加压氰化法提取铂族金属新工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对两类典型的铂族金属资源:云南大理地区金宝山低品位原生铂钯硫化矿浮选精矿(以下简称低品位铂钯浮选精矿)及失效汽车尾气净化催化剂(以下简称失效汽车催化剂),采用加压氰化(或称高温氰化)法新工艺从中高效提取回收铂族金属。
     对金宝山低品位铂钯浮选精矿,采用现有的火法工艺无法进行经济有效地处理。本文首次提出了浮选精矿直接加压氧化酸浸预处理→加压氰化→置换富集贵金属的全湿法处理创新工艺。完成了新工艺的实验室小试研究、放大验证及50升高压釜批量处理5kg浮选精矿的扩大试验。新工艺突破了传统火法技术思路的局限,为我国低品位原生铂矿资源的综合开发利用提供了一条高效率、短流程、污染小、操作条件好的新技术途径。
     工艺条件试验分别考察了低品位铂钯浮选精矿加压氧化酸浸预处理以及加压氰化浸出过程中各种工艺控制条件及技术参数对铜、镍氧化浸出率以及铂、钯氰化浸出率的影响。试验优选出的加压氧化酸浸工艺条件为:浮选精矿湿磨至粒度98%-200目,反应液固比L∶S=4∶1,硫酸用量20 wt%,最高反应温度200℃,时间8h,体系氧压恒定2.0MPa。Cu、Ni、Co等贱金属加压酸浸出率均达到99%以上。加压氰化浸出条件为:氰化钠用量2.5 wt%,浸出反应温度160℃,恒温1h,空气气氛,压力2.0MPa,矿浆液固比L∶S=4∶1。最佳条件下的批量处理600g浮选精矿的小型放大验证试验结果表明,Pt、Pd二段氰化浸出率可高达98%以上。
     用50升高压反应釜进行批量5kg的扩大试验结果重现了小试研究的各项指标。全工艺铂、钯回收率从浮选精矿到贵金属置换富集物达到:Pt 90%~94%,Pd99%。富集物中Pt、Pd的品位高达56.0%~59.3%,与浮选精矿相比富集了六千多倍,加上Rh、Ir、Au、Ag,富集物中贵金属品位达到70%~90%。Cu、Ni、Co金属浸出率也达到99%以上。在扩大试验的基础上,进行了金属平衡,就浮选精矿中S、Fe、MgO、SiO_2及贵金属等在流程中的走向与传统的火法处理工艺进行了对比讨论。
     对失效汽车催化剂,研究发现,为获得较高的铂族金属加压氰化浸出率,必须在氰化浸出前对物料进行预处理。提出了加压碱浸预处理→加压氰化→置换富
A new technology for extracting and recovering platinum group metals (PGMs) has been investigated and established by pressure cyanidation from two typical resources, flotation concentrates of Yunnan Jinbaoshan low-grade proterozoic Pt-Pd sulfide ores and spent auto-catalysts.Since the low-grade Pt-Pd flotation concentrates are not appropriate to be treated by traditional pyro-metallurgical processes, an innovated all-in-hydrometallurgical flowsheet was suggested in present paper, including pressure acid leaching, pressure cyanide leaching and zinc cementation. The laboratory small-scale, 600g scale, and 5kg scale batch experiments were carried out. The new technology broke through the limitation of treating sulfide ores containing PGMs only by pyro-metallurgical processes. The developed new method has higher percent metal extraction, shorter deposing-procedure, lower pollution and better operational atmosphere for the treatment of the low-grade proterozoic platinum ores in China.In laboratory small-scale experiments, effects of different technical conditions on recovery of Cu and Ni for pressure H_2SO_4 leaching pre-treatment, and on percent cyanide extraction of Pt and Pd for pressure cyanide leaching processes were investigated respectively. The optimal operation conditions for pressure H2SO4 leaching process are concentrate granularity 98% -74 μm, added H_2SO_420wt%, temperature 200℃, time 8h, oxygen pressure 2.0MPa and L:S=4:1. Percent Cu, Ni and Co recovery reached is more than 99%. For pressure cyanide leaching processes, the optimal operation parameters are 2.5wt% of NaCN, 160℃, 1h, P_(air) 2.0MPa and L:S=4:1. The results for 600g-batch unit experiments showed that the percent Pt and Pd extractions for two-step pressure cyanide leaching are more than 98%.The process development unit for 5kg batch in 50 L autoclave also reproduced the same results as small-scale experiments. The research indicated that the overall extraction of Pt and Pd from flotation concentrates to cementation enrichments were 90%~94% and 99% respectively. The content of Pt and Pd in cementation enrichments was 56.0%~ 59.3%, which was 6000 times higher than that in flotation concentrates. The content of precious metals, including Rh, Ir, Au and Ag, were enriched to 70%~90%. Cu, Ni and Co leaching recovery also reached more than 99%. The metal balance of Pt, Pd, Cu and Ni in process development unit was carried out. The new technology was also evaluated from the behavior of S, Fe, MgO, SiO_2 and precious metals by comparing with traditional pyro-metallurgical processes.For spent automobile catalysts, present investigation indicated that the pretreatment of catalysts was the key process to obtain higher cyanide extraction of PGMs. A new
    flow-sheet involving pressure NaOH pre-leaching, pressure cyanide leaching and zinc cementation of precious metals was suggested. The laboratory small-scale, 600g scale and 5kg scale batch experiments were carried out. The experimental results were better than those reported by the cyanidation technology of U.S.B.M. The new technology made a breakthrough in recovery of PGMs from spent auto-catalysts, presented various advantages over current oxidation leaching process, and has better-industrialized applications.In laboratory small-scale experiments, effects of different technical conditions on cyanide leaching recovery of Pt, Pd and Rh were investigated for both pressure NaOH leaching pretreatment and pressure cyanide leaching processes. The optimal operation conditions for pressure NaOH leaching process were spent auto-catalysts granularity > 90% -74 u m, added NaOH 10wt%, temperature 160°C, time 2h, oxygen pressure 2.0MPa, and L:S=4:1. For pressure cyanide leaching processes, the optimal operation parameters were 5wt% of NaCN, 160°C, lh, Pair 2.0MPa and L:S=4:1.The results of magnified process for 600g-batch unit showed that the recovery of PGMs could reproduce the results of laboratory small-scale experiments. Under optimal operation conditions, percent Pt, Pd and Rh extraction calculated on the basis of slags reached 97%~98%, 98%~99% and 92%~95% respectively. The technology also held true for end-slags by current ambient temperature oxidation acid-leaching processes. For the end- slags, more than 90% of PGMs could still be recovered using the new technology, but it is almost impossible by using the acid-leaching method for further extraction of PGMs.The process development unit for 5kg batch in 50 L autoclave indicated that, the recoveries of Pt, Pd and Rh after two-steps of pressure cyanide leaching could reach 95%—96%, 97%—98% and 90%~92% for recovery of PGMs from spent auto-catalysts containing Pt+Pd+Rh^lOOOg/t—2000g/t respectively, and the recoveries of Pt, Pd and Rh after only one-step pressure cyanidation could also reach 87%~89%, 88%~ 93% and 83%~89% for acid-leaching end-slags containing Pt+Pd+Rh?=80g/t~120g/t respectively.Based on above systemic technical research, the mineralogy of leaching processes was investigated, influence of pressure H2SO4 pre-leaching and pressure NaOH pre-leaching on latter cyanide leaching process were discussed, thermodynamics and kinetics of pressure cyanide leaching were also analyzed, and some new explanations from the atomic level for reaction micro-mechanism were proposed.For low-grade Pt-Pd flotation concentrates, the investigation on changes of mineralography of Pt, Pd, Cu and Ni minerals in pressure hydrometallurgy processes
    indicated that, after pressure acid pre-leaching process, Cu and Ni sulfides disappeared, which were oxidized as sulfates and leached into solutions, Fe remained as Fe2O3 and FeO(OH) in slags, while precious metal minerals could be exposed out and concentrated into slags. Therefore, precious metals could be separated from Cu, Ni and Co in the process. Because the wrappage of sulfides was uncovered at 200 °C and in the presence of excessive O2, precious metal mineral grains were exposed in solutions. Due to high oxidation potential of slurry and existence of Cl" in water, Pd and Pt were possiblely dissolved a little into the solution, but they could be easily recovered from H2SO4 medium by Cu cementation at room temperature. The thermodynamic research showed that, when increasing reaction temperature, the metallic dissolved region in E-pH diagram of Me-S- H2O transferred towards higher acidity and lower oxidation potential. Under higher slurry oxidation potential or lower acidity, FeS was easy to form Fe2O3, but Cu and Ni sulfide ores could be oxided completely as sulfates. For promoting the process, the reaction temperature should be higher than 160°C, and higher than 175°C is better. The kinetics research denoted that, the oxidation of base metal sulfide ores followed the order of Fe > Ni, Co > Cu, and the reaction rate depends on temperature, O2 pressure, initial H2SO4 concentration and slurry stirring speed. The reaction rate was dually controlled by chemical reaction and diffusion in the initial stage of pressure acid leaching, but was mainly by chemical reaction in the latter stage.For spent automobile catalysts, the pressure NaOH leaching reaction was the same as that of aluminum mineral by Baier method. The mineralogical investigation indicated that the AI2O3 coat and part of AI2O3 and SiC>2 carrier material of auto-catalysts could be dissolved in leaching process, so wrappage of carrier for PGMs was uncovered. However, when the leaching process proceeded in higher NaOH concentration at higher temperature for longer time, the undissolved Na2O-Al2O3-2SiO2-2H2O would be formed, which made PGMs re wrapped and contacted hardly with NaCN. The thermodynamic analysis based on Al2O3-Na2O-H2O solubility-graph showed that, to unpack the wrappage of carrier materials, the leaching reaction should be carried out within the unsaturated region. When reaction temperature was elevated, the unsaturated region was enlarged, which is in favor of leaching, but the initial NaOH concentration should not be too high under chosen reaction temperature. The kinetics research denoted that, the efficiency of unpacking the wrappage of carrier minerals was related to different controlling conditions for pressure NaOH leaching reaction. The reaction rate was dually controlled by chemical reaction and diffusion process. During the initial stage of leaching, the reaction rate was mainly controlled by dissolution of carrier minerals, but when above-mentioned undissolved resultant was formed, the diffusion process became to the reaction
    rate-controlling step. The formation of Na2OAl2O3xSiO2nH2O in NaOH leaching slags decreased the reaction rate, increased the consume of NaOH and the possibility of re-wrapped PGMs.For the pressure cyanide leaching process of PGMs, thermodynamics analysis indicated the ion species of Pt, Pd and Rh existed stably in cyanide solutions. Three kinds of possible chemical reactions were proposed. The high-temperature E-pH diagram of £ Pt-CN-H2O was discussed, the cyanidation thermodynamics data were calculated, and formula of Pt > Rh could be described by their surface-state chemical reaction activity, and was the synergetic influence of metal-bond strength and atomic-state stability. The fact that the high-temperature stability of Pt(CN)42" is higher than that of Pd(CN)42" could be explained from the heavy platinum-group complexes having higher thermodynamic stability and kinetic inertia than light platinum-group complexes with same structure. On the other hand, the higher stability of Rh(CN)63" than that of Pd(CN)42" could be explained from the chemical reaction activity of the PGM cyanide complex ions having different geometrical structure.
引文
[1] 陈景,张永俐,李关芳编著.贵金属—周期表中一族璀璨的元素[M].北京:清华大学出版社.2002.
    [2] 陈景.贵金属对社会可持续发展的重要作用及我国的产需矛盾[A]//有色金属科技进步与展望-纪念《有色金属》创刊50周年专辑[C].北京,冶金工业出版社,1999.
    [3] 陈景,张永俐,刘伟平.中国铂族金属的开发与应用,中国科学技术前沿[M].北京:高等教育出版社,2000.
    [4] 陈景.西部铂族金属矿产资源开发及二次资源同收问题的讨论[A]//矿产资源与西部大开发[C].北京,冶金工业出版社,2002.
    [5] 陈景.我国铂族金属的资源、生产、供需及对策[R].昆明:昆明贵金属研究所,2003.
    [6] IPMI. Mineral Commodity Summaries[R]. NY: IPMI, January 2001.
    [7] 编委会.中国矿情[M].北京:科学出版社,1999.
    [8] 刘时杰.铂族金属矿冶学[M].北京:冶金工业出版社,2001.
    [9] 黎鼎鑫,王永录.贵金属提取与精炼[M].长沙:中南工业大学出版社,2000.
    [10] 刘时杰,李晓明.云南省金宝山低品位铂钯矿资源开发综合利用[R].昆明:昆明贵金属研究所,2002.
    [11] 吴萍.西南部低品位铂钯矿中铂钯赋存状态研究[J].有色金属(选矿部分),2000:33-40.
    [12] 刘四清.低品位铂钯矿的工艺矿物学特征及应用[J].矿业工程,2000:17-22.
    [13] 刘时杰.论原生铂矿的选矿利冶金[J].贵金属,1999,20(4):51-56.
    [14] 谭庆麟,阙振寰.铂族金属-性质、冶金、材料及应用[M].北京:冶金工业出版社,1990.
    [15] Feather C.A., Mineralogical considerations in the recovery of platinum group minerals from Witwatersrand Mines gravity concentrates[J]. Trans. Geol. Soc. S.Afr., 1978, 81:229-231.
    [16] McInnes C.M., Sparrow G.J., Woodcock J.T. Extraction of platinum, palladium and gold by cyanidation from Coronation Hill ore[J]. Hydrometallurgy, 1993 (31): 157-164.
    [17] Dawson M.F., Testwork on samples of oxidized ore from the Potgietersrus Prospect [R]. MINTEK Rep. M59D. Council for Mineral Technology, Randburg, S. Africa, 1984.
    [18] Bruckard T. Recovery of gold and PGM from low grade copper ore of LOGM[J]. Fizkochemiczne Problemy Minerallurgi/Phisicochemical Problems of Mineral processing, 1998, 32:21-29.
    [19] Cooper R.A.,Watson F.W., The development of the "Chlorine Process" of extraction of platinum metals from ores[J]. J. Chem. Metall. Min. Soc. S.Afr., 1979, 29: 220-230.
    [20] United States Bureau of Mines. Treatment of sulfides containing PGMs[J]. Precious Metals 1986: 112-120.
    [21] Habashi F. A Testbook of Hydrometallurgy[M]. Quebec: University of Laval, 1993.
    [22] Komnitsas K. Pressure Hydrometallurgy[J]. Mineral Engineering. 2001, 14(8): 106-131.
    [23] 柯家骏.有色金属湿法冶金中加压浸出过程的进展[A]//中国有色金属学会第三届学术会议论文集[C].北京,冶金工业出版社,1996.
    [24] 柯家骏.湿法冶金中加压浸出过程的进展[J].湿法冶金.1996(2):1-6.
    [25] 邱定藩.加压湿法冶金过程化学与工业实践[J].矿冶.1994,3(4):55-67.
    [26] Holmes J. A. 张仁里译.应用湿法冶金技术的新经验[J].湿法冶金.1993(4):53-57.
    [27] Habashi F Pressure Hydrometallurgy/Past, Present and Future[A]//Proceedings of the third International Conference on Hydrometallurgy, ICHM'98[C]. Kunming, China: International Academic Publisher, 1998.
    [28] 编委会.黄金生产工艺指南[M].北京:地质出版社,2001.
    [29] 编委会.浸矿技术[M].北京:原子能出版社,1994.
    [30] Berezowsky RMGS. Recovery of Metals by Pressure Oxidation Leaching[J]. J. of Metals. 1991, 43(2): 9-15.
    [31] Berezowsky RMGS. Gold Extractive Metallurgy Technology and Practices[A]//Proceeding of the First Joint International Meeting between SEM and AuslMM[C]. Reno, Nevada: AusIMM, 1989.
    [32] Parker E.G. Romanchuk S. Lead-Zinc-Tin'80[C], Cigan, Mackey and O'keefe(eds.), AIME, Warrendale, PA, 1980, 407-425.
    [33] Johuston BH. Presented at Zinc'83[A]//Proceeding of the 13th annual hydrometallurgical meeting [C]. Edmonton, August, 1983.
    [34] Berezowshy RMGS, Weir DR. Gold forum on technology and practices-world gold 89' [A]//Proceeding of the First Joint International Meeting between SEM and AuslMM[C]. Reno, Nevada: AusIMM, 1989.
    [35] Forward F.A. Extraction of Nickel[J]. Trans. CIM, 1953, 56: 373-380.
    [36] Forward F.A., Samis C.S., Kudryk V. Extraction of Nickel[J]. The Can. Min. Met. Bull., 1948, 41 (434): 350-355.
    [37] Boldt JR. The winning of Nickel[M]. Toronto: Toronto Longmans Canada Ltd, 1967.
    [38] Copping JK. Mining and Metallurgical Practice in Australasia[A]//Proceeding of Australia Mining and Metallurgy Conference[C]. Meibourue: AuslMM, 1980.
    [39] Kerfoot DG, Weir DR. Extractive Metallurgy of Nickel and Cobalt[A]//Precious Metals 1988[C]. Warrendale PA: TMS, 1988.
    [40] Western Mining Corporation Limited. Kwinana Nickel Refinery Description of Operations[R]. Australia: Western Mining Co.Limited, 1996.
    [41] Brugman CF, Kerfoot DGE. Progress in Nickel Hydrometallurgy[A]//Nickel Metallurgy Vol. 1[C]. Montreal: CIM, 1986.
    [42] Deng Tong. Process in Extractive Metallurgy of Nickel and Cobalt[A]//Proceedings of the International Conference on Mining and Metallurgy of Complex Nickel Ores[C]. Jinchuan, China: Metallurgical Industry Publisher, 1993.
    [43] 邓彤.镍钴的加压氧化浸出[J].湿法冶金,1994,50:16-22.
    [44] Boldt JR. The Winning of Nickel, Its Geology, Mining and Extractive Metallurgy [R]. Toronto: International Nickel Company of Canada Ltd, 1967.
    [45] Berezowsky, RMGS. Pressure Oxide Acid Leaching of Metals[P]. United States, US Patent: US 4323541, 1982.
    [46] Stencholt EO. Zaachariasen H. Lund. J.H et al. Extractive Metallurgy of Nickel and Cobalt[A]//Nickel Metallurgy[C]. Canada: TMS, 1988.
    [47] Papangel V.G. Hydrometallurgy of Nickel[J]. Canadian Metallurgical Quarterly. 1990, 29(1):1-13.
    [48] Tyroler, PM. Sanmiya, TS. and Hodlkin, EW. Hydrometallurgy of Nickel and Cobalt[A].//Nickel Metallurgy[C]. Canada: TMS, 1988.
    [49] Borbat, VF. Autoclave Technology of Treatment of Nickeliferous Pyrrhotite Concentrates[J]. Metallurgy, 1980: 49-57.
    [50] Plasket RP. Romanchuk S. Hydrometailurgy, 1978(3): 135-151.
    [51] White L. Pressure Hydrometallurgy at Bullike Co.[J]. Journal of Eng.& Mining. 1990,190(2): 168-180.
    [52] Soyen HY.包晓波译.硫化矿提取冶金进展[M].北京:冶金工业出版社,1991.
    [53] 康南京.我国镍钴冶炼应用热压浸出技术的进展[J].有色冶炼,1995,2:1-7.
    [54] 黄其兴,王立川,朱鼎之.镍冶金学[M].北京:中国科学技术出版社.1990.
    [55] 包尔巴特,列什.镍钴冶金新方法[M].东北工学院译.北京:冶金工业出版社,1982.
    [56] 彭容秋.有色金属提取冶金手册[M].北京:冶金工业出版社,1992.
    [57] 何焕华,蔡乔方.中国镍钴冶金[M].北京:冶金工业出版社,2000.
    [58] 肖安雄译,王阳生校.重有色冶炼[M].北京:冶金工业出版社,1992.
    [59] 陈家镛,杨守志,柯家骏等.湿法冶金的研究与发展[M].北京:冶金工业出版社,1998.
    [60] David Dreisinger.铜精矿湿法冶金处理[A]//Avecia’北京铜湿法冶金技术研讨会[C].北京.2001.
    [61] Owen Tinkler.硫化矿物湿法冶金的发展[A]//Avecia’北京铜湿法冶金技术研讨会[C].北京.2001.
    [62] Philip TP. Gold'90[A]//Proceedings of the Gold'90 symposium[C]. Salt Lake City, Utah, 1990.
    [63] 闵国伟,罗中兴.论难处理金矿提金工艺[J].矿冶工程,1996,16(1):49-53.
    [64] Udupa A.R. Advances in gold extraction process[J]. Miner. Proces. Extrac. Met., 1990, 7:115-135.
    [65] 王力军,刘春谦.难处理金矿石预处理技术综述[J].黄金,2000,21(1):38-45.
    [66] Komnitsa C.难浸金矿石的矿物学特性及处理方法[J].国外金属矿选矿,1990,8:17-21.
    [67] 刘汉钊.难处理金矿石难浸原因及预处理方法[J].黄金,1997,18(9):44-48.
    [68] 徐传华.加压浸出在处理难浸金矿中的应用[J].北京矿冶研究总院学报,1993,2(1):61-65.
    [69] Weir DR, King JA, Robinson PC. Mineral and Metallurgical processing, 1986, 3(4): 76-88.
    [70] 周绍銮,孙全庆,张晓泓等.难处理金矿石的加压浸出技术[J].铀矿冶,1997,16(4):237-244.
    [71] 邱定藩.金银工业[M].北京:冶金工业出版社,1992.
    [72] 中国科学院化工冶金研究所编译.黄金提取技术[M].北京:北京大学出版社,1991.
    [73] Be.RMGS.张兴仁.难浸金矿加压浸出工艺现状[J].国外黄金参考,1991,9:9-13.
    [74] 黄孔宣,柯家骏.黄金提取新工艺[M].北京:原子能出版社,1989.
    [75] 夏光祥.难浸金矿提金新技术[M].北京:冶金工业出版社,1996.
    [76] 聂树人,索有瑞.难选冶金矿石浸金[M].北京:地质出版社,1997.
    [77] 昆明贵金属研究所.中国第二届金银铂族金属专题报告会论文集[M].昆明:贵金属信息网,1993.
    [78] 戴玉华.难浸金矿石的加压氧化预处理的工艺特征[J].江西有色金属,1997,11(4):46-47.
    [79] Ander.S. 张兴仁.用加压浸出法回收金[J].国外黄金参考,1991,10:8-10.
    [80] 托马斯K.K.加压氧化法处理难选金矿石的实践[J].国外金属矿选矿,1998,3:30-32.
    [81] 张兴仁,傅文章.国内外主要类型难浸金矿的处理方法[J].国外金属矿选矿,1998,7:2-6.
    [82] 邓彤.黄金提取技术的发展与展望[J].国外金属矿选矿,1993,10:1-8
    [83] Demopoulos D.P. Papangelakis V.G. Recent advances in refractory gold processing[A]//Proceedings of the annual meeting of CIM[C]. Quebec, CIM, 1989.
    [84] Frostiak J. Hurgrud B. Start-up and operation of Placer Dome's Campbell Mine gold pressure oxidation plant[J]. Mining Engineering, 1992, 44(8): 991-993.
    [85] 阎应科.国外黄金氰化浸出的发展状况[J].国外金属矿选矿,1993,10:14-19.
    [86] Be. RMGS. 陈芳流.加压浸出技术的工业现状[J].有色金属技术经济研究,1993,6:29-36.
    [87] Be. RMGS. 汪镜亮.加压浸出的工业现状[J].四川有色金属,1992,1:21-23.
    [88] 杨显万,邱定藩.湿法冶金[M].北京:冶金工业出版社,1998.
    [89] Thomas K.K.美国巴里克公司矿山黄金加压氧化工艺[J].国外金属矿选矿.1997(8):21-28.
    [90] 周衡,具兹范,秦晓鹏.碱性热压氧化预处理浑江金精矿提金工艺试验研究[J].黄金.1993 14(12):27-30.
    [91] Freeport Chem. Co.. Pressure Oxidation Leaching of Refractory Gold Ores[P]. United States, US Patent: US4738718, 1992.
    [92] S.N.罗索夫斯基.难处理金砷硫化物精矿的碱浸[J].国外金属矿选矿,1996,7:50-51.
    [93] Thorn.K.G.张兴仁.难浸金矿石的碱性和酸性加压浸出[J].国外黄金参考,1991,9:13-17.
    [94] 苏平,常永强,张芸.从难处理金精矿中提取金的方法[P].中国,中国专利,ZL 1227269.1999.
    [95] Hofirek Z., Kerfoot D.G. Pressure leaching of copper-nickel matte[J]. Hydrometallurgy, 1992, 29(1-3): 357-381.
    [96] 黄振华.国内外高镍锍精炼技术的进步与展望[A]//有色金属科技进步与展望-纪念《有色金属》创刊50周年专辑[C].北京:冶金工业出版社,1999.
    [97] 刘时杰.铂族金属提取冶金技术发展与展望[A]//有色金属科技进步与展望-纪念《有色金属》创刊50周年专辑[C].北京:冶金工业出版社,1999.
    [98] Duizac, JE. and Chen, TT. Hydrometallurgy of Nickel-Matte[J]. Can. Metall. Q. 1987, 26(3): 256.
    [99] Liu Shijie. Advances and Prospect of Extractive Metallurgy of PGMs[A]//International Symposium on Precious Metals. ISPM'99 [C]. Kunming, China: Yunnan Science and Technology Press, 1999.381.
    [100] 刘时杰译编.南非的铂[M].金川:冶金工业出版社,1989.
    [101] Carvalho T.M., Haines A.K. and Da Silva E.J. et al. Start-up of the Sherritt Pressure Oxidation Process at Sao Bento[A]//Precious Metals 1989[C]. Canada: IPMI, 1989. 319.
    [102] 北京矿冶研究总院.新疆喀拉通克铜镍矿湿法精炼新工艺半工业试验报告[R].北京:北京矿冶研究总院,1993.
    [103] 陈景,黄昆,陈奕然.低品位铂钯硫化矿浮选精矿提取铂族金属及综合同收铜镍钴等有价金属新工艺[P].中国,中国专利:CS 02122502.8,2002.
    [104] 陈景,黄昆,陈奕然等.加压氰化法处理铂钯硫化浮选精矿全湿法新工艺[A]//冶金与材料现状及发展战略,中国工程院化工、冶金与材料学部第四届学术会议论文集[C].北京,2003.
    [105] Pieth H.B. Pressure leaching of ores containing precious metals[J]. Ertmecall, 1983, 36: 261-265.
    [106] J.C. Yannopoulos. The extractive metallurgy of gold[M]. NY, United States: Van Nostrand Reinhold, 1991.
    [107] 张兴仁.强化氰化工艺,提高浸金效果[J].矿产综合利用,1994,6:35-41.
    [108] 周衡,具兹范,秦晓鹏.高压釜内闪速氰化提金工艺研究[J].黄金,1995,16(12):35-37.
    [109] 秦晓鹏.高温高压氰化提金新工艺的试验研究[J].黄金,2000,21(4):34-36.
    [110] 薛光,吴润身,李志勤.加压氰化法提取金银的试验研究[J].黄金,1999,20(3):35-37.
    [111] Bruckard W.J. McDonald and Mclnnes C.M. et al.. Platinum, palladium and gold extraction from Coronation Hill ore by cyanidation at elevated temperature[J]. Hydrometallurgy, 1992(30): 211-217.
    [112] Yopps D.L. Baglin E.C. Extracting platinum group metals from Stillwater complex flotation concentrates[A]//Smith R.W. and Misra M. eds.. Mineral Bioprocessing, Proceeding of the conference held in Santa Barbara, CA, USA[C]. Warrendale. P.A.: The Minerals, Metals and Material Society, 1991, 247.
    [113] Duyvesteyn S., Liu H. and Duyvesteyn W.P.C. Recovery of platinum group metals from oxide ores-TML process[A]//Proceedings of the international symposium hydrometallurgy'94[C]. London: Chapman & Hall for the IMM and Society of Chemical Industry, 1994.
    [114] Cooper R.A.,Watson F.W., The development of the "Chlorine Process" of extraction of platinum metals from ores[J]. J. Chem. Metall. Min. Soc. S.Afr., 1979, 29: 220-230.
    [115] Feather C.A., Mineralogical considerations in the recovery of platinum group minerals from Witwatersrand Mines gravity concentrates[J]. Trans. Geol. Soc. S.Afr., 1978, 81:229-231.
    [116] Dawson M.F., Testwork on samples of oxidized ore from the Potgietersrus Prospect. MINTEK Rep. M59D. Council for Mineral Technology, Randburg, S. Africa, 1984: 26.
    [117] Bruckard T. Recovery of gold and PGM from low grade copper ore of LOGM[J]. Fizkochemiczne Problemy Minerallurgi/Phisicochemical Problems of Mineral processing, 1998, 32: 21-29.
    [118] Mclrmes M.F. Extraction of Platinum, Palladium and Gold by Cyanidation of Coronation Hill ore [J]. Hydrometallurgy. 1994(35):141-159.
    [119] Anon. Study on recovery of platinum group metals by cyanides in AMIRA-CAIRA[J]. Aus. Inst. Min. Metall. Bull., 1991, 3: 54.
    [120] Anon. Study on recovery of platinum group metals by cyanidation[J]. Aus. Inst., 1991, 83(5): 14-21.
    [121] 广州有色金属研究院.云南省金宝山低品位铂钯矿资源开发综合利用-选矿合理工艺流程新设备新药剂的研究[R].广州:广州有色金属研究院,1998.
    [122] 马宠,寇建军.含铂钯铜镍精矿湿法冶金处理新工艺[J].矿产综合利用,1999,10:47-48.
    [123] 吴萍.铂钯矿湿法预处理试验研究[J].有色金属(冶炼部分),2002,3:35-38.
    [124] Johnson Mattey Ltd.. Platinum 2002[M]. London, England: Johnson Mattey Ltd., 2002.
    [125] 陈景.从二次资源中同收铂族金属技术发展概况[A]//2002年中国贵金属高峰研讨会会议论文集[C].上海:中国有色金属工业信息研究中心,2002:15-22.
    [126] Johnson Mattey Ltd..Platinum 2003[M]. London, England: Johnson Mattey Ltd., 2003.
    [127] 陈昌禄,陈景.从汽车废气净化失效催化剂中回收铀钯铑的研究[R].昆明:昆明贵金属研究所,1996.
    [128] 陈景,谢明进,陈奕然.从等离子体熔炼捕集料中回收铂钯铑的研究[R].昆明:昆明贵金属研究所,1996.
    [129] Hoffmann J.E. Recovering platinum-group metals from auto-catalysts[J]. J. Met. 1988, 40 (6): 40-44.
    [130] Mishra R.K. and Reddy R.G., Pyro-metallurgical processing and recovery of precious metals from auto-catalysts using plasma arc smelting[J]. Precious Metals 1986: 217-230.
    [131] James Saville, Recovery of PGM's by plasma smelting[J]. Precious Metals 1985:157-167.
    [132] Day J.G., Recovery of platinum group metals, gold and silver from scrap[P]. Unite States, US Patent, US 4427442, 1985.
    [133] Chen Jing, Xie Mingjin and Chen Yiran, Recovering Platinum group metals from collector material obtained by plasma fusion[A]//Den-Deguo. Proceeding of the 4th East-Asia Resources Recycling Technologies Conference[C]. Kunming: Yunnan Sci.&Tech. Publisher, 1997: 662-665.
    [134] Saville J., Recovery of PGM's by plasma arc smelting (First Commercial Plant)[J]. Precious Metals 1985: 213-226.
    [135] Dhara S., The feasibility of slag reutilization in the recovery of precious metals by smelting operation[J]. Precious Metals 1987: 543-561.
    [136] Keyworth B., The role of pyro-metallurgy in the recovery of precious metals from secondary source[J]. Precious Metals 1982: 509-537.
    [137] Rajcevic H.P. and Opie W.R., Development of electric furnace slag cleaning at a secondary copper smelter[J]. Journal of Metals, 1982(3): 54-56.
    [138] Reddy R.G. and Mishra R.K., Recovery of precious metals by pyro-metallurgical processing of electronic scrap[J]. Precious Metals 1987:135-146.
    [139] Ezawa N. Recovery of precious metals[P]. Japan, Japan Patent. JP 92317423, 1990.
    [140] Rosenqvist T., Principles of extractive metallurgy[M]. NewYork, United States: McGraw Hill Publication, 1974.
    [141] Bold J.R., Queneau P., The winning of Nickel[M]. Toronto, Canada: Longmans Canada Ltd., 1967.
    [142] Adamson R.J., Gold metallurgy in South Africa[M]. South Africa: Chamber of Mines of South Africa Publication, 1983.
    [143] Jung V., Treatment process for the recovery of precious metals from lead bullion[J]. Journal of Metals, 1981 (10): 42-53.
    [144] Vickers S.M., Treatment, sampling and electric arc furnace smelting technology[J]. Precious Metals 1982:539-553.
    [145] Hill J., Day J.G., Recovery of platinum group metals from scrap and residue[P]. United States, US Patent. US 4451290,1984.
    [146] Cichy P. Precious metals recovery by the electrothermic method from alumina base catalysts[J]. Precious Metals 1983, 167-183.
    [147] Shoji Toru. Recovering method for platinum group metals [P]. Japan, Japan Patent. JP 2301529.1990.
    [148] Nixon W.G., Method of removing platinum from a composite containing platinum and alumina[P]. United States, US Patent. US 2860045, 1958.
    [149] Murray M.J., Recovery of metals[P]. United States, US Patent. US 3021209, 1962.
    [150] Shoji Toru. Recovering method for platinum group metals [P]. Japan, Japan Patent. JP 2301527.1990.
    [151] Bond G.R., Treatment of platinum containing catalyst[P]. British, British Patent. GB 2214173. 1958.
    [152] Shoji Toru. Method for recovering Pd[P]. Japan, Japan Patent. JP 62280332. 1987.
    [153] Shoji Toru. Recovering method for Rh[P]. Japan, Japan Patent. JP 62280338. 1987.
    [154] Musco S.P., Platinum group metals-automotive and autocatalyst handling and procedures [A]//IPMI. IPMI 2nd Conference[C]. NY: IPMI, 1978,24-38.
    [155] Mishra R.K. Recovery of nobel metals[P]. United States, US Patent. US 2863762, 1958.
    [156] Bond G.R. Recovery of platinum from deactivated catalyst[P]. United States, US Patent. US 3856912,1974.
    [157] Murray M.J. Recovery of platinum from aluminum base platinum catalyst[P]. United States, US Patent. US 2786752,1975.
    [158] Milliken. Recovery of platinum from deactivated catalyst composites[P]. United States, US Patent. US 2950965,1960.
    [159] Mishra R.K., PGM recoveries by atmospheric and autoclave leaching of aluminum bead catalyst[J]. Precious Metals 1987:177-195.
    [160] 周俊.从粒状汽车废催化剂中回收铂族金属[J].有色金属(冶炼部分),1996,(2):31-35.
    [161] Milliken. Recovery of platinum[P]. Hungary, Hungary Patent. HU, 36867.1985.
    [162] Mishra R.K. Recovering precious metals from catalysts[P]. Deutschland, Deutsch Patent. DD, 251120.1987.
    [163] Milliken, Treatment of platinum containing catalyst[P]. United States, US Patent. US 2806004, 1957.
    [164] Formanek. Recovering method for platinum group metals from automobile catalysts[P]. Soviet Union, SU Patent. SU 194609. 1982.
    [165] D'Aniello M.J. Noble metal recovery from automotive catalyst SP-508. International congress and exposition[R]. Report No. 820187, Detroit, MI, 1982.
    [166] Murray M.J. Recovery of Pt/Rh from car exhaust catalysts[P]. United States, US Patent. US 3985954,1975.
    [167] Lakshmanan V.I., Todd I.A. Recovery of platinum and palladium from spent automotive catalysts[J]. Precious Metals 1991:237-242.
    [168] Wisecarver K.D., Yang N. and Wu K.A., Dissolution of platinum and palladium from automotive catalysts[J]. Precious Metals 1992: 29-37.
    [169] Bonucci J.A., Parker P.D.. Recovery of PGM from automotive catalytic converter [A]//V.Kudryk. Proceedings of TMSAIME Symposium[C]. FL: Fort Lauderdale, 1984: 463-482.
    [170] Letowski F.K., Distin P.J., Platinum and palladium recovery from spent catalyst by aluminum chloride ieaching[A]//P.R.Taylor. Proceedings of TMSAIME Symposium[C]. FL: Fort Lauderdale, 1985: 735-745.
    [171] Ezawa N., Recovery of precious metals in Japan[A]//G.Foo and M.E.Browning. Symposium on Recovery, Reclamation and Refining of Precious Metals[C]. NY: IPMI, 1984:31-42.
    [172] Maryvonne, Method for recovery of Platinum and Iridium from catalysts[P]. United States, US Patent. US 4069040, 1987.
    [173] Maryvonne, Method of recovering the constituents of catalysts comprising an aluminous carrier, Platinum and Iridium[P]. United States, US Patent. US 3999983, 1976.
    [174] Sargemt, Recovery of copper contaminated platinum group catalyst metal salts[P]. United States, US Patent. US 3488144,1970.
    [175] Kuroda Atsushi, Noda Fumiyoshi, Yoshida Kazuko, et al., Recovering method for platinum group metals from platinum base catalyst[P]. Japan, Japan Patent. JP 57095831, 1982.
    [176] Sakakibara Yoshinobu, Takigawa Kazunori, Fukui Hiroaki, Method for recovering rhodium[P]. Japan, Japan Patent. JP 58199832.1983.
    [177] Sakakibara Yoshinobu, Kondo Eisaku, Sato Masayasu. Method for recovering platinum family metals and cerium from used catalyst[P]. Japan, Japan Patent. JP 3060742. 1991.
    [178] Dhara S.C., The recovery of platinum group metals by high pressure reaction method [J]. Precious Metals 1989: 483-491.
    [179] Chen Chanlu, Guo Qiuquan, Chen Jing, Recovering Platinum, Palladium and Rhodium from deactivated auto-catalysts[A]//Den-Deguo Proceeding of the 4th East-Asia Resources Recycling Technologies Conference[C]. Kunming: Yunnan Sci.&Tech. Publisher, 1997: 159-162.
    [180] Tucker. Method for Recovering Platinum[P]. United States, US Patent. US 2805941, 1957.
    [181] Bolinski L., Distin P.A., Platinum and Rhodium recovery from scrapped honeycomb auto-catalyst by chloride leaching and hydrogen reduction[J]. Precious Metals 1991: 179-189.
    [182] Kolek J.F., Hydrochloric acid recovery process[J]. Chemical Engineering Process, 1973, 69(2): 47-49.
    [183] Marchessaux P., Plass L. and Reh L., Thermal decomposition of aluminum hexahydrate chloride for aluminum production[A]//W. S. Peterson. Light Metals 1979 [C]. Warrendale, PA: MSAIME, 1979:131-138.
    [184] Mishra P. K., Ramadorai G., Hydrometallurgical recovery of platinum group metals from automobile converters[A]//Peterson W. S. Proceeding of the 117th Annual AIME Meeting[C]. NY: MSAIME, 1988:51-57.
    [185] Wu KY. A., Wisecarver K. D. and Abrham M. A., Rhodium, Platinum and Palladium recovery from new and spent automotive catalysts[J]. Precious Metals 1993:343-349.
    [186] 张方宇,从废催化剂回收铂钯[J].中国物资再生,1993,(6):13-17.
    [187] Atkinson G. B. Cyanide leaching method for recovering platinum group metals from a catalytic converter catalyst [P]. United States, US Patent. US 5160711. 1992.
    [188] Desmond D. P.. High-temperature cyanide leaching of platinum group metals from automobile catalysts-laboratory test[R]. RI-9384, United States: Bureau of Mines, 1991.
    [189] Alkinson G. B., Desmond D. P. and Kuczynski et al. Recovery of PGM from virgin automotive catalysts by cyanide leaching[A]//Proceedings of International Precious Metals Institute[C], Las Vegas, NV, IPMI, 1989.
    [190] Kuczynski R. J.. High-temperature cyanide leaching of platinum group metals from automobile catalysts-process development unit[R]. RI-9428, United States: Bureau of Mines, 1992.
    [191] Desmond D. P.. High-temperature cyanide leaching of platinum group metals from automobile catalysts-pilot plant unit[R]. RI-9543, United States: Bureau of Mines, 1995.
    [192] Anon. Cyanide leaching of PGMs from auto-catatlysts[J]. California Mining Journal, 1992, 62(4): 31-32.
    [193] Sibrell P. L., Atkinson G. B Leaching of petroleum catalysts with cyanide for palladium recovery[R]. RI-9535, United States: Bureau of Mines, 1995.
    [194] 陈景,黄昆.加压氰化法提取铂族金属新工艺[P].中国,中国专利:CS01130222.4,2001.
    [195] 黄昆,陈景.加压氰化法从失效汽车催化剂中回收铂族金属[J].中国有色金属学报,2003,13(6):1559-1564.
    [196] Letowski F. K. Recycle and secondary recovery of metal [A]//Taylor P. R. Proceedings of TMSAIME Symposium [C]. FL: Fort Lauderdale, 1985: 735-745.
    [197] United States Bureau of Mines. Recovery of Precious and rare metal technologies [R]. NY: IPMI, 1989: 365-380.
    [198] Sargemt. Recovery of platinum group catalyst metal [P]. United States, US Patent. US 4775452. 1982.
    [199] Platinum Lake Technology Inc. Precious metal recovery technologies[R]. NY: IPMI, 1989: 381-393.
    [200] Kanda Yamato, Kato Toshikazu. Memory card mounting device[P]. Japan, Japan Patent. JP 9293552. 1997.
    [201] Nagai Masao, Yamaguchi Hirokazu. Method and apparatus for removing lightweight substance mixed into aggregate[P]. Japan, Japan Patent. JP 9299826. 1997.
    [202] Huang Kun, Chen Jing. High-temperature Cyanide Leaching of Platinum Group Metals from Spent Auto-Catalysts. Precious Metals 2003, Proceeding of IPMI 27th Annual Conference. 2003: 217.
    [203] 袁华俊,项阳,袁艺.拜耳法中石灰用量与氧化铝溶出率和碱耗的关系[J].有色金属,1999,2:41-46.
    [204] 古映莹.金氰化过程氰根与氧气浓度的最佳比值[J].黄金,1994,15(6):50-52.
    [205] 李洪桂.湿法冶金学[M].长沙:中南大学出版社,2002.
    [206] Pourbaix M.李月娥,储建华译.贵金属-水系电位-pH图集[M].沈阳:沈阳黄金专科学校.1982.
    [207] I. R. Glastonbury. Kinetics of aluminous ores leaching process[J]. Metallurgical Trans. B., 1982, 12: 555-563.
    [208] Sharp A. G. The chemistry of cyano-complexes of the transition metals[J]. Academic, 1976: 243-264.
    [209] Tan T. C. and Teo W. K. Destruction of cyanides by thermal hydrolysis[J]. Plat. Surf. Finish., 1987, 74(4): 70-73.
    [210] Tan T. C. The behavior of cyanides in gold cyanide leaching[J]. Journal of the South African Institute of Mining and Metallurgy, 1990, 90(2):37-44.
    [211] Halpern J., Cozens R. and Lai-Yoong Goh. The synthesis, characterization and reactivity of tetracyanorhodate(Ⅰ) [J]. lnorganica Chemica Acta, 1975, 12: 35-37.
    [212] 姜涛.提金化学[M].长沙:湖南科学技术出版社,1998.
    [213] 中南矿冶学院分析化学教研室.化学分析手册[M].北京:科学出版社,1982.
    [214] Ginzburg S. I. Ezerskaya N. A. Analytical chemistry of platinum metals[M]. New York: Keter Publishing House Jerusalem LTD. 1975.
    [215] Hancock R. D. Formation Constant of Pd(CN)_4~(2-)[J]. Inorganic Chemistry, 1976, 15(4): 995-996.
    [216] Hancock R. D. Finkelstein N. P. and Evers A. A linear free-energy relationship involving the formation constants of palladium(Ⅱ)and platinum(Ⅱ) [J]. J. Inorg. Nucl. Chem., 1977, 39:1031-1034.
    [217] Adams M. D. The chemical behavior of cyanide in the extraction of gold. 1. Kinetics of cyanide loss in the presence and absence of activated carbon[J]. J. S. Afr. Inst. Min. Metall., 1990, 90:37-44.
    [218] Jara A. O. Effect of oxygen on gold cyanidation[J]. Hydrometallurgy, 1992, 6:195-210.
    [219] 张兴仁.氧在金矿石氰化浸出过程中的重要作用[J].矿产综合利用,1994,2:18-24.
    [220] Haque K. E. The role of oxygen in cyanide leaching of gold[J]. CIM Bulletin, 1992, 9: 31-38.
    [221] 陈景.原子态与金属态贵金属化学稳定性的差异[J].中国有色金属学报,2001,11(2):286-293.
    [222] 陈景.贵金属物理性质与原子结构的关系[J].中国工程科学,2000,2(7):66-73.
    [223] 陈景.从原子结构探讨贵金属在提取冶金过程中的行为[J].中国工程科学,1999,1(2):34-40.
    [224] 陈景.铂族金属化学冶金理论与实践[M].昆明:云南科技出版社,1995.
    [225] 顾松青.一水硬铝石矿拜尔法溶出过程研究[博士学位论文],北京,北京有色金属研究总院,1986.
    [226] Muir D., Colin W. A., and Sandton Z. A. et. al. Leaching refractory gold ores [P]. US Patent No. 4 559 209, 1985.
    [227] 逯艳军.用加压氰化浸出法提取金和银的工艺试验[J].黄金地质,2003,9(4):72-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700