汽车正时齿形链系统设计方法与仿真分析及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着新型汽车发动机的不断问世和汽车链设计与制造技术的不断发展,齿形链因其具有结构紧凑、传递功率高、可靠性与耐磨性高、噪音低等显著优点,越来越广泛地应用在汽车发动机正时传动、机油泵传动、高压泵传动、共轨泵传动、平衡轴传动等场合。全球正时系统采用链传动由2006年的53%预计到2011年将上升到55%,而皮带传动由2006年的38%预计下降到2011年的34%。而目前只有国外少数工业发达国家能够生产中高速汽车发动机用新型齿形链,其拥有绝大多数的专利技术以及内部设计诀窍,其关键的设计方法和研究成果均不在公开的刊物发表,从而主导和垄断着这一领域的市场和技术,形成了国内企业生产高质量新型齿形链及其正时齿形链系统的技术壁垒。
     论文在国家自然科学基金项目(50275062)“新型高速齿形链啮合原理及其设计方法”和国家中小企业技术创新基金资助项目(08C26213711011)“高性能汽车发动机齿形链制造技术及系列产品”的资助和支持下,在深入分析不同啮合机制齿形链啮合线的基础上,提出了汽车发动机正时齿形链系统的设计方法,并对某款汽车发动机正时齿形链系统进行了设计计算、仿真分析及试验研究。
     论文在深入分析新型内啮合和内-外复合啮合齿形链啮合机理的基础上,利用微分几何和坐标变换理论分别建立了内啮合齿形链和内-外复合啮合齿形链与链轮在不同啮合阶段的数学模型,求解出两种啮合机制齿形链的啮合线。从拟合得出的啮合线可以看出:内啮合齿形链的啮合过程分为链板Ⅲ与轮齿Ⅲ的啮合过程以及链板Ⅱ的啮合定位过程;内-外复合啮合齿形链的啮合过程分为内啮合、内-外共同啮合以及外啮合定位三个阶段,其中内啮合阶段的啮合线最长。利用齿形链紧边中心线的波动量研究了新型齿形链的多边形效应,对计算得出的齿形链销轴中心运动轨迹的研究结果表明,内啮合齿形链紧边中心线的波动量仅为外啮合齿形链波动量的64.6%,内-外复合啮合齿形链紧边中心线的波动量仅为外啮合波动量的28%,表明内啮合齿形链和内-外复合啮合齿形链的多边形效应明显小于外啮合齿形链。
     论文在综述了国内外汽车发动机正时传动系统研究现状的基础上,阐述了正时齿形链系统在汽车发动机换气过程中的重要作用,深入分析了汽车发动机正时系统的进、排气行程以及相关的配气相位,提出了具有我国自主知识产权的汽车正时齿形链系统的设计方法,同时详细阐述了张紧装置和导向装置的关键计算方法,并根据某款汽车发动机的布置方案及性能要求,对该款发动机进行了正时齿形链系统的设计与计算,为形成具有我国自主知识产权的汽车正时齿形链系统设计理论与方法奠定了重要的基础。
     论文基于递归算法的多体动力学理论以及现代接触动力学,建立了汽车正时齿形链系统虚拟数字样机模型,研究了汽车正时齿形链系统在具有多约束边界条件下不同转速工况的动态特性,得出了正时齿形链系统链节的运动轨迹、链节的张力、曲轴链轮与凸轮轴链轮的传动比、张紧器柱塞与张紧板的接触力,并通过FFT变换得出链节张力和法向接触力在不同转速不同发动机谐波阶次下的动态幅值。研究成果为汽车正时齿形链系统的动态特性的仿真分析提供了科学的分析方法,也为正时齿形链系统零部件之间的接触力变化以及FFT频谱分析提供了有效的分析方法。与以往国内外学者研究所采用的质量-弹簧-阻尼单元模拟仿真结果相比,本文由于采用了更为接近实际工况的接触算法,因而研究成果更为科学、更为真实。
     论文首次在自主研发的国内第一台自动加载、自动变速的多轴传动汽车正时链系统试验台上对正时齿形链系统进行了各种工况的试验,利用AWA6290A实时噪声分析仪测试了正时齿形链系统在多种工况下的噪声特性。通过分析凸轮轴负载扭矩对噪声的影响,得出了随着凸轮轴负载扭矩的加大噪声值增大;研究了曲轴链轮转速对正时齿形链系统噪声的影响,分析得出随着曲轴链轮转速的增加,A计权噪声值也随着增大,并通过对三个转速下的噪声进行频谱分析,得出峰值频率与齿形链的啮合频率以及固有频率相关,利用发动机谐波分析得出了噪声波动的峰值发生在发动机9.5阶、19阶和38阶谐波,并且在链板与链轮(z1=19)的啮合频率(19阶谐波)下噪声值最大,验证了仿真结果的正确性;通过探讨张紧器油压对噪声的影响,得出在张紧器油压较低时噪声相对较大,张紧器油压在较高时在高转速下的噪声相对较小,但是过大的张紧器油压将加剧齿形链与导向板、张紧板的磨损,以及齿形链与链轮之间的磨损,故建议张紧器油压取为5bar较为适宜。同时探讨了噪声的产生机理,并提出了控制噪声的相关措施。
     论文利用PhotoTemp MX数码照相式红外测温仪对正时齿形链系统不同张紧器油压下进行实时温度测量,研究表明温度在两个销轴的位置表现出两个峰值的变化规律,这是由于销轴与链板配合铰链处的摩擦生热导致其温度偏高;对比分析了不同张紧器油压时的工作油温及油箱油温、回油油温,虽然油压为3bar和5bar时,其工作油温均小于允许的最高工作温度120℃,但当油压为3bar时,其油箱油温、回油油温和工作油温在稳定状态下高于油压为5bar时的温度,由此可见,润滑对于正时齿形链系统的工作可靠性有着非常重要的作用。
     论文的研究成果为形成具有我国自主知识产权的汽车发动机正时齿形链系统设计理论与方法奠定了重要的基础,通过动力学仿真分析和汽车发动机正时传动系统试验研究表明,论文所提出的设计方法和试验方法是科学、切实可行的。本文的研究成果加速了我国汽车发动机正时链传动系统的国产化进程,对提升相关行业和企业的自主研发能力具有非常重要的意义。
In recent years, with the invention of new engines and development of design and manufacture technology, silent chain is widely used in the timing drive, pump drive, high-pressure pump drive, common rail pump drive and balancing draft drive of the automotive engines because of significant characteristics such as compact structure, high transmission power, high reliability and wear-ability and low noise. The percentage of the silent chain drive users is 53% in 2006 and increase to 55% in 2011. While the percentage of belt-drive users is 38% in 2006 and decrease to 34% in 2011. At present, only a few industrial countries overseas can produce new silent chain for high-speed automobile engines, and their own most of the patented and interior design tips, the key design methods and results are not published in journals, thus dominating and monopolizing the market and technology in this field. This phenomena causes the technical barrier of new high-quality silent chain production and silent chain system for domestic companies.
     This paper is sponsored by the National Nature Science Foundation of China (50275062)“Meshing mechanism and design method of new high-speed silent chain”and National Middle and little Company Technology Innovation Foundation (08C26213711011)“Manufacture technology and products of high-performance silent chain of automotive engine”, based on intensive analysis of the meshing traces of different meshing mechanisms silent chains, and puts forward the design method of auto engine timing silent chain system, and design method, simulation and experiment on one automotive engine timing silent chain system are studied.
     The mathematical models of inner-meshing silent chain and inner-outer compound meshing silent chain meshing with the sprocket at different meshing stages are respectively built based on the theory of differential geometry and coordinate transformation. The models are based on the study of the meshing mechanism of inner-meshing and inner-outer compound meshing. Meshing traces of two different meshing mechanism silent chains are solved. From the meshing traces of inner-meshing and inner–outer compound silent chain, it can be seen that the engagement process of inner-meshing silent chain is divided into the meshing process of plateⅢwith the teethⅢand the locating of plateⅡ, and the engagement process of inner-outer compound meshing silent chain is divided into inner meshing, inner-outer compound meshing and locating of outer meshing. The trace on inner meshing stage is the longest. The polygon effect of new silent chain according to the fluctuating quantity of the centerline of the silent chain’s tight side is studied, and the results of the traces of the chain’s pin center show that, the fluctuating quantity of the tight side’s centerline in inner-meshing is only 64.6% of which in outer-meshing, and the fluctuating quantity in inner-outer compound meshing is only 28% of which in outer meshing, it can be concluded that the polygon effect in inner-meshing and inner-outer compound meshing is better than that in outer-meshing obviously.
     Situations of study on auto engine timing chain system in domestic and international are summarized in this paper, and the importance of silent chain system in auto engine is described. Auto engine timing system’s intake and exhaust stroke and related phases are studied deeply. The design method of auto engine timing silent chain system is raised, and the key calculation of the tensioner and the guider are described, and designs and calculates the timing silent chain system of the engine according to the layout plan and performance requirements of the auto engine are get, and it lays an important foundation for the formation of independent intellectual property rights in silent chain system design theory and methods.
     The mechanism-control virtual digital prototype model of the auto silent chain system based on the multi-body dynamics theory of recursive algorithm and modern contact dynamics are built in this paper. The dynamic characteristics of the timing silent chain system in the multiple constraints boundary conditions under different speeds are studied. The trajectory, chain tension force, drive ratio of crankshaft sprocket and camshaft sprocket and contact force of the tensioner plunger and tension plate are obtained. Dynamic harmonic amplitudes of the chain tension and normal contact force at different speeds and different engine orders are also obtained. The result not only provides scientific methods for the simulation of the auto timing chain system’s dynamic characters, but also provides effective methods for the changes of contact force between different components and FFT spectrum analysis. Compared with the previous results by scholars in mass-spring-damper element simulation, the research results have more scientific and reliable for its physical access method which is more close to the actual conditions.
     The paper is studied on the first automatic loading, automatic transmission multi-axis drive system auto engine timing chain system test bed which is in independent research and development. With the real-time noise analyzer AWA6290A, the timing silent chain system’s noise characteristics are researched under a variety of conditions. By analyzing the load torque of the camshaft and noise, the result show that the noise increases with the increase of camshaft’s load torque. By analyzing the speed of the crankshaft sprocket and the noise of the timing chain system, the result show that weighted noise level increases along with the increase of speed of the crankshaft sprocket. According to the spectrum analysis at three different speeds, the result show that the peak frequency is related to the meshing frequency and the inherent frequency of the silent chain. By the engine spectrum analysis, the result show that the peak of the noise is the 9.5th, 19th, and 38th, and the noise value is the maximum at the meshing frequency (19th) of the chain plate and the sprocket (z1=19), which verifies the correctness of the simulation. According to the research of the oil pressure of the tensioner and the noise, the result show that the noise is relatively low when the pressure is high, but thus leading to the wear between silent chain and the guider, silent chain and the tensioner, silent chain and the sprocket, so suggested that the oil pressure takes 5bar. The mechanism of noise is researched in this paper, and method of control noise is proposed.
     Takes real-time temperature measurement of the timing silent chain system at low speed using PhotoTemp MX digital photography infrared thermometer when the oil pressure is 5bar and 3bar, the results shows that the temperature in the two pin showing the location changes at two peaks, this is because of the friction between the pin and the plate; the working oil temperature, the tank oil temperature and the returning oil temperature are tested under different oil pressures, at the pressure of 5bar and 3bar, though the temperatures are all under the limited 120℃, the working oil temperature, the tank oil temperature and the returning oil temperature at the pressure of 3bar are all higher than that of 5bar, so the oiling plays an important role in the reliable of the timing silent chain system.
     The research results play an important role in the formation of independent intellectual property rights in China in design theory and method of the auto engine timing silent chain, according to the dynamic simulation and the experiments of the auto timing silent chain, the design theory and method mentioned in this paper are scientific and reliable. The research results accelerate the domestic process of the auto engine timing silent chain system, and they have very important significance in improving the ability of independent research and design in related industries and enterprises.
引文
[1]李纪珍,贾永轩著.汽车零部件整合[M],北京:机械工业出版社,2006.
    [2]中国汽车工程学会组编.世界汽车技术发展跟踪研究[M].北京理工大学出版社,2006
    [3]国务院发展研究中心产业经济研究部,中国汽车工程学会等编.中国汽车产业发展报告(2009)[M].北京:社会科学文献出版社,2010.
    [4]唐杰,杨沿平,周文杰著.中国汽车产业自主创新战略[M].北京:科学出版社,2009
    [5]株式会社椿本编.チェヘン[M].东京:工业调查会,1995.
    [6]ISO10823-2004滚子链传动选择指导
    [7]Morse Product Catalog[M]. United States of America,2002
    [8]Power Transmission&Conveyor Chain General Catalog[M]. Tokyo: D.I.D CO., LTD. , 2007.
    [9]IWIS Product Catalog[M]. Precision Chain Systems for Drive and Conveyor Purpose.Munich:2002.
    [10]Okuda, T., Power Transmission Chain[P]. Patent No. 5651746, ,United States Patent, Jul. 1997.
    [11]Ramsey, J. H., Silent Chain[P]. Patent No. 1488710 , United States Patent, Apr. 1924.
    [12]Horie et al., Chain with Improved Rocker Pin Joint Structure[P], Patent No. US 6387003 B2, United States Patent, May 2002.
    [13]Kanehira et al., Silent Chain[P]. Patent No. 6260345 B1, United States Patent, Jul. 2001.
    [14]Masao Maruyamam, Masaru Morimoto.Silent Chain Having Improved Noise Reduction[P]. United state patent No.5267910, Dec.7, 1993.
    [15]Hiroyuki Takeda, Tetsuji Kotera, Low Noise Chain Drive,United state patent No.5419743, May.30, 1995.
    [16]American Chain Association, Design Manual for Roller and Silent Chain Drives[M]. New York, Ch. 7, 1974.
    [17] American Chain Association.Chains for Power Transmission and Material Handling[M]. Marcel Dekker,New York,1982.
    [18]吉林工业大学链传动研究所,苏州链条总厂特种链条厂合编.链传动设计与应用手册[M].北京:机械工业出版社,1992.
    [19]刘仙洲.中国机械工程发明史[M].北京:科学出版社,1962.
    [20]http://www.renold.cn/RenoldChina/web/site/CN/Company/CompanyInfo/Histo ry _c n.asp
    [21]GB10855—2003:齿形链和链轮
    [22]JB/T10348—2002:摩托车用齿形链条
    [23]ANSI B29.2M-1982. Inverted Tooth(Silent) Chains and Sprockets. The American Society of Mechanical Engineers, 1982
    [24]DIN 8190—1988.Zahnketten mit Wiegegelenk und 30°Eigriffswinkel. Deutsches Institut für Normung,Berlin,1988
    [25]DIN 8191—1998.Verzahnung der Kettenr?der für Zahnketten nach DIN 8190. Deutsches Institut für Normung,Berlin,1998
    [26]Bucknor N.K..Kinematic and Static Force Analysis of Silent Chain Drives[J].Ph.D. Dissertation,New York:Columbia University,1991
    [27]Bucknor N.K.,F.Freudenstein.Kinematic and Static Force Analysis of Rocker-Pin Jointed Silent Chains with Involute Sprockets[J].Journal of Mechanical Design, 1994, 116(9): 842~848
    [28] Masakazu Wada, Shoichiro Ide, Sadao Miki and Atsushi Ehira. Development of a Small Pitch Silent Chain for a Single-Stage Cam Drive System[J]. SAE paper 1999-01-1226
    [29]Jeffrey R.H..Engine Applications for Warm Compacted Sprockets[J].SAE paper 2002-01-0341
    [30]藤木章,前川幸広,马渕豊等.直喷汽油(DIG)汽车发动机无声链条系统用温压-高温烧结粉末冶金链轮的开发[J].粉末冶金技术,2003,21(2):86~91
    [31]Kozakura, Nobuto, Saito, Toyonaga. Silent Chain[P]. United States: US patent 6068568, 2000
    [32]Wang Yumin,Hanayama,Yoshito.Carbide Coated Steel Articles and Method of Making them[P]. United States: US patent 6582765,2003
    [33] Azel,S Sen,M.Belevi.Effects of Residual Stressed Caused by Different Types of Loading on Silent Chain Strength.Tr.J.Engineering and Environmental Science, 1998, 22: 461~470
    [34]岩田知也,白井俊彦. Application of ADAMS for Silent Chain Meshing Simulation.MSC.ADAMS User conference,2002
    [35]黄超俊.静音链的啮合分析[D].台南:国立成功大学机械工程研究所,2003.
    [36]吴耿彰.圆柱销静音链条的受力分布与应力分析[D].台南:国立成功大学机械工程研究所,2005.
    [37]刘权庆.摇动销静音链的啮合分析[D].台南:国立成功大学机械工程研究所,2004.
    [38]林坤泉.静音链条传动误差之探讨[D].台南:国立成功大学机械工程研究所,2005.
    [39]Chintien Huang,Kuen Chuan Lin.Kinematic Analysis of Chordal Action and Transmission Errors of Silent Chains[J].SAE paper 2006-01-0619
    [40]林益呈.静音链条传动系统之声场仿真分析[D].南:国立成功大学机械工程研究所,2009.
    [41]Meng Fanzhong,Feng Zengming,Chu Yaxu.Meshing Theory and Design Method of New Silent Chain and Sprocket[J].Chinese Journal of Mechanical Engineering, 2006, 19(3): 425~427
    [42]冯增铭,孟繁忠,李纯涛.新型齿形链的啮合机制及仿真分析[J].上海交通大学学报,2005,39(9):1427~1430
    [43]冯增铭.新型齿形链的啮合机理及动态特性分析[D].长春:吉林大学,2006
    [44]孟繁忠,李启海,冯增铭.新型Hy-Vo齿形链与链轮的啮合分析及其设计方法[J].机械工程学报,2007,43(1):116~119
    [45]Meng Fanzhong, Li chun, Cheng Yabing. Proper Conditions of Meshing for Hy-Vo Silent Chain and Sprocket[J].Chinese Journal of Mechanical Engineering, 2007, 20(4):57~59
    [46]孟繁忠,李春,叶斌.新型Hy-Vo齿形链磨损特性的研究.润滑与密封[J],2007,32(10):33~35
    [47]孟繁忠,李春,程亚兵.Hy-Vo齿形链链轮公法线长度的计算方法[J].中国机械工程,2007,18(23):2865~2867
    [48]李启海,孟繁忠,冯增铭.新型Hy-Vo齿形链的噪声试验研究[J].中国机械工程, 2009,20(2):131~133.
    [49]孟繁忠,曲绍朋,宋婷婷.新型Hy-Vo齿形链异型导板的设计与实验研究[J].中国机械工程,2010.
    [50]薛云娜.双面啮合齿形链传动的啮合理论与应用研究[D].济南:山东大学,2006
    [51]薛云娜,王勇,王宪论.渐开线齿形链机构的啮合机理[J].江苏大学学报(自然科学版),2007,28(2):104~107
    [52]薛云娜,王勇,王宪论.齿形链传动啮合冲击机理[J].机械设计,2005,22(9):37~39
    [53]薛云娜,王勇,王宪论.渐开线链轮CAD与加工仿真[J].武汉理工大学学报,2006,28(5):105~107
    [54]陈家瑞主编.汽车构造(第四版上册)[M].北京:人民交通大学出版社,2003.
    [55]刘大维主编.汽车工程概论[M].北京:机械工业出版社,2004.
    [56]史自力著.日本汽车产业发展战略研究[M].北京:经济科学出版社, 2005.
    [57]国家信息中心,国家发展和改革委员会产业协调司. 2010中国汽车市场展望[M].北京:机械工业出版社,2010.
    [58] http://news.chinacars.com/news/dongtai/zjcheshi/550022.shtml
    [59]金敏.正时链条传动与齿形皮带传动的比较(上)[J].汽车与配件,2006,40(19):36~37
    [60]Stan Dembosky.正时链条传动凸显后发优势[J].汽车配件,2006,23:42-43
    [61]M.Pan, T.Shieh. Design Modification for Reducing Silent Chain Annoying Noise[J]. Journal of Mechanical Design,2002,124(12):822~827
    [62]J.A. Calvo, V. Díaz, J.L. San Román and M. Ramírez. Controlling the timing chain noise in diesel engines[J]. J. Vehicle Noise and Vibration, 2006,2(1): 75-90.
    [63]C.Weber W,Herrmann and J.Stadtmann. Experimental Investigation into the Dynamic Engine Timing Chain Behavioour[J].SAE paper 980840
    [64]Stephenson R., Glennie D., Fawcett J.N. Method of Measuring the Dynamic Loads in High-speed Timing Chains[J].Journal of Automobile Engineering, 2000,214(2):217-226
    [65]Taeik Kim, Insoo Jung, Douck-Han Bae and Seung-Dong Yeo. NVH Optimization of the New 2.5L HSDI Diesel Engine with Common Rail[J]. SAE paper 2003-01-0056
    [66] Sopouch M,Hellinger W,Pribsch HH. Prediction of vibroacoustic excitation due to the timing chains of reciprocating engines. Journal of multi-body dynamics. 2003,217(3):225-240.
    [67] http://www.avlchina.com/news/news2.asp?CategoryID=228
    [68] http://www.mscsoftware.com.cn/index.aspx?Id=110
    [69] http://www.functionbay.com.cn/
    [70]Hiroshi Takagishi, Atsushi Nagakubo. Multi-Body Dynamic Chain System Simulation Using a Blade Tensioner[J]. SAE paper 2006-32-0067
    [71]Martin Sopouch,Wolfgang Hellinger,Hans H. Priebsch. Simulation of Engine’s Structure Borne Noise Excitation Due to the Timing Chain Drive[J]. SAE paper 2002-01-0451.
    [72]Yeongching Lin, Sheng-Jiaw Hwang etc. The Dynamic Analysis of an Automotive Timing Chain System[J]. Journal of Design Engineering Division. V88,1996:759-764.
    [73]Ravi Narayanaswamy, Charles D. Glynn. Vibro-Acoustic Methods to Predict Chain Noise in Automotive Transfer Cases[J]. SAE paper 2005-01-2344
    [74]倪计民编著.汽车内燃机原理[M].上海:同济大学出版社,1997.7
    [75]吴建华主编.汽车发动机原理[M].北京:机械工业出版社,2005.7
    [76]蔡兴旺主编.汽车构造与原理(上册发动机)[M].北京:机械工业出版社,2008.
    [77]杨杰民编.现代汽车发动机构造[M].上海:上海交通大学出版社,1999.
    [78]陆耀祖主编.内燃机构造与原理[M].北京:中国建材工业出版社,2004.3
    [79]周龙保主编.内燃机学[M].北京:机械工业出版社,2006.
    [80]百度百科.可变气门正时技术. http://baike.baidu.com/view/1446877.htm
    [81]汽车之家.异曲同工之妙3种可变气门升程技术介绍. 2009-10-29 http://www.autohome.com.cn/drive/200910/74640.html
    [82]尹德兵,王怀宇,孟繁忠,冯增铭.齿形链链轮量柱测量距与其啮合特性[J].机械设计,2004,21(2):25-27.
    [83]ф.л李特文著.卢贤占,高业田,王树人译.齿轮啮合原理[M].上海:上海科学技术出版社,1984.
    [84]孟繁忠著.齿形链啮合原理[M].北京:机械工业出版社,2008.
    [85]曲绍朋.新型齿形链的啮合机制与动力学建模及齿形链导板的设计研究[D].长春:吉林大学,2007.
    [86]陈朝光,唐余勇,吴鸿业.微分几何及其在机械工程中的应用[M].哈尔滨:哈尔滨工业大学出版社,1998.
    [87]隋思涟,王岩. Matlab语言与工程数据分析[M].北京:清华大学出版社,2009.7.
    [88]郑志峰,王义行,柴邦衡编著.链传动[M].北京:机械工业出版社,1984
    [89]董成国.齿形链中心距计算方法与测试研究[D].长春:吉林大学,2007.
    [90]孟繁忠编著.链条链轮产品设计与检验[M].北京:机械工业出版社,1996.
    [91]Dipl.-lng., HND Eng. Fraser Lacy. Zahnriementriebe und ihre Vorteile hinsichtlich Reibverlusten und Akustik [J]. MTZ, 2006,07-08(69):538-543.
    [92]孟繁忠,李宝林,吕翔,吴联颖,王怀宇.汽车发动机正时链系统设计方法[J].哈尔滨工业大学学报,2009,41(5):121-124.
    [93]李宝林.发动机正时链系统设计方法与性能试验[D].长春:吉林大学,2006
    [94]株式会社椿本链索.棘轮式液压张紧器:中国,03108296.3 [P]. 2003-10-8.
    [95]楚天科技编著. MATLAB R2008科学计算实例教程[M].北京:化学工业出版社,2009.
    [96] RecurDyn? / Solver Theoretical Manual. FunctionBay, Inc. 2005
    [97]D. S. Bae and Edward J. Haug, A Recursive Formulation for Constrained Mechanical System Dynamics: Part II. Closed Loop Systems, Mech. Struct. and Machines, Vol. 15, No. 4, pp. 481-506
    [98] User’s Manual for Timing Chain. FunctionBay Inc. 2008
    [99]杨庆佛编著.内燃机噪声控制[M].太原:山西人民出版社,1985.
    [100]王孚懋,任勇生,韩宝坤编著.机械振动与噪声分析基础[M].北京:国防工业出版社, 2006.
    [101]朱从云,赵则祥,李春广等.噪声控制研究进展与展望[J].噪声与振动控制, 2007, 27(3): 1-8
    [102]周广林.扫描声强测量技术[M].哈尔滨:哈尔滨工程大学出版社,2007
    [103]张绍栋,孙家麒编著.声级计的原理和应用[M].北京:计量出版社,1986
    [104]哈里Y-F拉姆著,冯玉云等译.模拟和数字滤波器设计与实现[M].北京:人民邮电出版社, 1985
    [105]任保才,铁占续等.机械测试与信息处理[M].江苏:中国矿业大学出版社, 2001
    [106]梁德沛.机械参量动态测试技术[M].重庆:重庆大学出版社, 1987
    [107]郭之璜.机械工程中的噪声测试与控制[M].北京:机械工业出版社,1993
    [108]庞剑,谌刚,何华.汽车噪声与振动-理论与应用[M].北京:北京理工大学出版社,2006
    [109]中国内燃机学会.内燃机噪声振动与控制[M].北京:机械工业出版社, 2005
    [110]张进平.汽车链的多冲磨损失效机理及系统试验研究[D].长春:吉林大学,2008.
    [111]王淑坤.汽车发动机滚子链的失效机理及其关键设计制造技术[D].长春:吉林大学,2006.
    [112]荣长发.链传动的振动和噪声研究现状与发展[J].机械传动, 2004,28(2):63-66
    [113]马大猷.噪声与振动控制工程手册[M].北京:机械工业出版社,2002
    [114]陈克安.有源噪声控制[M].北京:国防工业出版社, 2003.
    [115]赵玫,周海亭,陈光裕等.机械振动与噪声学[M].北京:科学出版社,2004
    [116]邵汝椿,黄镇昌.机械噪声及其控制[M].广州:华南理工大学出版社,1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700