彭永臻,等.低溶解氧条件下活性污泥沉降性的研究[J].工业水处理,2006,26(5):54-56
    [13] Zhou Jian. Study on factors of affecting sedimentation performance of activated sludge in A-step of AB process[J]. Environmental Engineering, 2005, 20(14):34-35
    [14]高耀国.水污染处理[M].北京:化学工业出版社,2003
    [15]丁峰,彭永臻,王淑莹.SBR法处理工业废水中pH值引起的活性污泥上浮[J].哈尔滨建筑大学学报,2001,34(1):54-58
    [16] Wang Baoyi. Nitrogen removal by aerobic denitrification with SBR-BAF process[J]. Environmental Engineering, 2006, 24(5): 78-82
    [17] Novak L, Larrea L, Wanner J, et al. Non-filamentousactivated sludge bulking caused by zoogloea[J]. Water Science and Technology, 1994, 29(7): 301-304
    [18]高春娣,彭永臻,王淑莹.磷缺乏引起的非丝状菌活性污泥膨胀[J].中国环境科学,2002,22(1):40-43
    [19]高春娣,彭永臻,王淑莹,等.氮缺乏引起的非丝状菌活性污泥膨胀[J].环境科学,2001,22(6):61-65
    [20]陈滢,彭永臻,刘敏,等.SBR法处理生活污水时非丝状菌污泥膨胀的发生与控制[J].环境科学学报,2005,25(1):105-108
    [21] Peng Y Z, Gao C D, Wang S Y. Nonsfilamentous sludge bul-king caused by a deficiency of nitrogen in industrial wastewater treatment[J]. Water Science and Technology, 2003, 47(11): 289-295
    [22]高春娣,武联菊,郝坤,等.低溶解氧污泥微膨胀的发生及脱氮除磷效果优化[J].环境科学,2010,31(10):2385-2389
    [23]梁祝.低溶解氧对活性污泥系统降解有机物和脱氮性能的影响[J].贵州环保科技,2002,8(4):5-10
    [24]白璐,王淑莹,宋乾武,等.不同温度低溶解氧条件下活性污泥法处理污水的效果研究[J].安全与环境工程,2006,13(4),39-42
    [25]郭建华,王淑莹,彭永臻,等.低溶解氧污泥微膨胀节能方法在A/O中的试验验证[J].环境科学,2008,29(12):3348-3352
    [26]李国栋.2003-2004年生物磁学研究和应用的新进展[J].生物磁学,2004,4(4):25-27
    [27]马放,王强,朱雪松,等.磁技术在污水处理中的应用现状及发展趋势[J].中国给水排水,2010,26(14):34-37
    [28]王祥三,王平.磁化处理污水的生物效应试验[J].环境科学与技术,2000,(2):33-36
    [29] Agnieszka Tomska, Lidia Wolny. Enhancement of biological wastewater treatment by magnetic field exposure[J]. Desalination, 2008, 222: 368-373
    [30] Masahiro Kohno, Muneyo Yanmazaki, Isao Kimura, et al. Effect of static magnetic fields on bacteria: Streptococcus mutans, Staphylococcus aureus, and Escherichia coli[J]. Pathophysiology, 2000(7): 143-148
    [31] G.Boleslaw. Influence of constant magnetic fields on certain physioehemieal Properties of water[J]. Bioelectromagnetics, 1985(6): 169-175
    [32]张建平,赵林,谭欣.水分子团簇结构的改变及其生物效应[J].化学通报,2004(4):278- 283
    [33] Koneraeka M, Kopcansky P, Antalik M, et al. Immobilization of proteins and enzymes to fine magnetic particles[J]. Journal of Magnetism and Magnetic Materials, 1999, 201(1): 427-430
    [34]麻海珍,吴国庆.磁场对固定化紫色非硫光合细菌脱氢酶活性影响的研究[J].环境科学学报,1995,15(3):342-346
    [35]张吉先,俞劲炎.磁场对土壤微生物和酶活性的影响[J].土壤通报,1999,30(1):26-28
    [36]张军,孙凡,陈德万,等.0.23T稳恒磁场对不同温度离体过氧化氢酶的磁效应研究[J].激光生物学报,2001,10(3):191-194
    [37]张军,孙凡,陈德万,等.磁化过氧化氢酶的稳定性研究及其机理初探[J].西南农业大学学报,2001,23(3):273-275
    [38]安燕,程江,肖立军,等.磁场对酪氨酸酶活性及其催化降解酚类有机物影响的研究[J].环境科学学报,2007,27(8):1263-1269
    [39]林沁瑛,黄灿灿.恒定磁场对中华猕猴桃蛋白酶生物效应初探[J].生物化学与生物物理学报,1992,24(3):253-254
    [40]贺华君,朱元保,钟科军,等.磁场对酶构象的影响[J].吉首大学学报,1998,19(4):25-30
    [41]王山杉,李琳,李冰.磁场对酶学效应影响的研究进展[J].现代生物医学进展,2006,6(10):111-114
    [42]范寰,商桂敏,元英进.酶胁迫作用下悬浮培养红豆杉细胞的磁场生物学效应[J].过程工程学报,2005,5(3):345-348
    [43]姜常珍,罗翠钦,潘如政,等.轴对称ELF磁场中的球细胞感应电场及跨膜电位[J].天津大学学报,2004,37(8):37-39
    [44] Novilcov V, Shvetsov Yu P, Fesenko E. Molecrlar mechanisms of biological action of weak magnetic fields[J]. Bioinformation, 1997(3): 746-750
    [45]黄德盈,吴士药,王宗保,等.磁场对质粒pBR322DNA的影响[J].生物物理学报,1995,(3):457-462
    [46] Mahdi P A, Gowland P, Mansfield R E, et al. The effects of static 3.0T and 0.5T magnetic fields and the echo-planar inaging experiment at 0.5T on E.coli[J]. Bioelectrochemistry and Bioenergetics, 1994, 34(2): 983-987
    [47] Kazuhiro Nakamura, Kazumasa okuno, Takashi Ano, et al. Effect of high magnetic field on the growth of bacillus subtelis measured in a newly developed superconducting magnet biosystem[J]. Bioelectrochemistry and Bioenergetics, 1997, 43(1): 123-128
    [48]杨修益,丁克祥,肖粤,等.旋磁对小鼠心脑组织及血液自由基代谢的影响[J].中华理疗杂志,1996,19(1):68-74
    [49]李国栋,周万松,郭立文,等.生物磁学-应用、技术、原理[M].北京:国防工业出版社,1993
    [50]张小云,张晓鄂.恒定强磁场对Hela细胞生长分裂的影响[J].科学通报,1989,34(24):1901-1904
    [51] Min Wei, Marina Guizzetti, Michael Yost, et al. Exposure to 60Hz Magnetic Fields and Proliferation of Human Astrocytoma Cells in Vitro[J]. Toxicology and Applied Pharmacology Volume, 2000, 162(3): 166-176
    [52]弭晓菊,马跃,郭桂云.磁场处理番茄种子对其生理生化影响的研究[J].植物研究,1999,19(1):68-74
    [53] Shinichiro H, Yoshimasa I, Kazumasa O, et al. Drastic high magnetic field effect on suppression of Escherichia coli deash[J]. Bioelectrochemistry, 2001, 53: 149-153
    [54]陈树德,张红峰,陈家森,等.低频电磁场对细胞生物效应的研究[J].中华物理医学杂志,1998,20(2):78-80
    [55]许喜林,李琳,郭祀远,等.静态磁场对细菌存活率的影响[J].微生物学通报,2005,32(5):1-4
    [56]许喜林,郭祀远,李琳.动态磁场对微生物的作用[J].华南理工大学学报(自然科学版),2006,34(12):47-50
    [57] Shuichiro Hattori, Masasanori Watanabe, Hisashi Togii, et al. Effects of an external magnetic field on the sedimentation of activated sludge[J]. World Journal of Microboilogy Bio-technology, (17): 279-285
    [58] Shuiehiro HaRofi,Masasanori Watanabe,Ken Sasaki, et al.Magnetization of act-ivated sludge by an external magnetic field[J]. Biot-eehnology Letters, 2002, (24): 65-69
    [59] S.Hattori, M.Watanabe. Effects of an external magnetic field on the sedimentation of activated sludge-effect of loading,dilution rate and magnetic field strength in a continuous culture system[J]. World J.Microbiol.Biotechnol, 2001, 17(3): 279-285
    [60]涂宁宇,许燕滨,张子间,等.磁场对重金属废水生物吸附效果的研究[J].江苏化工,2004,32(1):40-42
    [61] J.H.P. Watson, B.A. Cressey, A.P. Roberts, et al.Structural and magnetic studies on heavy-metal-adsorbing iron sulphide nanoparticles produced by sulphate-reducing bacteria[J]. Magn Mater, 2000, 214: 13-30
    [62]李帅,边炳鑫,周正.磁场对污泥脱水性能影响的研究[J].环境保护科学,2007,20(3):119-123
    [63] Annemieke van Wamel, Klazina Kooiman, Miranda H art eveld, el at. Vibrating micr-obubbles poking individual cells: drug transfer into cells via sonoporation[J]. Journal of controlled release, 2006 (112): 149-155
    [64] R.B. Azevedo, L.P. Silva, A.P.C. Lemos, et al. Morphological study of Saccharomyces cerevisiae cells treated with magnetic fluid[J]. IEEE Trans.Magn, 2003(39): 2660-2662
    [65]张凡,程江,海景,等.磁致物理化学生物效应及其在废水生物降解中的应用[J].现代化工,2003,23(12):47-50
    [66]国家环保局.水和废水监测分析方法(第三版)[M].北京:中国环境科学出版社,1998
    [67]刘志杰,谢华,俞毓馨,等.厌氧污泥胞外多聚物的提取、测定法选择[J].环境科学,1994,15(4):23-26
    [68] (日)微生物研究法讨论会.微生物学实验法[M].北京:科学技术出版社,1981:199-200
    [69] Frolund B., Palmgren R.,Keiding K., et al. Extraction of extracellular polyers from activated sludge using a cation exchange resin[J]. Water Research, 1996, 30(8): 1749-1758
    [70] J.W.Morgan, C.F.Forster, L.Evison. A comparative study of the nature of biopolymers extracted from anaerobic and activated sludges[J]. Water Res, 1990, 24(6): 743-750
    [71] ChangI-S, Lee C-H. Membrane filtration characteristics in membrane-coupled activated sludge system-the effect of physiological states of activated sludge on membrane fouling[J]. Desalination, 1998, 120: 221-233
    [72] Jorand FJ, Guicherd P, Urbain V, et al. Hydrophobicity of activated sludge flocs and laboratorygrown bacteria[J]. Water Sci. Technol, 1994, 30: 211-218
    [73] Lukas Fojt, Ludek Strasak, Vladimir Vetterl, et al. Comparison of the low-frequency magnetic effects on bacteria Escherichia cole, Leclercia adecarboxylata and Staphylococcus aureus[J]. Bioelectrochemistry, 2004, 63: 337-341
    [74]陆光立,赵庆祥.磁粉活性污泥法工艺技术研究[J].城市环境与城市生态,1998,11(2),10-13
    [75]孙水裕,刘鸿,谢光炎,等.磁粉强化活性污泥法处理餐饮废水的研究[J].环境污染与防治,2003,25(3):170-172
    [76]王红武,李晓岩,赵庆祥.活性污泥的表面特性与其沉降脱水性能的关系[J].清华大学学报,2004,3(6):766-769
    [77] Joseph L., Pavoni. Bacterial exocellular polymers and biological flocculation[J]. Journal WPCF, 1972, 44(3): 414-424
    [78] Sponza D T. Extracellular polymer substances and physicochemical properties of folcs in steady and unsteady state activated sludge systems[J]. Process Biochemistry, 2002, 37: 983-998
    [79] Zhou W T, Lmai T, Ukita M, et al. Effect of loading rati on the granulation process and granular activity in a bench scale UASB reactor[J]. Bioresource Technology, 2007, 98(7): 1386-1392
    [80] Liao B.Q., Allen D.C., Droppo G.G. Surface Properties of sludge and their role in bioflocculation and settleability[J]. Wat. Res., 2001, 35: 339-350
    [81] Bo Jin, Wilèn B. M., Paul Lant. A comprehensive insight into floc characteristics and their impact on compressibility and settleability of activated sludge[J]. Chem. Eng., 2003, 95: 221-234
    [82] Tsuneda S., Nagano T., Hoshino T., et al. Characterization of nitrifying granules produced in an aerobic upflow fluidized bed reactor[J]. Water Research, 2003, 37: 4945 -4973
    [83] Delia T.S. Investigation of extracellular polymer substances (EPS) and physicochemical properties of different activated sludge flocs under steady-state conditions[J]. Enzyme and Microbial Technology, 2003, 32: 375-385
    [84] B.Q.Liao, D.G..Allen, G..G..Leppard, et al. Interparticle interaction affecting the stability of sludge flocs[J]. Journal of Colloid and Interface Science, 2002, 249: 372-380
    [85]王爱杰,任南琪,黄志,等.产酸脱硫反应器中COD/SO42-比制约的群落生态演替规律[J].环境科学,2002,23(2):34-38
    [86]赵丹,任南琪,王爱杰,等.产酸相稳定发酵类型微生物生态学研究[J].环境科学技术,2003,26(6):37-38
    [87]郑蕾,田禹,孙德智.pH值对活性污泥胞外多聚物分子结构和表面特征影响研究[J].环境科学,2007,28(7):1507-1511
    [88]周健,罗勇,龙腾锐,等.胞外聚合物、Ca2+及pH值对生物絮凝作用的影响[J].中国环境科学,2004,24(4):437-441
    [89]蓝惠霞,邱献欢,隋冰冰,等.降解五氯酚(PCP)的微氧颗粒污泥的形成机理[J].环境科学学报,2009,29(2):273-278
    [90]张瑞霞,陈夫山,刘廷志.絮凝剂在造纸废水处理中的应用[J].黑龙江造纸,2005,(3):42-44
    [91]朱又春,曾胜.磁分离法处理餐饮污水的除油机理[J].中国给水排水,2002,18(7):39-42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700