饱和蒙脱土高压力学特性基本机制多尺度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深部矿井建设及深地质核废料埋藏工程对饱和粘土在高压条件下的力学特性研究提出了新的要求,已有研究成果对该特性进行了表观披露,但未就其控制机理作出合理解释。同时,粘土结构的多阶性决定了从单一尺度条件下对其特性进行描述将存在偏缺。为此,本文围绕饱和粘土(蒙脱土)高压力学特性的基本机制展开了微观、介观和宏观多尺度层面上的系统研究。
     首先,采用分子动力学方法对钠、钙和铯三种水化蒙脱石体系在常温常压以及埋深温压条件下的微观结构和力学特性进行了模拟。
     模拟定量刻画出了土中结合水的原子分子层次上的赋存状态和活动特性,结果显示结合水的聚合程度明显高于自由水,同时离子的水化配位也要大于相应的体相溶液数值,且不同离子间差异明显。进一步考察埋深温压条件下的结合水特性得出,2km埋深条件下层间结合水的结构与常温常压差别很小,且其主要影响因素为温度。在此基础上,模拟还定量获得了水化蒙脱石体系的刚度矩阵,其纳观力学特性表现为垂直矿物平面方向上的拉压强度明显低于矿物平面内的成键连结强度,呈明显的各向异性。同时,层间结合水具有一定的抗剪强度,进一步的剪切模拟则揭露出该抗剪强度发挥的根源在于结合水的粘度远远高于自由水溶液。该系列的研究全面给出了结合水的最底层面描述,同时不同离子的水化差异揭露为宏观不同粘土的高压力学特性差异解释奠定了基础。
     其次,采用耗散粒子动力学手段对水化蒙脱石体系在实际单一晶片物理尺度条件下的介观结构和力学响应进行了模拟。
     通过非键结合能实现了微观分子模拟与介观尺度的递阶关联,同时增大蒙脱石珠子数目并作固壁冻结处理的策略使得耗散粒子动力学模拟在土-水体系中得到了首次成功应用。介观模拟结果表明,78.4%含水量蒙脱石中水的结构虽略异于自由水,但其扩散系数和粘度活动性参数均表明该条件下的水主要表现为自由水特性。而介观K0压缩模拟则得出,随着垂直矿物平面应变的增大,竖向应力呈非线性抛物线增大,侧向应力则为线性增大,由此使得介观K0非线性。
     再次,基于水化斥力考虑,改进了传统扩散双电层理论并对饱和粘土的高压压缩特性进行了宏观理论分析。
     改进理论考虑了介电饱和及离子体积排斥效应,其计算获得的颗粒板间介电系数变化较其他模型均更为光滑合理,且小间距条件下的板间电势要高于传统双电层理论,即对应为短程水化斥力的发挥。而对范德华力的定量计算结果则得出高压压缩必须考虑板间引力作用。为此,综合引、斥力定量计算结果获得了粘土高压压缩理论e~logP曲线,同时一并分析其压缩性的各因素影响。
     最后,基于微、介观模拟及宏观理论对饱和蒙脱土高压压缩和剪切的基本机制进行了综合分析。
     结果显示附加考虑水化斥力的改进理论能够很好地描述饱和蒙脱土高压压缩的双折线试验结果,其定量计算数值得出40MPa压力范围内蒙脱土层间将部分脱水,但又不至于完全脱附。而基于微观分子模拟和介观模拟获得了自由水向结合水转化的板间距对应数值,进一步按宏观理论得到的该板间距范围内的压力大小与试验e~logP曲线拐弯压力能够很好地吻合,从而揭露出饱和蒙脱土高压压缩的颗粒板间距将朝基本晶层距发展,排出水的特性将由自由水向结合水过渡,也即控制饱和蒙脱土高压压缩的基本机制在于土中结合水的部分脱附,而不同离子蒙脱土的高压压缩性差异则在于离子的水化能不同。
     而对于高压剪切的基本机制则认为随着压力的增大存在矿物间摩擦向层间结合水抗剪转化的过程,并据此解释了深土高压直剪测定的内摩擦角在高压条件下要小于低压约9左右的试验事实。
Insight into the high stress mechanical properties of saturated clay is of greatimportance in the fields of deep mine construction and nuclear waster disposalengineering, and these properties have been revealed in general in the past, but not thegoverning mechanisms. On the other hand, the structure of clay presents inmulti-scale, which means that the description of its properties from a single scale willbe unilateral. So in this dissertation, by employing computer simulations andtheoretical analysis, a systematic studies are conducted to investigate the basicmechanisms of high stress mechanical properties for saturated montmorillonite.
     First, we investigate the microstructure and nano-scale mechanical properties forhydrated Na-, Ca-and Cs-montmorillonite under ambient and basin condition bymolecular dynamic simulation.
     The simulation results show that the bonding degree of the interlayer water issignificantly higher than free water, and ion hydration coordination is also remarkablyhigher than corresponding bulk case. By further examine the characteristics of boundwater under basin condition, we find that there is almost no difference for thestructure of bound water between basin and ambient condition within2km burialdepth, and the main affecting factor is temperature. On these basis, we quantitative getthe stiffness matrix of hydration montmorillonite together, the tensile and compressivestrength perpendicular to the clay lamellae is significantly lower than the in planeatom bond strength, showing a clear anisotropy. And interlayer bound water has shearstrength to some degree, which is governed by its high viscosity.
     Second, mesoscopic structure and mechanical response of hydratedmontmorillonite are simulated by means of dissipative particle dynamics simulation.
     The interaction parameters of the mesoscopic model are estimated by mapping thecorresponding no bonded energy values obtained from atomistic molecular dynamicsimulations, and the mesoscopic simulation results show that the water structure isslightly different from free water for the78.4%water content montmorillonite system,but its diffusion coefficient and viscosity parameter indicate that under this conditionthe interlay water performance mainly as free water, and the mesoscopic K0compression simulation reveals that with the vertical strain increasing, the verticalstress increases non-liner parabolic, while the lateral stress increases linear, therebymaking the mesoscopic K0nonlinear.
     Third, By taking into account the short-range hydration repulsion, we modify thetraditional Gouy-Chapman diffusion double layer theory and analysis the high stresscompressibility of saturated clay by this new theory in macroscopic.
     This new theory is modified by additional considering the dielectric saturation andion volume exclusion effects, compared to the others model the calculated dielectriccoefficient between particle plates changes more smoother, and the potential valueunder small plates spacing is higher than the tradition double layer theory, whichmeans that the short-range hydration repulsion plays a role. In addition, thequantitative calculation result of van der Waals shows that the attraction betweenplates should be taken into account under high stress compression. Then, wecomprehensive calculate the repulsion and attraction forces between particle platesand get the theory compressive curve for saturated under high stress. Finally, thefactors that affect the high stress compressibility are analysised together.
     Finally, based on the micro-and meso-simulations and macroscopic theory results,we comprehensive analysis the basic mechanisms that govern the high stresscompression and shear mechanical properties for saturated montmorillonite.
     The theory results show that the bilinear characteristic of high stress compressioncurves for initially saturated montmorillonite can be reproduced well by the modifiedtheory, and the interlayer bound water will only partially dehydrated under thecondition of maximum overburden pressure of40MPa. Further, the correspondingplates distance for interlayer water characteristic changing from free water to boundwater can be got for mesoscopic and microscopic molecular simulation, and thepressure range that calculated from the macroscopic theory corresponding with theseplate spacings are in good agreement with test turning pressure. Which revealed thatunder high stress compression the plate distance for montmorillonite particle willcompress into basic crystal spacing, and the water characteristic will change from freewater to bound water, that the partially dehydrated of bound water govern the basicmechanism of high stress compression for saturated montmorillonite, and thedifference between various compensative cation montmorillonite lies in the differenceof ion hydration ability. And there is transformation process form mineral friction tointerlayer water shear with the stress increasing, which controls the basic mechanismof high shear.
引文
[1]煤炭工业发展“十二五”规划[R]//国家发展与改革委员会国家能源局.2012.
    [2]崔广心.深厚表土层中的冻结壁和井壁[M].徐州:中国矿业大学出版社,1998.
    [3]杨维好.深厚表土层中井壁垂直附加力变化规律的研究[D].博士学位论文.徐州:中国矿业大学,1993.
    [4]周国庆.特殊地层含水层注浆加固参数与井壁竖直附加力关系的研究[D].博士学位论文.徐州:中国矿业大学,1997.
    [5] WANG J. High-level radioactive waste disposal in China: update2010[J]. Journal of RockMechanics and Geotechnical Engineering,2010,2(1):1-11.
    [6] PUSCH R. Geological Storage of Highly Radioactive Waste, Current Concepts and Plansfor Radioactive Waste Disposal [M]. Springer-Verlag Berlin Heidelberg,2008.
    [7] TERZAGHI K. Erdbaumechanik auf Bodenphysikalischer Grundlage (EarthworkMechanics Based on the Physics of Soils)[M]. Leipzig u. Wien, F. Deuticke,1925.
    [8] MITCHELL J K, SOGA K. Fundamentals of Soil Behavior [M].3rd ed. New York: JohnWiley&Sons, Inc.,2005.
    [9]崔广心.论深厚表土层中确定地下结构物外载的基础理论——深土力学[J].煤炭学报,1999,24(2):123-126.
    [10]李文平,于双忠,王柏荣,等.煤矿区深部粘性土吸附结合水含量测定及其意义[J].水文地质工程地质,1995,22(003):31-34.
    [11]许延春,张玉卓.深厚饱和粘土的物理性质特征[C].岩石力学新进展与西部开发中的岩土工程问题——中国岩石力学与工程学会第七次学术大会论文集,西安,2002:228-231.
    [12]孙如华,李文平,李小琴.深部粘性土的微观结构与力学性质试验研究分析[J].江苏地质,2002,26(3):171-173.
    [13]商翔宇.不同应力水平深部粘土力学特性研究[D].博士学位论文.徐州:中国矿业大学,2009.
    [14]介玉新,许延春,李广信,等.深部粘土的性质与深土力学[C].中国土木工程学会第九届土力学及岩土工程学术会议论文集(上册),北京,2003:355-360.
    [15]许延春.深部饱和黏土的力学性质特征[J].煤炭学报,2004,29(1):26-30.
    [16]介玉新,许延春,刘正,等深部黏土的室内试验和数值计算[C].第二届全国岩土与工程学术大会论文集(下册),武汉,2006:163-168.
    [17]李文平.饱水粘性土高压密实过程中孔压及体应变变化试验研究[J].岩土工程学报,1999,21(6):666-669.
    [18]马金荣,秦勇,周国庆.黏土的高压三轴剪切特性研究[J].中国矿业大学学报,2008,37(2):176-179.
    [19] ZHAO X-D, ZHOU G-Q, TIAN Q-H. Study on the shear strength of deep reconstitutedsoils [J]. Mining Science and Technology,2009,19(3):405-408.
    [20]商翔宇,余海岁,周国庆.高应力水平下深部黏土临界土力学模型研究[J].中国矿业大学学报,2012,41(001):1-6.
    [21]商翔宇,余海岁,周国庆,等.高应力水平下深部黏土力学特性微观分析[J].岩土工程学报,2012,34(2):363-368.
    [22]王衍森,崔广心,杨维好.深部土的高压K0固结试验研究展望[J].岩土力学,2003,24(增刊):687-690.
    [23]马金荣.深层土的力学特性研究[D].博士学位论文.徐州:中国矿业大学,1998.
    [24]刘明,黄茂松,马金荣.卸荷对高应力下粘土力学性质的影响[J].工业建筑,2005,35(8):71-74.
    [25]李文平,张志勇,孙如华,等.深部粘土高压K0蠕变试验及其微观结构各向异性特点[J].岩土工程学报,2006,28(10):1185-1190.
    [26]李文平,王维理,张志勇,等.大埋深粘土三轴高压卸载变形与强度特征[J].工程地质学报,2004,12(3):307-311.
    [27]李文平,孙如华,王维理,等.深部土高压卸载变形结构性量化参数确定及本构模型[J].工程地质学报,2007,15(3):384-390.
    [28]王秀艳,唐益群,臧逸中.深层土侧向应力的试验研究及新认识[J].岩土工程学报,2007,29(3):430-435.
    [29] XU ZHI-WEI, ZHOU GUO-QING, LIU ZHI-QIANG L, et al. Study on the test method ofstatic earth pressure coefficient of deep soils [J]. Journal of China University of Mining andTechnology,2007,17(3):330-334.
    [30] XU Z-W, ZENG K-H, WEI Z, et al."Nonlinear" characteristics of the static earth pressurecoefficient in thick alluvium [J]. Mining Science and Technology,2009,19(1):129-132.
    [31] TIAN Q-H, XU Z-W, ZHOU G-Q, et al. Coefficients of earth pressure at rest in thick anddeep soils [J]. Mining Science and Technology,2009,19(2):252-255.
    [32] ZHAO X, ZHOU G, TIAN Q, et al. Coefficient of earth pressure at rest for normal,consolidated soils [J]. Mining Science and Technology,2010,20(3):406-410.
    [33]赵晓东,周国庆,王博.深部重塑土高压应力路径试验研究[J].中国矿业大学学报,2009,38(4):471-475.
    [34]赵晓东,周国庆,田秋红.深部土K0试验方法及对减载力学特性的影响[J].中国矿业大学学报,2011,40(5):702-706.
    [35] ZHAO X-D, ZHOU G-Q, SHANG X-Y, et al. Earth pressure coefficient at rest duringsecondary compression [J]. Journal of Central South University of Technology,2011,18(6):2115-2121.
    [36] HOFMANN U, ENDELL K, WILM D. Kristallstruktur und quellung von montmorillonit[J]. Zeitschrift für Kristallographie,1933,86:340-348.
    [37] BRADLEY W F, GRIM R E, CLARK G L. A study of the behavior of montmorilloniteupon wetting [J]. Zeitschrift für Kristallographie,1937,97:216-222.
    [38] NORRISH K. The swelling of montmorillonite [J]. Faraday Discussions of the ChemicalSociety,1954,18:120-134.
    [39] NORRISH K, QUIRK J P. Crystalline swelling of montmorillonite: Use of electrolytes tocontrol swelling [J]. Nature,1954,173(4397):255-256.
    [40] NORRISH K. Crystalline swelling of montmorillonite: Manner of swelling ofmontmorillonite [J]. Nature,1954,173(4397):256-257.
    [41] BOLT G H. Physico-chemical analysis of the compressibility of pure clays [J].Géotechnique,1956,6(2):86-93.
    [42] WARKENTIN B P, BOLT G H, MILLER R D. Swelling pressure of montmorillonite [J].Soil Science Society of America Journal,1957,21(5):495-497.
    [43] BLACKMORE A V, WARKENTIN B P. Swelling of calcium montmorillonite [J]. Nature,1960,186(4727):823-824.
    [44] BLACKMORE A V, MILLER R D. Tactoid size and osmotic swelling in calciummontmorillonite [J]. Soil Science Society of America Journal,1961,25(3):169-173.
    [45] AYLMORE L A G, QUIRK J P. Swelling of clay-water systems [J]. Nature,1959,183(4677):1752-1753.
    [46] GREACEN E L. Swelling forces in straining clays [J]. Nature,1959,184(4700):1695-1697.
    [47] HIGHT R, HIGDON W T, SCHMIDT P W. Small angle X-ray scattering study of sodiummontmorillonite clay suspensions [J]. Journal of Chemical Physics,1960,33(6):1656-1661.
    [48] HIGHT R, HIGDON W T, DARLEY H C H, et al. Small angle X-ray scattering frommontmorillonite clay suspensions. II [J]. Journal of Chemical Physics,1962,37(3):502-510.
    [49] SHOMER I, MINGELGRIN U. A direct procedure for determining the number of plates intactoids of smectites: the Na/Ca-montmorillonite case [J]. Clays and Clay Minerals,1978,26(2):135-138.
    [50] SHAINBERG I, OTOH H. Size and shape of montmorillonite particles saturated withNa/Ca ions (inferred from viscosity and optical measurements)[J]. Israel Journal ofChemistry,1968,6(3):251-259.
    [51] BANIN A, LAHAV N. Optical study of particle size of montmorillonite with variousadsorbed cations [J]. Nature,1968,217(5134):1146-1147.
    [52] BEN RHA EM H, PONS C H, ESSIER D. Factors affecting the microstructure of smectites:Role of cation and history of applied stresses [C]. Proceedings of the8th International ClayConference, Denver, USA,1987:292-297.
    [53] VAN OLPHEN H. Compaction of clay sediments in the range of molecular particledistances [J]. Clays and Clay Minerals,1962,11(1):178-187.
    [54] LOW P F. The swelling of clay: II. Montmorillonite [J]. Soil Science Society of AmericaJournal,1980,44(4):667-676.
    [55] VIANI B E, LOW P F, ROTH C B. Direct measurement of the relation between interlayerforce and interlayer distance in the swelling of montmorillonite [J]. Journal of Colloid andInterface Science,1983,96(1):229-244.
    [56] VIANI B E, ROTH C B, LOW P F. Direct measurement of the relation between swellingpressure and interlayer distance in Li-vermiculite [J]. Clays and Clay Minerals,1985,33(3):244-250.
    [57] HANDY R L, TURGUT D. Swelling pressure versus D-spacing of montmorillonite [C].Proceedings of the6th International Conference on Expansive Soils, New Delhi, India,1987:161-166.
    [58] FU M H, ZHANG Z Z, LOW P F. Changes in the properties of a montmorillonite-watersystem during the adsorption and desorption of water: hysteresis [J]. Clays and ClayMinerals,1990,38(5):485-492.
    [59] TOMBáCZ E, HORVáTH B, áBRAHáM I. Compression study on lamellar particlesdispersed in electrolyte solutions [J]. Colloids and Surfaces A: Physicochemical andEngineering Aspects,1993,71(3):277-285.
    [60] QUIRK J P. Interparticle forces: A basis for the interpretation of soil physical behavior [J].Advances in Agronomy,1994,53(121-183).
    [61] LAIRD D A. Model for crystalline swelling of2:1phyllosilicates [J]. Clays and ClayMinerals,1996,44(4):553-559.
    [62] LAIRD D A. Influence of layer charge on swelling of smectites [J]. Applied Clay Science,2006,34(1):74-87.
    [63] CHILINGAR G V, KNIGHT L. Relationship between pressure and moisture content ofkaolinite, illite, and montmorillonite clays [J]. AAPG Bulletin,1960,44(1):101-106.
    [64] VON ENGELHARDT W, GAIDA K H. Concentration changes of pore solutions during thecompaction of clay sediments [J]. Journal of Sedimentary Research,1963,33(4):919-930.
    [65] CHILINGARIAN G V, RIEKE H H. Data on consolidation of fine-grained sediments [J].Journal of Sedimentary Research,1968,38(3):811-816.
    [66] WIJEYESEKERA D C, DE FREITAS M. High-pressure consolidation of kaolinitic clay [J].AAPG Bulletin,1976,60(2):293-298.
    [67] ROSENBAUM M S. Effect of compaction on the pore fluid chemistry of montmorillonite[J]. Clays and Clay Minerals,1976,24(3):118-121.
    [68] BENNETT R H, BRYANT W R, KELLER G H. Clay fabric of selected submarinesediments: fundamental properties and models [J]. Journal of Sedimentary Research,1981,51(1):217-232.
    [69] COLTEN-BRADLEY V A. Role of pressure in smectite dehydration-effects on geopressureand smectite-to-illite transformation [J]. AAPG Bulletin,1987,71(11):1414-1427.
    [70] WU T C, BASSETT W A, HUANG W L, et al. Montmorillonite under high H2O pressures:Stability of hydrate phases, rehydration hysteresis, and the effect of interlayer cations [J].American Mineralogist,1997,82(1-2):69-78.
    [71] LIU C-W, LIN W-S. A smectite dehydration model in a shallow sedimentary basin: modeldevelopment [J]. Clays and Clay Minerals,2005,53(1):55-70.
    [72] WU F T, BLATTER L, ROBERSON H. Clay gouges in the San Andreas fault system andtheir possible implications [J]. Pure and Applied Chemistry,1975,113(1):87-95.
    [73] SUMMERS R, BYERLEE J. A note on the effect of fault gouge composition on thestability of frictional sliding [J]. International Journal of Rock Mechanics and MiningSciences&Geomechanics Abstracts,1977,14(3):155-160.
    [74] WANG C-Y, MAO N-H. Shearing of saturated clays in rock joints at high confiningpressures [J]. Geophysical Research Letters,1979,6(11):825-828.
    [75] WANG C-Y, MAO N-H, WU F T. The mechanical property of montmorillonite clay at highpressure and implications on fault behavior [J]. Geophysical Research Letters,1979,6(6):476-478.
    [76] WANG C-Y, MAO N-H, WU F T. Mechanical properties of clays at high pressure [J].Journal of Geophysical Research,1980,85(B3):1462-1468.
    [77] BIRD P. Hydration-phase diagrams and friction of montmorillonite under laboratory andgeologic conditions, with implications for shale compaction, slope stability, and strength offault gouge [J]. Tectonophysics,1984,107(3-4):235-260.
    [78] MORROW C A, MOORE D E, LOCKNER D A. The effect of mineral bond strength andadsorbed water on fault gouge frictional strength [J]. Geophysical Research Letters,2000,27(6):815-818.
    [79] TERZAGHI K. Die berechnung der durchl ssigkeitsziffer des tones aus dem verlauf derhydrodynamischen spannungserscheinungen [J]. Sitzungsberichte der Akademie derWissenschaften in Wien mathematisch-naturwissenschaftlichen Klasse,1923,132(3-4):125-138.
    [80] BIOT M A. General theory of three dimensional consolidation [J]. Journal of AppliedPhysics,1941,12(2):155-164.
    [81] SKEMPTON A W, JONES O T. Notes on the compressibility of clays [J]. Quarterly Journalof the Geological Society,1944,100(1-4):119-135.
    [82] WINTERKORN H F. Physico-chemical propersities of soils [C]. Proceedings of the2ndInternational Conference on Soil Mechanics and Foundation Engineering, Rotterdam,Netherland,21-30June,1948:23-29.
    [83] MITCHELL J K. The application of colloidal theory to compressibility of clays [C].Proceedings of a Seminar on Interparticle Forces in Clay-Water-Electrolyte Systems,Melbourne, Australia, February,1960:92-97.
    [84] LADD C C. Physico-chemical analysis of the shear strength of saturated clays [D].PhDDissertation. Massachusetts Institute of Technology,1961.
    [85] OLSEN R E, MESRI G. Mechanisms controlling compressibility of clay [J]. Journal of theSoil Mechanics and Foundations Division,1970,96(SM6):1863-1878.
    [86] MESRI G, OLSON R E. Consolidation characteristics of montmorillonite [J].Géotechnique,1971,21(4):341-352.
    [87] SRIDHARAN A, VENKATAPPA RAO G. Mechanisms controlling volume change ofsaturated clays and the role of the effective stress concept [J]. Géotechnique,1973,23(3):359-382.
    [88] JAYADEVA M S, SRIDHARAN A. A study on potential-distance relationship of clays [J].Indian Geotechnical Journal,1982,12(1):83-97.
    [89] SRIDHARAN A, JAYADEVA M S. Double layer theory and compressibility of clays [J].Géotechnique,1982,32(2).
    [90] YONG R N, SADANA M L, GOHL W B. A particle interaction energy model forassessment of swelling of an expansive soil [C]. Proceedings of the5th InternationalConference on Expansive Soils, Adelaide, Australia,1984:4-12.
    [91] SRIDHARAN A, RAO S M, MURTHY N S. Compressibility behaviour of homoionizedbentonites [J]. Géotechnique,1986,36(4):551-564.
    [92] MADSEN F T, MüLLER-VONMOOS M. Swelling pressure calculated from mineralogicalproperties of a Jurassic Opalinum shale [J]. Clays and Clay Minerals,1985,33(6):501-509.
    [93] MADSEN F T, MüLLER-VONMOOS M. The swelling behaviour of clays [J]. AppliedClay Science,1989,4(2):143-156.
    [94] BURLAND J B. On the compressibility and shear strength of natural clays [J].Géotechnique,1990,40(3):329-378.
    [95] YONG R N, MOHAMED A M O. A study of particle interaction energies in wetting ofunsaturated expensive clays [J]. Canadian Geotechnical Journal,1992,29(6):1060-1070.
    [96] SHANG J Q, LO K Y, QUIGLEY R M. Quantitative determination of potential distributionin Stern-Gouy double-layer model [J]. Canadian Geotechnical Journal,1994,31(5):624-636.
    [97] SHANG J Q. Zeta potential and electroosmotic permeability of clay soils [J]. CanadianGeotechnical Journal,1997,34(4):627-631.
    [98] SRIDHARAN A, SATYAMURTY P V. Potential-distance relationships of clay-watersystems considering the Stern theory [J]. Clays and Clay Minerals,1996,44(4):479-484.
    [99] SPAGNOLI G, FERNáNDEZ-STEEGER T, HU H, et al. Potential calculation according tothe Gouy and the Stern model for kaolinite and smectite [J]. EngHydroEnv Geology,2010,13:87-91.
    [100] MAHANTA K K, MISHRA G, KANSAL M. Estimation of electric double layer thicknessfrom linearized and nonlinear solutions of Poisson-Boltzman equation for single type ofions [J]. Applied Clay Science,2012,59-60:1-7.
    [101] HUECKEL T A. Water-mineral interaction in hygromechanics of clays exposed toenvironmental loads: a mixture-theory approach [J]. Canadian Geotechnical Journal,1992,29(6):1071-1086.
    [102] ANANDARAJAH A, LU N. Numerical study of the electrical double-layer repulsionbetween non-parallel clay particles of finite length [J]. International Journal for Numericaland Analytical Methods in Geomechanics,1991,15(10):683-703.
    [103] LU N, ANANDARAJAH A. Empirical estimation of double-layer repulsive force betweentwo inclined clay particles of finite length [J]. Journal of Geotechnical Engineering,1992,118(4):628-634.
    [104] ANANDARAJAH A, CHEN J. van der Waals attractive force between clay particles inwater and contaminants [J]. Soils and Foundations,1997,37(2):27-37.
    [105] ANANDARAJAH A. Structure of sediments of kaolinite [J]. Engineering Geology,1997,47(4):313-323.
    [106] ANANDARAJAH A. Influence of particle orientation on one-dimensional compression ofmontmorillonite [J]. Journal of Colloid and Interface Science,1997,194(1):44-52.
    [107] YAO M, ANANDARAJAH A. Three-dimensional discrete element method of analysis ofclays [J]. Journal of Engineering Mechanics,2003,129(6):585-596.
    [108] MATAR M I. Modeling of montmorillonite clay-water interactions with particlesubdivisions using three-dimensional discrete element method [D].PhD Dissertation. NorthDakota State University,2005.
    [109] SMITH D, NARSILIO G, PIVONKA P. Numerical particle-scale study of swelling pressurein clays [J]. Korean Society of Civil Engineers,2009,13(4):273-279.
    [110] NARSILIO G A, SMITH D W, PIVONKA P. Estimating vertical and lateral pressures inperiodically structured montmorillonite clay particles [J]. Anais da Academia Brasileira deCiências,2010,82(1):13-24.
    [111] MINH N H, CHENG Y P. A DEM investigation of the effect of particle-size distribution onone-dimensional compression [J]. Géotechnique,2013,63(1):44-53.
    [112] KOMINE H, OGATA N. Prediction for swelling characteristics of compacted bentonite [J].Canadian Geotechnical Journal,1996,33(1):11-22.
    [113] SRIDHARAN A. Prediction for swelling characteristics of compacted bentonite:Discussion [J]. Canadian Geotechnical Journal,1997,34(6):1004.
    [114] SRIDHARAN A, NAGARAJ H B. Compressibility behavior of remolded, fine-grainedsoils and correlation with index properties [J]. Canadian Geotechnical Journal,2000,37(3):712-722.
    [115] SRIDHARAN A, CHOUDHURY D. Swelling pressure of sodium montmorillonites [J].Géotechnique,2002,52(6):459-462.
    [116] TRIPATHY S, SRIDHARAN A, SCHANZ T. Swelling pressures of compacted bentonitesfrom diffuse double layer theory [J]. Canadian Geotechnical Journal,2004,41(3):437-450.
    [117] TRIPATHY S, SCHANZ T. Compressibility behaviour of clays at large pressures [J].Canadian Geotechnical Journal,2007,44(3):355-362.
    [118] SCHANZ T, TRIPATHY S. Swelling pressure of a divalent-rich bentonite: Diffusedouble-layer theory revisited [J]. Water Resources Research,2009,45(5): W00C12.
    [119] GURTUG Y. Prediction of the compressibility behavior of highly plastic clays under highstresses [J]. Applied Clay Science,2011,51(3):295-299.
    [120] MARCIAL D, DELAGE P, CUI Y J. On the high stress compression of bentonites [J].Canadian Geotechnical Journal,2002,39(4):812-820.
    [121] MARCIAL D, DELAGE P, CUI Y J. Effect of exchangeable cations on the compressibilityof bentonite clays [C]. Proceedings of the Chemo-Mechanical Coupling in Clays: FromNano-scale to Engineering Applications,2002:177-187.
    [122] BAILLE W, TRIPATHY S, SCHANZ T. Swelling pressures and one-dimensionalcompressibility behaviour of bentonite at large pressures [J]. Applied Clay Science,2010,48(3):324-333.
    [123] HORN R G, ISRAELACHVILI J N. Direct measurement of structural forces between twosurfaces in a nonpolar liquid [J]. Journal of Chemical Physics,1981,75(3):1400-1411.
    [124] PASHLEY R M. Hydration forces between mica surfaces in electrolyte solutions [J].Advances in Colloid and Interface Science,1982,16(1):57-62.
    [125] ISRAELACHVILI J N, PASHLEY R M. Molecular layering of water at surfaces and originof repulsive hydration forces [J]. Nature,1983,306(5940):249-250.
    [126] ISRAELACHVILI J N, MCGUIGGAN P M. Forces between surfaces in liquids [J].Science,1988,241(4867):795-800.
    [127] DUCKER W A, SENDEN T J, PASHLEY R M. Measurement of forces in liquids using aforce microscope [J]. Langmuir,1992,8(7):1831-1836.
    [128] RALSTON J, LARSON I, RUTLAND M W, et al. Atomic force microscopy and directsurface force measurements [J]. Pure and Applied Chemistry,2005,77(12):2149-2170.
    [129] BIRDI K S. Handbook of Surface and Colloid Chemistry [M].3rd ed. New York: Taylor&Francis Group, LLC.,2009.
    [130] ISRAELACHVILI J N. Intermolecular and Surface Forces [M].3rd ed. Amsterdam:Academic Press, Elsevier,2011.
    [131] MAR ELJA S, RADI N. Repulsion of interfaces due to boundary water [J]. ChemicalPhysics Letters,1976,42(1):129-130.
    [132] SCHIBI D, RUCKENSTEIN E. On the coupling between the double layer and the solventpolarization fields [J]. Chemical Physics Letters,1983,100(3):277-281.
    [133] ATTARD P, BATCHELOR M T. A mechanism for the hydration force demonstrated in amodel system [J]. Chemical Physics Letters,1988,149(2):206-211.
    [134] J NSSON B, WENNERSTR M H. Image-charge forces in phospholipid bilayer systems[J]. Journal of the Chemical Society, Faraday Transactions2: Molecular and ChemicalPhysics,1983,79(1):19-35.
    [135] ATTARD P, PATEY G N. Continuum electrostatic interactions between planar lattices ofdipoles and the possible relevance to the hydration force [J]. Physical Review A,1991,43(6):2953-2962.
    [136] BESSELING N A M. Theory of hydration forces between surfaces [J]. Langmuir,1997,13(7):2113-2122.
    [137] PAUNOV V N, DIMOVA R I, KRALCHEVSKY P A, et al. The hydration repulsionbetween charged surfaces as an interplay of volume exclusion and dielectric saturationeffects [J]. Journal of Colloid and Interface Science,1996,182(1):239-248.
    [138] RUCKENSTEIN E, MANCIU M. The coupling between the hydration and double layerinteractions [J]. Langmuir,2002,18(20):7584-7593.
    [139] VALLE-DELGADO J J, MOLINA-BOLíVAR J A, GALISTEO-GONZáLEZ F, et al.Hydration forces between silica surfaces: Experimental data and predictions from differenttheories [J]. Journal of Chemical Physics,2005,123(3):034708.
    [140] SKIPPER N T, RETSON K, MCCONNELL J D C. Computer calculation of water-clayinteractions using atomic pair potentials [J]. Clay Minerals,1989,24(2):411-425.
    [141] MATSUOKA O, CLEMENTI E, YOSHIMINE M. CI study of the water dimer potentialsurface [J]. Journal of Chemical Physics,1976,64(4):1351-1361.
    [142] SAUER J, MORGENEYER C, SCHROEDER K P. Transferable analytical potential basedon nonempirical quantum chemical calculations (QPEN) for water-silica interactions [J].Journal of Physical Chemistry,1984,88(25):6375-6383.
    [143] KUMAGAI N, KAWAMURA K, YOKOKAWA T. An interatomic potential model for H2O:applications to water and ice polymorphs [J]. Molecular Simulation,1994,12(3-6):177-186.
    [144] HILL J R, SAUER J. Molecular mechanics potential for silica and zeolite catalysts based onab initio calculations.1. Dense and microporous silica [J]. Journal of Physical Chemistry,1994,98(4):1238-1244.
    [145] HILL J R, SAUER J. Molecular mechanics potential for silica and zeolite catalysts based onab initio calculations.2. Aluminosilicates [J]. Journal of Physical Chemistry,1995,99(23):9536-9550.
    [146] TEPPEN B J, RASMUSSEN K, BERTSCH P M, et al. Molecular dynamics modeling ofclay minerals.1. Gibbsite, kaolinite, pyrophyllite, and beidellite [J]. Journal of PhysicalChemistry B,1997,101(9):1579-1587.
    [147] SAINZ-DíAZ C I, HERNáNDEZ-LAGUNA A, DOVE M T. Modeling of dioctahedral2:1phyllosilicates by means of transferable empirical potentials [J]. Physics and Chemistry ofMinerals,2001,28(2):130-141.
    [148] HWANG S, BLANCO M, DEMIRALP E, et al. The MS-Q force field for clay minerals:application to oil production [J]. Journal of Physical Chemistry B,2001,105(19):4122-4127.
    [149] HEINZ H, KOERNER H, ANDERSON K L, et al. Force field for mica-type silicates anddynamics of octadecylammonium chains grafted to montmorillonite [J]. Chemistry ofMaterials,2005,17(23):5658-5669.
    [150] CYGAN R T, LIANG J-J, KALINICHEV A G. Molecular models of hydroxide,oxyhydroxide, and clay phases and the development of a general force field [J]. Journal ofPhysical Chemistry B,2004,108(4):1255-1266.
    [151] SKIPPER N T, REFSON K, MCCONNELL J D C. Computer simulation of interlayer waterin2:1clays [J]. Journal of Chemical Physics,1991,94(11):7434-7445.
    [152] SKIPPER N T, CHANG F-R C, SPOSITO G. Monte Carlo simulation of interlayermolecular structure in swelling clay minerals.1. Methodology [J]. Clays and Clay Minerals,1995,43(3):285-293.
    [153] SKIPPER N T, SPOSITO G, CHANG F-R C. Monte Carlo simulation of interlayermolecular structure in swelling clay minerals.2. Monolayer hydrates [J]. Clays and ClayMinerals,1995,43(3):294-303.
    [154] KAWAMURA K, ICHIKAWA Y, NAKANO M, et al. Swelling properties of smectite up to90°C: In situ X-ray diffraction experiments and molecular dynamic simulations [J].Engineering Geology,1999,54(1):75-79.
    [155] KAWAMURA K, ICHIKAWA Y. Physical properties of clay minerals and water: by meansof molecular dynamics simulations [J]. Bulletin of the Earthquake Research Institute,2001,76(3):311-320.
    [156] SPOSITO G, PARK S-H, SUTTON R. Monte Carlo simulation of the total radialdistribution function for interlayer water in sodium and potassium montmorillonites [J].Clays and Clay Minerals,1999,47(2):192-200.
    [157] PARK S-H, SPOSITO G. Monte Carlo simulation of total radial distribution functions forinterlayer water in Li-, Na-, and K-montmorillonite hydrates [J]. Journal of PhysicalChemistry B,2000,104(19):4642-4648.
    [158] CHáVEZ-PáEZ M, VAN WORKUM K, DE PABLO L, et al. Monte Carlo simulations ofWyoming sodium montmorillonite hydrates [J]. Journal of Chemical Physics,2001,114(3):1405-1413.
    [159] CHáVEZ-PáEZ M, DE PABLO L, DE PABLO J J. Monte Carlo simulations ofCa-montmorillonite hydrates [J]. Journal of Chemical Physics,2001,114(24):10948-10953.
    [160] SKIPPER N T, LOCK P A, TITILOYE J O, et al. The structure and dynamics of2-dimensional fluids in swelling clays [J]. Chemical Geology,2006,230(3-4):182-196.
    [161] ROTENBERG B, MARRY V, VUILLEUMIER R, et al. Water and ions in clays:Unraveling the interlayer/micropore exchange using molecular dynamics [J]. Geochimica etCosmochimica Acta,2007,71(21):5089-5101.
    [162] SáNCHEZ F G, VAN LOON L R, GIMMI T, et al. Self-diffusion of water and itsdependence on temperature and ionic strength in highly compacted montmorillonite, illiteand kaolinite [J]. Applied Geochemistry,2008,23(12):3840-3851.
    [163] TOURNASSAT C, CHAPRON Y, LEROY P, et al. Comparison of molecular dynamicssimulations with triple layer and modified Gouy-Chapman models in a0.1MNaCl-montmorillonite system [J]. Journal of Colloid and Interface Science,2009,339(2):533-541.
    [164] BOURG I C, SPOSITO G. Molecular dynamics simulations of the electrical double layeron smectite surfaces contacting concentrated mixed electrolyte (NaCl-CaCl2) solutions [J].Journal of Colloid and Interface Science,2011,360(2):701-715.
    [165] ZHENG Y, ZAOUI A, SHAHROUR I. A theoretical study of swelling and shrinking ofhydrated Wyoming montmorillonite [J]. Applied Clay Science,2011,51(1):177-181.
    [166] ZHENG Y, ZAOUI A. How water and counterions diffuse into the hydratedmontmorillonite [J]. Solid State Ionics,2011,203(1):80-85.
    [167] BOURG I C, STEEFEL C I. Molecular dynamics simulations of water structure anddiffusion in silica nanopores [J]. Journal of Physical Chemistry C,2012,116(21):11556-11564.
    [168] DE SIQUEIRA A V C, SKIPPER N T, COVENEY P V, et al. Computer simulationevidence for enthalpy driven dehydration of smectite clays at elevated pressures andtemperatures [J]. Molecular Physics,1997,92(1):1-6.
    [169] DE PABLO L, CHáVEZ M L, DE PABLO J J. Stability of Na-, K-, andCa-montmorillonite at high temperatures and pressures: A Monte Carlo simulation [J].Langmuir,2005,21(23):10874-10884.
    [170] ZHENG Y, ZAOUI A, SHAHROUR I. Evolution of the interlayer space of hydratedmontmorillonite as a function of temperature [J]. American Mineralogist,2010,95(10):1493-1499.
    [171] KARABORNI S, SMIT B, HEIDUG W, et al. The swelling of clays: molecular simulationsof the hydration of montmorillonite [J]. Science,1996,271(5252):1102-1104.
    [172] TAMBACH T J, BOLHUIS P G, SMIT B. A molecular mechanism of hysteresis in clayswelling [J]. Angewandte Chemie,2004,116(20):2704-2706.
    [173] TAMBACH T J, HENSEN E J, SMIT B. Molecular simulations of swelling clay minerals[J]. Journal of Physical Chemistry B,2004,108(23):7586-7596.
    [174] SMITH D E. Molecular computer simulations of the swelling properties and interlayerstructure of cesium montmorillonite [J]. Langmuir,1998,14(20):5959-5967.
    [175] WHITLEY H D, SMITH D E. Free energy, energy, and entropy of swelling in Cs-, Na-, andSr-montmorillonite clays [J]. Journal of Chemical Physics,2004,120(11):5387-5395.
    [176] LIU X D, LU X C. A thermodynamic understanding of clay-swelling inhibition bypotassium ions [J]. Angewandte Chemie International Edition,2006,45(38):6300-6303.
    [177] KAWAMURA K, ICHIKAWA Y, NAKANO M, et al. New approach for predictingthelong-term behavior of bentonite: The unified method of molecular dynamics andhomogenization analysis [C]. Proceedings of the MRS Fall Meeting Symposium-ScientificBasis for Nuclear Waste Management XXI,1997:359-366.
    [178] ICHIKAWA Y, KAWAMURA K, NAKANO M, et al. Unified molecular dynamics andhomogenization analysis for bentonite behavior: current results and future possibilities [J].Engineering Geology,1999,54(1):21-31.
    [179] ICHIKAWA Y, KAWAMURA K, NAKANO M, et al. Seepage and consolidation ofbentonite saturated with pure-or salt-water by the method of unified molecular dynamicsand homogenization analysis [J]. Engineering Geology,2001,60(1):127-138.
    [180] ROTENBERG B, MARRY V, DUFRêCHE J-F, et al. A multiscale approach to iondiffusion in clays: Building a two-state diffusion-reaction scheme from microscopicdynamics [J]. Journal of Colloid and Interface Science,2007,309(2):289-295.
    [181] SA NCHEZ F G, GIMMI T, JURA NYI F, et al. Linking the diffusion of water in compactedclays at two different time scales: tracer through-diffusion and quasielastic neutronscattering [J]. Environmental Science&Technology,2009,43(10):3487-3493.
    [182] BOURG I C, SPOSITO G. Connecting the molecular scale to the continuum scale fordiffusion processes in smectite-rich porous media [J]. Environmental Science&Technology,2010,44(6):2085-2091.
    [183] DUFRêCHE J-F, ROTENBERG B, MARRY V, et al. Bridging molecular and continuousdescriptions: the case of dynamics in clays [J]. Anais da Academia Brasileira de Ciências,2010,82(1):61-68.
    [184] CHURAKOV S V, GIMMI T. Up-scaling of molecular diffusion coefficients in clays: atwo-step approach [J]. Journal of Physical Chemistry C,2011,115(14):6703-6714.
    [185] SEO Y-S, ICHIKAWA Y, KAWAMURA K. Stress-strain response of rock-forming mineralsby molecular dynamics simulation [J]. Materials Science Research International,1999,5(1):13-20.
    [186] AHRENS T J. Mineral Physics and Crystallography: A Handbook of Physical Constants
    [M]. AGU Reference Shelf,1995.
    [187] SATO H, YAMAGISHI A, KAWAMURA K. Molecular simulation for flexibility of a singleclay layer [J]. Journal of Physical Chemistry B,2001,105(33):7990-7997.
    [188] MANEVITCH O L, RUTLEDGE G C. Elastic properties of a single lamella ofmontmorillonite by molecular dynamics simulation [J]. Journal of Physical Chemistry B,2004,108(4):1428-1435.
    [189] CHEN B, EVANS J R G. Elastic moduli of clay platelets [J]. Scripta Materialia,2006,54(9):1581-1585.
    [190] ATILHAN S. Molecular dynamics simulation of montmorillonite and mechanical andthermodynamic properties calculations [D].Maeter Thesis. Texas A&M University,2007.
    [191] MAZO M A, MANEVICH L I, BALABAEV N K. Molecular dynamics simulation ofthermo-mechanical properties of montmorillonite crystal [J]. Nanotechnologies in Russia,2009,4(9-10):676-699.
    [192] ZARTMAN G D, LIU H, AKDIM B, et al. Nanoscale tensile, shear, and failure propertiesof layered silicates as a function of cation density and stress [J]. Journal of PhysicalChemistry C,2010,114(4):1763-1772.
    [193] FU Y-T, ZARTMAN G D, YOONESSI M, et al. Bending of layered silicates on thenanometer scale: mechanism, stored energy, and curvature limits [J]. Journal of PhysicalChemistry C,2011,115(45):22292-22300.
    [194] XU W, ZENG Q, YU A. Young’s modulus of effective clay clusters in polymernanocomposites [J]. Polymer,2012,53(17):3735-3740.
    [195] EBRAHIMI D, PELLENQ R J-M, WHITTLE A J. Nanoscale elastic properties ofmontmorillonite upon water adsorption [J]. Langmuir,2012,28(49):16855-16863.
    [196] ORTEGA J A. Micropormechanical modeling of shale [D].PhD Dissertation. MassachusettsInstitute of Technology,2010.
    [197] KATTI D R, SCHMIDT S R, GHOSH P, et al. Modeling the response of pyrophylliteinterlayer to applied stress using steered molecular dynamics [J]. Clays and Clay Minerals,2005,53(2):171-178.
    [198] SCHMIDT S R, KATTI D R, GHOSH P, et al. Evolution of mechanical response of sodiummontmorillonite interlayer with increasing hydration by molecular dynamics [J]. Langmuir,2005,21(17):8069-8076.
    [199] KATTI D R, SCHMIDT S R, GHOSH P, et al. Molecular modeling of the mechanicalbehavior and interactions in dry and slightly hydrated sodium montmorillonite interlayer [J].Canadian Geotechnical Journal,2007,44(4):425-435.
    [200] KATTI D R, MATAR M I, KATTI K S, et al. Multiscale modeling of swelling clays: Acomputational and experimental approach [J]. KSCE Journal of Civil Engineering,2009,13(4):243-255.
    [201] KATTI D R, KATTI K S. Molecular interactions influence barrier and mechanicalproperties in swelling clays: A multiscale modeling and experimental investigation [C].Proceedings of the Geo-Frontiers2011Conference, Dallas, TX, United States,2011:4263-4272.
    [202] KATTI D R, SHANMUGASUNDARAM V. Influence of swelling on the microstructure ofexpansive clays [J]. Canadian Geotechnical Journal,2001,38(1):175-182.
    [203] ANANDARAJAH A, AMARASINGHE P M. Microstructural investigation of soil suctionand hysteresis of fine-grained soils [J]. Journal of Geotechnical and GeoenvironmentalEngineering,2012,138(1):38-46.
    [204] SUTER J L, COVENEY P V, GREENWELL H C, et al. Large-scale molecular dynamicsstudy of montmorillonite clay: Emergence of undulatory fluctuations and determination ofmaterial properties [J]. Journal of Physical Chemistry C,2007,111(23):8248-8259.
    [205] SUTER J L, ANDERSON R L, GREENWELL H C, et al. Recent advances in large-scaleatomistic and coarse-grained molecular dynamics simulation of clay minerals [J]. Journal ofMaterials Chemistry,2009,19(17):2482-2493.
    [206] SUTER J, GROEN D, KABALAN L, et al. Distributed multiscale simulations ofclay-polymer nanocomposites [J]. MRS Online Proceedings Library,2012,1470(1):1-6.
    [207] HOOGERBRUGGE P J, KOELMAN J M V A. Simulating microscopic hydrodynamicphenomena with dissipative particle dynamics [J]. Europhysics Letters,1992,19(3):155-160.
    [208] KOELMAN J M V A, HOOGERBRUGGE P J. Dynamic simulations of hard-spheresuspensions under steady shear [J]. Europhysics Letters,1993,21(3):363-368.
    [209] ESPA OL P, WARREN P. Statistical mechanics of dissipative particle dynamics [J].Europhysics Letters,1995,30(4):191-196.
    [210] GROOT R D, WARREN P B. Dissipative particle dynamics: Bridging the gap betweenatomistic and mesoscopic simulation [J]. Journal of Chemical Physics,1997,107(11):4423-4435.
    [211] GROOT R D, RABONE K L. Mesoscopic simulation of cell membrane damage,morphology change and rupture by nonionic surfactants [J]. Biophysical Journal,2001,81(2):725-736.
    [212] GROOT R D. Electrostatic interactions in dissipative particle dynamics—simulation ofpolyelectrolytes and anionic surfactants [J]. Journal of Chemical Physics,2003,118(24):11265-11277.
    [213] GONZáLEZ-MELCHOR M, MAYORAL E, VELáZQUEZ M E, et al. Electrostaticinteractions in dissipative particle dynamics using the Ewald sums [J]. Journal of ChemicalPhysics,2006,125(22):224107.
    [214] PIVKIN I V, KARNIADAKIS G E. A new method to impose no-slip boundary conditionsin dissipative particle dynamics [J]. Journal of Computational Physics,2005,207(1):114-128.
    [215] MAYORAL E, NAHMAD-ACHAR E. Study of interfacial tension between an organicsolvent and aqueous electrolyte solutions using electrostatic dissipative particle dynamicssimulations [J]. Journal of Chemical Physics,2012,137(19):194701.
    [216] TOTH R, COSLANICH A, FERRONE M, et al. Computer simulation ofpolypropylene/organoclay nanocomposites: characterization of atomic scale structure andprediction of binding energy [J]. Polymer,2004,45(23):8075-8083.
    [217] SCOCCHI G, POSOCCO P, DANANI A, et al. To the nanoscale, and beyond!: Multiscalemolecular modeling of polymer-clay nanocomposites [J]. Fluid Phase Equilibria,2007,261(1):366-374.
    [218] SCOCCHI G, POSOCCO P, FERMEGLIA M, et al. Polymer-clay nanocomposites: amultiscale molecular modeling approach [J]. Journal of Physical Chemistry B,2007,111(9):2143-2151.
    [219] SCOCCHI G, POSOCCO P, HANDGRAAF J-W, et al. A complete multiscale modellingapproach for polymer-clay nanocomposites [J]. Chemistry-A European Journal,2009,15(31):7586-7592.
    [220] TOTH R, VOORN D-J, HANDGRAAF J-W, et al. Multiscale computer simulation studiesof water-based montmorillonite/poly (ethylene oxide) nanocomposites [J]. Macromolecules,2009,42(21):8260-8270.
    [221] PEREIRA S P, SCOCCHI G, TOTH R, et al. Multiscale modeling of polymer/claynanocomposites [J]. Journal of Multiscale Modelling,2011,3(03):151-176.
    [222] TOTH R, SANTESE F, PEREIRA S P, et al. Size and shape matter! A multiscale molecularsimulation approach to polymer nanocomposites [J]. Journal of Materials Chemistry,2012,22(12):5398-5409.
    [223] FRENKEL D, SMIT B. Understanding Molecular Simulation [M].2nd ed. San Diego, USA:Academin Press,2002.
    [224] VAN GUNSTEREN W F, BERENDSEN H J C. Algorithms for macromolecular dynamicsand constraint dynamics [J]. Molecular Physics,1977,34(5):1311-1327.
    [225] SAMOLETOV A A, DETTMANN C P, CHAPLAIN M A J. Thermostats for "slow"configurational modes [J]. Journal of Statistical Physics,2007,128(6):1321-1336.
    [226] BERENDSEN H J C, POSTMA J P M, VAN GUNSTEREN W F, et al. Moleculardynamics with coupling to an external bath [J]. Journal of Chemical Physics,1984,81(8):3684-3690.
    [227] BERENDSEN H J C, POSTMA J P M, VAN GUNSTEREN W F, et al. Interaction modelsfor water in relation to protein hydration [M]//PULLMAN B. Intermolecular Forces.Amsterdam; D. Reidel Publishing Company.1981:331-342.
    [228] LOEWENSTEIN W. The distribution of aluminum in the tetrahedra of silicates andaluminates [J]. American Mineralogist,1954,39(1-2):92-96.
    [229] VIANI A, GUALTIERI A, ARTIOLI G. The nature of disorder in montmorillonite bysimulation of X-ray powder patterns [J]. American Mineralogist,2002,87(7):966-975.
    [230] VILLAR M V, GóMEZ-ESPINA R, GUTIéRREZ-NEBOT L. Basal spacings of smectitein compacted bentonite [J]. Applied Clay Science,2012,65-66:95-105.
    [231] BOEK E S, COVENEY P V, SKIPPER N T. Monte Carlo molecular modeling studies ofhydrated Li-, Na-, and K-smectites: Understanding the role of potassium as a clay swellinginhibitor [J]. Journal of the American Chemical Society,1995,117(50):12608-12617.
    [232] CHANG F-R C, SKIPPER N T, SPOSITO G. Computer simulation of interlayer molecularstructure in sodium montmorillonite hydrates [J]. Langmuir,1995,11(7):2734-2741.
    [233] MARRY V, TURQ P, CARTAILLER T, et al. Microscopic simulation of structure anddynamics of water and counterions in a monohydrated montmorillonite [J]. Journal ofChemical Physics,2002,117(7):3454-3463.
    [234] KOSAKOWSKI G, CHURAKOV S V, THOENEN T. Diffusion of Na and Cs inmontmorillonite [J]. Clays and Clay Minerals,2008,56(2):190-206.
    [235] PORION P, MICHOT L J, FAUGèRE A M, et al. Structural and dynamical properties of thewater molecules confined in dense clay sediments: A study combining2H NMRspectroscopy and multiscale numerical modeling [J]. Journal of Physical Chemistry C,2007,111(14):5441-5453.
    [236] BéREND I, CASES J-M, FRAN OIS M, et al. Mechanism of adsorption and desorption ofwater vapor by homoionic montmorillonites:2. The Li+, Na+, K+, Rb+and Cs+-exchangedforms [J]. Clays and Clay Minerals,1995,43(3):324-336.
    [237] CALVET R. Hydratation de la montmorillonite et diffusion des cations compensateurs. I.Saturation par des cations monovalents [J]. Annales Agronomiques,1973,24(1):77-133.
    [238] MOONEY R W, KEENAN A G, WOOD L A. Adsorption of water vapor bymontmorillonite. I. Heat of desorption and application of BET theory [J]. Journal of theAmerican Chemical Society,1952,74(6):1367-1371.
    [239] KEREN R, SHAINBERG I. Water vapor isotherms and heat of immersion ofNa/Ca-montmorillonite systems I: Homoionic clay [J]. Clays and Clay Minerals,1975,23(3):193-200.
    [240] MACEWAN D M C, WILSON M J. Interlayer and intercalation complexes of clay minerals
    [M]//BRINDLEY G W, BROWN G. Crystal Structures of Clay Minerals and their X-RayIdentification. Mineralogical Society.1980:197-248.
    [241] CEBULA D J, THOMAS R K, MIDDLETON S R, et al. Neutron diffraction fromclay-water systems [J]. Clays and Clay Minerals,1979,27(1):39-52.
    [242] SUTTON R, SPOSITO G. Molecular simulation of interlayer structure and dynamics in12.4Cs-smectite hydrates [J]. Journal of Colloid and Interface Science,2001,237(2):174-184.
    [243] SLADE P G, QUIRK J P, NORRISH K. Crystalline swelling of smectite samples inconcentrated NaCl solutions in relation to layer charge [J]. Clays and Clay Minerals,1991,39(3):234-238.
    [244] POSNER A M, QUIRK J P. Changes in basal spacing of montmorillonite in electrolytesolutions [J]. Journal of Colloid Science,1964,19(9):798-812.
    [245] LIU X D, LU X C, WANG R C, et al. Effects of layer-charge distribution on thethermodynamic and microscopic properties of Cs-smectite [J]. Geochimica etCosmochimica Acta,2008,72(7):1837-1847.
    [246] CONNOLLY M L. Computation of molecular volume [J]. Journal of the AmericanChemical Society,1985,107(5):1118-1124.
    [247] MARCIAL D. A simple method to consider water density changes in the calculation of thedegree of saturation of swelling clays [M]//ALONSO E, GENS A. Unsaturated Soils. CRCPress, Taylor&Francis.2011:473-478.
    [248] SPOSITO G, SKIPPER N T, SUTTON R, et al. Surface geochemistry of the clay minerals[J]. Proceedings of the National Academy of Sciences of the United States of America,1999,96(7):3358-3364.
    [249] EINSTEIN A. Investigations on the Theory of the Brownian Movement [M]. New York:Dover Publications,1926.
    [250] THEODOROU D N, SUTER U W. Atomistic modeling of mechanical properties ofpolymeric glasses [J]. Macromolecules,1986,19(1):139-154.
    [251] BROWN D, CLARKE J H R. Molecular dynamics simulation of an amorphous polymerunder tension.1. Phenomenology [J]. Macromolecules,1991,24(8):2075-2082.
    [252] PARRINELLO M, RAHMAN A. Strain fluctuations and elastic constants [J]. Journal ofChemical Physics,1982,76(5):2662-2666.
    [253] TEICH-MCGOLDRICK S L, GREATHOUSE J A, CYGAN R T. Molecular dynamicssimulations of structural and mechanical properties of muscovite: Pressure and temperatureeffects [J]. Journal of Physical Chemistry C,2012,116(28):15099-15107.
    [254] VAUGHAN M T, GUGGENHEIM S. Elasticity of muscovite and its relationship to crystalstructure [J]. Journal of Geophysical Research: Solid Earth,1986,91(B5):4657-4664.
    [255] SAYERS C M. Seismic anisotropy of shales [J]. Geophysical Prospecting,2005,53(5):667-676.
    [256] KIM J S, WU Z, MORROW A R, et al. Self-diffusion and viscosity in electrolyte solutions[J]. Journal of Physical Chemistry B,2012,116(39):12007-12013.
    [257] TAZI S, BO AN A, SALANNE M, et al. Diffusion coefficient and shear viscosity of rigidwater models [J]. Journal of Physics: Condensed Matter,2012,24(28):284117.
    [258] LENG Y, CUMMINGS P T. Hydration structure of water confined between mica surfaces[J]. Journal of Chemical Physics,2006,124(7):074711.
    [259] LENG Y, CUMMINGS P T. Shear dynamics of hydration layers [J]. Journal of ChemicalPhysics,2006,125(10):104701.
    [260] IZVEKOV S, VOTH G A. Multiscale coarse graining of liquid-state systems [J]. Journal ofChemical Physics,2005,123(13):134105.
    [261] STERN O. Zur theorie der elektrolytischen doppelschicht [J]. Zeitschrift für Elektrochemieund angewandte physikalische Chemie,1924,30:508-516.
    [262] BOOTH F. The dielectric constant of water and the saturation effect [J]. Journal ofChemical Physics,1951,19(4):391-394.
    [263] BORN M. Volumen und hydratationsw rme der ionen [J]. Zeitschrift für Physik A Hadronsand Nuclei,1920,1(1):45-48.
    [264] BIKERMAN J J. Structure and capacity of electrical double layer [J]. PhilosophicalMagazine,1942,33(220):384-397.
    [265] CURRY J E, MCQUARRIE D A. On dielectric saturation modeling in a continuum solvent[J]. Journal of Colloid and Interface Science,1992,154(1):289-294.
    [266] CURRY J E, MCQUARRIE D A. On the effect of dielectric saturation on the swelling ofclays [J]. Langmuir,1992,8(3):1026-1029.
    [267] IWATA S, TABUCHI T, WARKENTIN B P. Soil-Water Interactions: Mechanisms andApplications [M].2nd ed. New York: Marcel Dekker, Inc.,1995.
    [268] YONG R N. Soil suction and soil-water potentials in swelling clays in engineered claybarriers [J]. Engineering Geology,1999,54(1-2):3-13.
    [269] YONG R N. Overview of modeling of clay microstructure and interactions for prediction ofwaste isolation barrier performance,[J]. Engineering Geology,1999,54(1-2):83-91.
    [270] SIDES G, BARDEN L. The microstructure of dispersed and flocculated samples ofkaolinite, illite, and montmorillonite [J]. Canadian Geotechnical Journal,1971,8(3):391-399.
    [271] PUSCH R. The performance of clay barriers in repositories for high-level radioactive waste[J]. Nuclear Engineering and Technology,2006,38(6):483-488.
    [272] VALLEJO L E, LOBO-GUERRERO S. The elastic moduli of clays with dispersedoversized particles [J]. Engineering Geology,2005,78(1-2):163-171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700