硬质合金挤压成形剂设计及脱除技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硬质合金挤压成形作为一种新型近净成形技术,现已广泛应用于硬质合金棒材的制备。成形剂在硬质合金挤压成形中起增强喂料流动、维持挤出棒坯形状的基本作用,其设计及脱除是该项技术的核心。本论文在前人研究的基础上,针对硬质合金挤压成形剂的设计、脱除及相关基础问题做了较为系统的实验室研究,可对今后硬质合金挤压成形的产业化生产起到一定的支撑作用。
     本论文的主要研究内容有:
     (1)根据本研究所选用的硬质合金粉末的特点及热塑性成形剂设计的基本要求,以HDPW、CW、LPW为增塑组元,以HDPE、PP、EVA为骨架组元,以SA为活性组元设计了6组成形剂。各组成形剂的增塑组元及活性组元组成及含量一致,不同点在于骨架组元中HDPE、PP、EVA的相对含量不同。研究表明,成形剂各组元可通过物理机械共混达到工艺相容,6组成形剂均有良好的热性能,整个热失重过程分为明显的三步,利于分步热脱除,热失重试验的分析结果可作为制定热脱脂工艺参数的依据。
     (2)研究了喂料的混炼及挤出过程,探讨了混炼时间对硬质合金喂料混炼效果的影响以及挤出压力和温度对挤出棒坯质量的影响。研究表明,在粉末装载量为48%,混炼温度80℃条件下,喂料混炼5h其均匀度达98%以上。喂料的预压应在真空条件下缓慢进行,且预压之前喂料过筛有利于提高挤出棒坯性能。确定了6组喂料的挤出温度,最终获得了合格的挤出棒坯。
     (3)探讨了硬质合金挤压成形棒坯溶剂脱脂的原理,研究了溶剂脱脂开裂的产生原因、脱脂效果的影响因素。研究表明,成形剂的不同导致脱脂棒坯溶剂脱脂保形性不同,在成形剂体系适合溶剂脱脂的情况下,残余应力是硬质合金挤压棒坯溶剂脱脂开裂的主要因素。增加退火过程可降低脱脂棒坯内应力,避免脱脂棒坯的溶剂脱脂开裂。而成形剂组成及脱脂温度、脱脂时间、脱脂棒坯形状是影响脱脂效果的主要因素,共同决定了脱脂棒坯的溶剂脱脂行为。
     (4)在对热脱脂机理及喂料热性能进行探讨分析的基础上,对溶剂脱脂后的R2#棒坯进行了热脱脂及烧结研究。研究表明,棒坯热脱脂时应采用不含水和氧气的高纯气体。相对于模压成形和等静压成形,挤压成形由于成形剂的大量使用导致最终烧结制品存在孔隙,后续热等静压处理可极大程度上消除孔隙,但会形成钴池。在本研究中,R2#脱脂棒坯经溶剂脱脂→一步热脱脂+烧结→低压热等静压后处理等工艺过程制得的YG10硬质合金挤压成形棒材金相检验中未发现A类、B类孔隙及C类非化合碳(A00B00C00),也无η相,其主要性能可达:密度14.33g/cm~3~14.37g/cm~3,平均抗弯强度3550MPa,最高抗弯强度4000MPa,洛氏硬度92.0HRA~92.5HRA,矫顽磁力18.5kA/m~20.0kA/m,钴磁9.09%~9.35%。
Hardmetal extrusion molding is a novel near-net-shape technology which has been widely applied to preparing hardmetal rods.Binder system improvement and debinding technology development are two most important research subjects because of binders playing a fundamental role in increasing fluidities of feedstocks and keeping shapes of extruded parts in the process.On the basis of predecessors' studies, binders designing and debinding and some other technologies which are helpful to research and pilot production,are investigated in this thesis.
     The main research topics of this thesis are as follows:
     (1) 6 binders are designed based on the hardmetal powder characteristics and the binder design requirements,and high-density paraffin wax(HDPW),carnauba wax (CW) and liquid paraffin wax(LPW) are chosen as plastifying ingredients; high-density polyethylene(HDPE),polypropylene(PP) and ethylene-vinyl acetate (EVA) are chosen as polymer ingredients;stearic acid(SA) is chosen as surfactant ingredient.The differences of 6 binders are their relative contents of polymer ingredients HDPE,PP and EVA.The results indicate that these binder ingredients are compatible.The basic characteristics of 6 binders have been investigated preliminarily. The results show that each thermogravimetry curve of 6 binders' is divided into 3 steps,it not only means that these 6 binders are propitious to thermal debinding step by step but simultaneously provides the foundation of parameters setting for thermal debinding.
     (2) The mixing process and extrusion process of feedstocks are studied,both the relationship between mixing time and uniformity of feedstocks and the influence of extrusion temperature/pressure to the quality of extruded parts are investigated.The results show that the uniformity of feedstocks will exceed 98%after 5 hours' mixing with conditions of a powder loading of 48%and a mixing temperature of 80℃. Feedstocks should be slowly performed in vacuum and a sifting process before it is necessary.The extrusion temperatures of 6 feedstocks are determined and eligible extruded parts are finally obtained.
     (3) Based on the analysis of solvent debinding mechanism,the factors causing cracking in solvent debinding are investigated.The results show that different shape retention of solvent-debound specimens is due to different binder designing.When the binder is propitious to solvent debinding,residual stress is the fatal reason that results in cracking.An annealing process of the extruded parts should be performed to avoid the cracking.The binder design,the shape of solvent-debound specimens,the solvent debinding temperature and time determine the solvent debinding behaviors together.
     (4) Based on the analyses of thermal debinding mechanism and the thermal characteristics of feedstocks,R2# solvent-debound specimens are thermal debound and sintered.The results indicate that the thermal debinding atmosphere should not contain any water and oxygen.There are numerous small holes distributed homogeneously in sintered parts because of lots of binder used in hardmetal powder extrusion molding.An extra hot isotactic pressing process can eliminate the holes but cobalt lakes are generated.In this study,the metallographic examination shows that neither type A、type B porosity nor free carbon phase、ηphase are found in the sintered parts of R2# of which processed with solvent debinding、one step thermal debinding and sintering、hot isotactic pressing.The performance of obtained YG10 hardmetal rods is improved,with the desity of 14.33g/cm~3~14.37g/cm~3,the average transverse rupture strength of 3550MPa,the highest transverse rupture strength of 4000MPa,the Rockwell hardness of 92.0HRA~92.5HRA,the coercive force of 18.5kA/m~20.0kA/m,the cobalt magnetism of 9.09%~9.35%.
引文
[1]周继承,黄伯云.增塑粉末挤压成形新技术[J].中国有色金属学报,2002,12(1):1-13
    [2]黄伯云,周继承,吴恩熙,等.硬质合金的挤压成形和注射成形技术[J].高技术通讯,1998,3:54-57
    [3]陈勇军,左孝青,史庆南,等.金属粉末增塑挤压与注射成型[J].云南冶金,2003.32(1):42-46
    [4]Zhou Jicheng,Huang Baiyun.Development of Novel Binder for Hardmetal Powder Extrution Molding[J].Journal of Materials Science & Technology,2002,18(6):569-571
    [5]张卫丰,邵刚勤,易忠来.硬质合金棒材成型技术进展[J].粉末冶金工业,2003,13(6):37-46
    [6]张荆门.硬质合金工业的进展[J].粉末冶金技术,2002,20(3):140-146
    [7]解念锁,王瑾.我国硬质合金工业发展现状与资源保护[J].中国钨业,2006,21(3):4-6
    [8]Upadhyaya A,Sarathy D,Wagner G.Advances in Sintering of hardmetals[J].Materials anddesign,2001,22(6):499-506
    [9]Ettmayer P.Hardmetals and Cermets[J].Annual Review of Materials Science,1989,19:145-164
    [10]朱丽慧,马学鸣,雷景轩,等.纳米硬质合金的进展[J].稀有金属材料与工程,2004,33(4):249-253
    [11]Sailer T,Herr M,Sockel H G,et al.Microstructure and mechanical properties of ultrafine-grained hardmetal[J].International Journal of Refractory Metals & Hard Materials,2001,19:553-559
    [12]Beste U,Hartzell T,Engqvist H,et al.Surface damage on cemented carbide rock-drillbuttons[J].Wear,2001,249:324-329
    [13]Seung I Cha,Soon H Hong,Byung K Kim.Spark plasma sintering behavior of nanocrystalline WC-10Co cemented carbide powders[J].Materials Science and Engineering A,2003,351:31-38
    [14]Zawrah M F.Synthesis and characterization of WC-Co nanocomposites by novel chemical method[J].Ceramics Intemational,2007,33:155-161
    [15]Morton C W,Wills D J,Stjernberg K.The temperature ranges for maximum effectiveness of grain growth inhibitors in WC-Co alloys[J].International Journal of Refractory Metals & Hard Meterials,2005,23:287-293
    [16]佘建芳.硬质合金的质量与使用的螺旋挤压机的尺寸和性能的函数[J].硬质合金,2001,18(2):113
    [17]Konrad Friedrich.带冷却孔钻头用硬质合金棒材裂纹消除与挤压工艺[J].国外难熔金属与硬质材料,2001,17(6):36-39
    [18]News[J].International Journal of Refractory Metals & Hard Materials,2003,21:81-103
    [19]曲选辉,李益民,黄伯云.金属粉末注射成形技术[J].粉末冶金材料科学与工程,1996,1(2):33-37
    [20]Randall M.Powder Injection Molding and What the Designer Needs to Know[J].Metal Powder Report,2003,58(9):10-11
    [21]马中全,郭学锋,林晓娟,等.金属粉末注射成型技术在硬质合金生产中的应用[J].热加工工艺,2004,1:59-60
    [22]刘军,佘正国,戈晓岚.粉末冶金与陶瓷成形技术[M].北京:化学工业出版社,2005
    [23]黄培云.粉末冶金原理[M].北京:冶金工业出版社,1997
    [24]许锁川.硬质合金打印针制取工艺[J].硬质合金,1996,13(3):146-150
    [25]胡学.整体硬质合金刀具的产业现状与发展趋势[J].硬质合金,2004,21(4):249-251
    [26]李沐山.20世纪90年代世界硬质合金材料技术进展[M].株洲:株洲硬质合余集团有限公司,2004
    [27]Lin S T,German R M.Extrusion Debinding of injection molded parts by condensed solvent[J].The International Journal of Powder Metallurgy,1989,21(5):19-24
    [28]祝宝军,曲选辉,陶颖,等.硬质合金注射成形脱脂过程中的碳含量控制[J].中国有色金属学报,2002,12(4):791-796
    [29]Rhee B O,Cao M Y,Zhang H R.Improved wax-based binder formulations for powder injection molding[J].Advanced in Powder Metallurgy,1991,2(1):43-58
    [30]李笃信,唐嵘,李益民,等.金属粉末注射成形粘结剂及其研究进展[J].粉末冶金材料科学与工程,1999,4(4):281-288
    [31]German R M,Booker P.Powder injection molding[J].Applied Mechanics Reviews,1990,44(8):134-139
    [32]Bloemacher M,Weinand D,Schwarz M,et al.Sintering of injection molded low alloy steel[J].Advances in Powder Metallurgy and Particulate Materials,1993,5(19):73-89
    [33]Petzoldt F,Eifert H,Hartwig I.Binder design and process control for high performance MIM-materials[J].Advances in Powder Metallurgy and Particulate Materials,1995,2(6):3-13
    [34]祝宝军,曲选辉,陶颖.粉末注射成形热塑-热固粘结剂的开发研制[J].硬质合金,2003,20(3):149-153
    [35]Anwar M Y,Davies H A,Messer P F,et al.A novel binder system for powder injection molding[J].Advances in powder Metallurgy & Particulate Materials,1995,18(6):15-25
    [36]Bakan H I,Jumadi Y.Study of processing parameters for MIM feed stock based on composite PEG-PMMA binder[J].Powder Metallurgy,1998,41(4):289-291
    [37]刘锋,张康助,王晓洁.水溶性胶粘剂及其在成形工艺中的应用[J].中国胶粘剂,2005,14(8):48-51
    [38]李昆,李晓明,敖辉.硬质合金MIM两种气氛下脱脂与烧结特征比较[J].硬质合金,2001,18(4):204-206
    [39]祝宝军,曲选辉,陶颖,等.粉末注射成型蜡基粘结剂溶剂脱脂行为[J].中南工业大学学报,2001,32(6):599-603
    [40]周继承,黄伯云,吴恩熙,等.新成形剂流变性能及其热脱脂特性[J].中国有色金属学报,1998,8(4):647-651
    [41]周继承,黄伯云.硬质合金挤压成形喂料热脱脂特性[J].稀有金属材料与工程,2002,31(3):225-228
    [42]李益民,赵利刚,黄伯云.金属注射成形的脱脂临界厚度[J].稀有金属材料与工程,2004,33(8):797-803
    [43]范景莲,李志希,成会朝.硬质合金注射成形脱脂工艺与碳含量控制[J].稀有金属材料与工程,2006,35(1)74-77
    [44]Wiech R E.Method of forming shaped metal alloy parts from metal or compound particles of the metal alloy components and compositions[P].US Patent 4415528,1983
    [45]Bloemacher M,Weinand D.Injection molding of stainless steel powder with a new binder techniques[J].Advanced in Powder Metallurgy and Particular Materials,1992,24(1):94-98
    [46]Bloemacher M,Weinand D,Schwarz M,et al.Sintering of injection molded low alloy steel[J].Advances in powder Metallurgy and Particulate Materials,1993,5(19):73-89
    [47]郭世柏,曲选辉.金属注射成型粘结剂的研究进展[J].粉末冶会技术,2004,22(3):178-182
    [48]祝爱兰,钟宏.溶剂脱脂型MIM粘结剂的研究[J].材料导报,2002,16(8):62-64
    [49]郑洲顺,曲选辉,祝宝军.粉末注射成形溶剂脱脂过程的数学模型[J].中国有色金属学报,2002,12(5):869-874
    [50]祝宝军,曲选辉,陶颖,等.粉末注射成形冷凝蒸气脱脂过程研究[J].稀有金属材料与工程,2004,33(10):1056-1060
    [51]吴音,司文捷,金元生,等.陶瓷注射成型的一种新的脱脂方法—超临界流体脱脂[J].稀有金属材料与工程,2003,32(1):54-57
    [52]Johnny B.MIM offers increased applications for submicron WC-10Co[J].Metal Powder Report,1999,12(1):30-33
    [53]黄伯云,李益民,范景莲,等.粉末注射成形硬质合金异形件热脱脂工艺的研究[J].硬质合金,2001,18(12):214-217
    [54]王国栋.硬质合金生产原理[M].北京:冶金工业出版社,1988
    [55]解迎芳,王兴庆,陈立东,等.放电的等离子体烧结温度对纳米硬质合金性能的影响[J].硬质合金,2004,21(4):219-225
    [56]黄英华,王兴庆,杨逸斐,等.硬质合金烧结方法的新进展[J].上海金属,2005,27(1):40-44
    [57]王茂青.气压烧结硬质合金性能的研究[J].硬质合金,1998,15(4):217-221
    [58]Yao Zhenggui,Jacob J.Nanosized WC-Co holds promise for the future[J].Metal Powder Report,1998,53(3):26-28
    [59]史晓亮,杨华,邵刚勤,等.微波烧结法制备WC-10Co硬质合金[J].中南大学学报,2006,37(4):665-669
    [60]Hwan-Cheol Kim,Dong-Young Oh,In-Jin Shon.Sintering of nanophase WC-15vol%Co hard metals by rapid sintering process[J].Refractory Metals &Hard Metals,2004,22:197-203
    [61]王社权.影响超细硬质合金性能的几个因素[J].硬质合金,2000,17(1):9-12
    [62]范景莲,李志希,成会朝.硬质合金注射成形工艺与碳含量控制[J].稀有金属材料与工程,2006,35(1):74-77
    [63]祝宝军,曲选辉,陶颖.粉末注射成形热塑-热固粘结剂的脱脂工艺[J].中国有色金属学报,2004,14(1):149-154
    [64]陈勇志.挤压硬质合金的碳含量控制[J].中国钨业,2001,16(3):25-28
    [65]李松林,李益民,曲选辉,等.MIM溶剂脱脂型石蜡-油-聚乙烯粘结剂的研究[J].粉末冶金技术,2001,19(4):204-207
    [66]刘瑞,李荐,易丹青,等.超细碳化钨粉末粒度测试方法的研究[J].稀有金属与硬质合金,2006,34(1):55-58
    [67]Hens K F,German R M.Injection molding of various metals and ceramics using an acetal binder[J].Advances in Powder Metallurgy and Particulate materials,1995,2(6):27-36
    [68]范景莲,黄伯云,李益民,等.影响PIM发展的关键因素[J].粉末冶金技术,1998,16(3):217-222
    [69]王晓云.合成蜡的应用[J].化工新型材料,2002,30(7):43-44
    [70]日本高分子学会.塑料合金[M].北京:中国轻工业出版社,1992:84-99
    [71]Harry R Allcock,Frederic W Lampe,James E Mark.Contemporary Polymer Chemistry[M].HongKong:Pearson Education North Asia Limited,2004:493-502
    [72]傅献彩,沈文霞,姚天扬.物理化学[M].北京:高等教育出版社,2003:913-918
    [73]Sandivik AB.Method of making cemented carbide by powder injection molding[P].US patent WO98/18973,1998
    [74]高建祥,曲选辉,赵赛,等.硬质合金注射成型多组元聚合物粘结剂的溶剂脱脂工艺研究[J].稀有金属材料与工程,2003,32(11):934-938
    [75]李松林,李益民,曲选辉,等.Fe-2Ni粉末注射成形溶剂脱脂相关问题的研究[J].材料科学与工艺,2001,9(1):19-22
    [76]范景莲,李志希,肖琼,等.YG8硬质合金注射成形脱脂工艺的研究[J].稀有金属,2005,29(6):803-809
    [77]Evans J R G,Edirisingle M J.Interfacial factors affecting the incidences of defects in ceramic mouldings[J].Journal of Materials Science,1991,26:2081-2088
    [78]German R G.粉末注射成形[M].长沙:中南大学出版社,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700