声光磁电能场对活性污泥细菌生物活性的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水污染控制技术中废水处理的方法很多,其中生物处理方法经历了百余年的发展和应用,发挥了重要作用。
     活性污泥法是处理城市污水最广泛使用的方法。它能从污水中去除溶解的和胶体的可生物降解有机物及能被活性污泥吸附的悬浮固体和其他一些物质。无机盐类也能部分地被去除。但是随着工业的发展,越来越多、越来越复杂的有机物进入水体,活性污泥法的处理能力受到了极大的挑战,因此提高活性污泥细菌对有机物尤其是对复杂有机物的降解效率成为当今水处理领域的重要课题。
     利用物理能场促进活性污泥细菌活性发生正向变异或突变是提高微生物生物活性和创建高效环境工程菌种的迅速而简便的方法。但是,目前对该方法的理论和实践研究尚欠系统和深入。物理能场对微生物影响的研究,都还是属于起步阶段,许多问题还没有解决,也还没有形成完整的物理能场对微生物影响的理论体系,在对活性污泥活性方面的研究更是少见。这种状态使该法在环境工程方面难以获得广泛应用。
     本研究的目的旨在探讨声,光,磁,电这些物理能场对活性污泥的活性的影响,从而了解和掌握它们对活性污泥处理废水的影响规律和处理效果,寻求能够提高活性污泥的活性的最佳条件,以促使活性污泥细菌生物活性的增强,进而使之能够广泛、高效地应用于废水的处理。
     由于实验条件限制,本次实验研究采用测定耗氧速率的方法来间接判定活性污泥细菌生物活性的变化。生物活性的增长率则以物理能场处理样与相同条件下的未处理样的耗氧速率的差异为依据来计算。本研究分别对磁场,紫外光,激光,电场,超声波场对活性污泥细菌活性的影响进行了较为系统的研究。并分别总结了每个物理能场在本实验条件下对活性污泥细菌的影响规律,以及其生物活性提高的最佳效果和最佳条件,进而综合总结了物理能场影响活性污泥细菌的一般规律。从而丰富或填补了该研究领域的理论与实践,为将来使用该方法创新出更高效的活性污泥处理工艺提供基础性的资料。
     通过实验研究,除了分别获得各物理能场在本实验条件下对活性污泥细菌
There are a lot of methods for wastewater treatment in control technology of water pollution;biological treatment of wastewater has gone through development and application for hundreds of years, playing an important part in water treatment.Activated sludge process is widely used in treating municipal sewage. It can remove soluble and colloidal biodegraded organic matter and suspended solid adsorbed by activated sludge from wastewater. Inorganic salts can also be removed partially. However, with the development of industry, more and more complicated organic matters enter into waters;treatment ability of activated sludge process is under great challenge. Therefore, improving the degradation efficiency for activated sludge bacteria to organic matter, especially to complex organic matters is an important issue in the field of water treatment nowadays.The method of promoting activated sludge bacteria to active variation by physical energetic field may be a rapid and simple way to improving microorganic activation and may establish effective environmental engineering bacteria. Now the research of theory and practice for the method is not systematic and embedded. The research of effect of physical energetic field on microorganism is on the first stage, having a lot of questions unresolved, having no integrated theory system and less researches on. Such state hindered its application in environmental engineering widely.In the thesis, effect of physical energetic field such as sound, light, magnetism and electricity is investigated, to master the effect rule and treatment effect and to seek optimal condition in order to improve the activation of activated sludge and put it into application of wastewater treatment.Transient velocity of consumption of oxygen for microorganism is used in the thesis to presume ability change of degradation. Effect of UV light, laser, electric field and ultrasonic on activation of activated sludge bacteria is studied systematically in the thesis. Effect rule of activated sludge bacteria for each physical energetic field
    and optimal condition of improving biological activation are summarized respectively, to summarize common rule of activated sludge bacteria and to enrich theory and practice in this field, which lead to basic research by more effective activated sludge technology.Effect rule of activated sludge bacteria for each and optimal condition of active variation are summarized respectively, common rule of activated sludge bacteria is also summarized. That is to say, effect of physical energetic field on microorganic activation has two facets: restrainment and promotion. Optimal range and condition of active variation must be obtained exactly, which can lead to high degradation ability of activated sludge bacteria to organic matters.
引文
[1] 张忠祥,钱易.废水生物处理新技术.北京:清华大学出版社,2004.23-29
    [2] 穆军,章非娟。微生物遗传学在环境工程中的应用及原理探讨.四川环境,2000.19(2):35-38.
    [3] 李伟民,江映翔,尹大强等.微生物选育技术在废水生物处理中的应用进展.环境污染治理技术与设备,2001.02(4):49—52
    [4] 吴秀玲,毕学军.微生物遗传学技术发展及其在环境工程中的应用.安徽建筑工业学院学报(自然科学版).2001.9(1):73—78.
    [5] 马放,任南琪,王基先.污染控制微生物学实验.沈阳:哈尔滨工业大学出版社,2002.106-135
    [6] 张小云,张晓鄂.恒定磁场对Hela细胞生长分裂的影响.科学通报,1989.24:1901-1904
    [7] Min Wei, Marina Guizzetti, Michael Yost, and Lucio G Costa. Exposure to 60-Hz Magnetic Fields and Proliferation of Human Astrocytoma Cells in Vitro, Toxicology and Applied Pharmacology Volume, 2000, 162(3): 166-176
    [8] 弭晓菊,马跃,郭桂云。磁场处理番茄种子对其生理生化影响的研究.植物研究,1999,19(1):68-74
    [9] 陈树德,张红峰,陈家森等。低频电磁场对细胞生物效应的研究。中华物理医学杂志1998。20(2):78-80
    [10] Shin-ichiro H, Yoshimasa I, Kazumasa O et al. Drastic high magnetic field effect on suppression of Escherichia coil deash. Bioelectrochemistry, 2001, 53: 149-153
    [11] 李国栋,生物磁学的最新进展。物理,1994.23(6):362-367
    [12] 张军,孙凡,陈德万等.磁化过氧化氢酶的稳定性研究及其机理初探.西南农业大学学报,2001,23(03):273-275
    [13] 林沁瑛,黄灿灿.恒定磁场对中华弥猴桃蛋白酶生物效应初探.生物化学与生物物理学报,1992。24(3):253-254
    [14] 贺华君,朱元保,钟科军.磁场对酶构象的影响.吉首大学学报(自然科学版),1998。19(4):25-30
    [15] 范寰,商桂敏,元英进.酸胁迫作用下悬浮培养红豆杉细胞的磁场生物学效应.过程工程学报,2005。5(03):345-348
    [16] Novilcov V, Shvetsov Yu P, Fesenko E. Molecular mechanisms of biological action of weak magnetic fields. Bioinformation, 1997;(3): 746-750
    [17] 黄德盈,吴士筠,王宗保,等.磁场对质粒pBR322DNA的影响.生物物理学报,1995.(3):457-462
    [18] A. Mahdi, P. A. Gowland, P. Mansfield, R. E. CouPland and RGLloydt The effects of static 3.0T and 0.5T magnetic fields and the echo-planar imaging experiment at 0.5T on E. coli., 1994. (67): 983-987
    [19] Kazuhiro Nakamura, Kazumasa okuno, Takashi Ano, Makoto Shoda, Effect of high magnetic field on the growth of Bacillus subtilis measured in a newly devefoPed suPrconducting magnet biosystem, Bioelectrochemistry and Bioeneetics 1997. (13): 123-128
    [20] 张敬贵,徐风仪.磁处理水的渗透压和离子形态测定.中华物理医学杂志,1995.(17):118-120
    [21] 周安琪,卫新年,刘军.磁—生物电效应对生物影响机理的探讨.天津农林科技,2002.(3):5-7
    [22] 杨修益,丁克祥,肖粤等.旋磁对小鼠心脑组织及血液自由基代谢的影响.中华理疗杂志,1996.(1):68-74
    [23] 郭银松.磁化处理对水体的复氧速率及生物效应影响的研究.重庆环境科学,1996.18(3):20-22
    [24] Shin-ichiro H, Yoshimasa I, Kazumasa O et al. Drastic high magnetic field effect on suppression of Escherichia coli deas. Bioelectrochemistry, 2001, 53: 149-153
    [25] 麻海珍.磁场对紫色非硫光合细菌脱氢酶活性的影响.环境科学,1995,(6):20-23
    [26] M. Bustard, A. Rollan, A. P. Mchale. The effect ofPulse voltage and capatitance on biosorption of uranium by biomass derived from whiskey distillery spent wash. BioProcess Engineering, 1998. (18): 59~62
    [27] Kazuhiro Nakamura. Effect of high magnetic field on the growth of Bacillus sutbitlis measured in a newly developed superconduction magnet. Biosystem Bioelectrochemistry and Bioene etics, 1997. (23): 123-128
    [28] 刘建荣,吴国庆,牛志卿等,磁态厌氧流化床处理印染废水.中国环境科学,1996.16(1):64-67
    [29] Yavuz, Hulya, Celebi, Serdar S.. Effects of magnetic field on activity of activated sludge in wastewater treatment, Enzyme and Microbial Technology, 2000, 26: 22-27
    [30] Jung, Jongtai, Sofer, Samir. Enhancement of phenol biodegradation by south magnetic field exposure. Journal of Chemical Technology and Biotechnology, 1997, 70:299-303
    [31] Hiilya Y, Serdar S, Celebi. Effects of magnetic field on activity of activated sludge in water treatment. Enzyme an Microbial Technology, 2000, 26:22-27
    [32] 向洋.激光生物学.长沙:湖南科学技术出版社,1995.25:73-226
    [33] 向洋,丁志宝.激光生物学作用机理探讨.光电子.激光.1997.8(6):475-478
    [34] 陈有为,李绍兰,杨丽源等.激光诱变微生物的遗传和刺激效应机理及育种研究.激光生物学,1996,.5(1):800-803
    [35] 夏柱红,孔祥和,方黎等.激光质谱法对机动车尾气中污染物的测量.环境污染治理技术与设备.2002,3(3):32-36
    [36] 孙晓宇,汪世龙,倪亚明.激光光解研究废水中难降解苯酚的降解机理.同济大学学报,2000.28(4):488-492
    [37] 姜岩,闻建平,杨素亮等.He-Ne激光诱变高活力苯酚降解菌热带假丝酵母CT43的研究.化工进展,2005.24(5):519-522
    [38] 乐毅全,王士芬.环境微生物学.北京:化学工业出版社
    [39] 罗建中,刘鸿,刘玉红.紫外诱变优势菌处理含氯废水.上海环境科学,2000.19(11):529-531
    [40] 高云飞,郑世民.高压静电场生物效应的产生机制,畜牧兽医科技信息,2004.(10):16-17
    [41] Tong TY. Electric activation of membrane enzyane, enzymes, First East Asian Symposium on Biophysics Sponsored by The Biophysical society of Japan, 1994.
    [42] 张文艺.微电解-SBR活性污泥法处理焦化废水.过程工程学报,2003.(5):471-476
    [43] 马红芳.内电解提高印染废水生物处理的研究.工业用水与废水,2003.34(4):29-33
    [44] 曹宏斌,李玉平,徐红彬等.电催化还原-生物降解耦合处理硝基苯废水.环境科学,2004,25(S1):95-97
    [45] Alshawabkeh, Akram N., Shen, Yuping, Maillacheruvu, Krishnanand Y. Effect of DC Electric Fields on COD in Aerobic Mixed Sludge Processes. Environmental Engineering Science, 2004, 21: 321-329
    [46] Fuchs, Uwe and Furst, Peter. Method and apparatus for electro-bilological reactors, esPecially water Purificatio. 1990 (38)
    [47] R. B. Meller, et al. Reduction of nitrate and nitrite in water by imnlobilized enzymes. Nature. 1992, 35(5): 717-719
    [48] Y. Sakak et al. Modeling of electrochemicall activated denitrifying biofilms. Wat. Res. 1994, 28(5): 1077-1086
    [49] J. R. V. Flora, et al. Numerical Modeling of a Biofilm-electrode Reactor Used for Enhanced Denitrification. Water Science. Technology. 1994, 29(10): 517-524
    [50] V. Beschkov, S, Velizarov, S. N. Agathos etc. Bacterial Denitrification of Waste Water Stimulated by Constant Electric Field. Biochemical Engineering Journal, 2004, 17, 141-145
    [51] 邱树毅.超声波在生物工程中的应用.生物工程进展,1999.19(3):45-49
    [52] 吕鹏,庄重,凌建亚.超声对酶的影响.生物技术通讯,2004.15(5):534-536
    [53] 刘晓艳,丘泰球,刘石生.超声对细胞膜通透性的影响及应用.应用声学,2002.21(2):26-30
    [54] 叶建忠,陈长琦,方应翠等.有机废水超声降解动力学的分析及应用.合肥工业大学学报(自然科学版),2003.26(1):71-76
    [55] E. Gonze, L. Fourel, Y. Ginthier etc. Wastewater pretreatment with ultrasonic irradiation to reduce toxicity. Chemical Engineering Journal. 1999, 73, 93-100
    [56] O. Schlaefer, M. Sievers, H. Klotzbuecher etc. Improvement of biological activity by low energy ultrasound assisted bioreactors. Ultrasonics, 2000, 38: 711-716
    [57] Schlafer, Ottmar, Onyeche, T., Bormann, H. etc. Ultrasound stimulation of icro-organisms for enhanced biodegradation. Ultrasonics, 2002, 40:25-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700