稳定性调控状态下的轴流压气机转子叶顶尾迹实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动叶端区流动尤其是叶顶泄漏流与压气机稳定性有着十分紧密的联系,对动叶端区流动的干预和调控也成为轴流压气机稳定性调控技术的主要发展方向之一。围绕动叶端区流动结构的流动失稳机理及扩稳机理研究是近年来气动热力学领域的研究热点。
     转子尾迹流场集中体现动叶吸力面附面层、叶顶泄漏流、尾缘角区涡等多种复杂流动结构的相互作用结果,在多级压气机性能和稳定性研究中扮演重要角色。由于转子尾迹的三维性和强非定常性特征,对转子尾迹流场的动态测量面临很大的技术难度。本文以转子尾迹为切入点,从高时空分辨率动态测量技术的开发入手,实验研究了稳定性调控状态下的轴流压气机转子叶顶尾迹特征,具体研究内容包括:
     1.针对转子尾迹动态测量的高时空分辨率动态总压探针研制。
     轴流压气机转子尾迹的三维动态测量对测量系统的时间分辨率和空间分辨率要求都十分苛刻。本文设计了一种基尔探头半无限引压管动态总压探针,创新性地采用了幅频和相频传递函数的动态标定和数据处理技术,在保证探针时间分辨率的同时大大提高了空间分辨率。对基尔探头结构进行了三维数值模拟,澄清了其在大偏角来流条件下的总压测量原理。对半无限引压管的幅频响应特性以及引压管形状对幅频传递函数的影响规律进行了实验研究,为探针结构优化设计提供了理论依据。以压气机转子叶顶的压力脉冲作为输入信号,对探针进行了动态传递函数标定,并采用正反傅立叶变换技术实现了对探针输入时域信号的修正,保证了动态总压的测量精度和时空分辨率。
     2.光壁机匣条件下的轴流压气机转子叶顶尾迹特征实验研究。
     对压气机节流过程中尤其是近失速工况下的转子尾迹特征研究,是稳定性调控机理研究的前提。本文采用自行研制的动态总压探针,对一台跨音轴流压气机和一台低速轴流压气机在光壁机匣条件下的转子尾迹流场进行了三维动态测量。绝对坐标系下的转子出口总压轴向衰减规律表明,主流与尾迹的周向掺混对总压的衰减起决定性作用。转子时均总压展向分布结构表明,在压气机节流过程中,叶片顶部的加载幅度最大。当流量减小到一定程度,大约80%叶高以上的转子尾迹总压和部分弦向范围的叶顶静压同时出现0.5倍叶片通过频率的特征频带,此特征频带的功率随着流量减小而不断增大,与此同时,1倍叶片通过频率的功率降低。
     3.周向槽机匣处理对低速轴流压气机的扩稳效果及相应转子流场实验研究。
     机匣处理是应用最为广泛的轴流压气机扩稳技术,其中周向槽是结构上最易实现的机匣处理方式。本文对一台低速轴流压气机转子的周向槽机匣处理实验研究表明,周向槽覆盖约50%弦长位置的处理机匣能够使压气机获得较好的扩稳效果。对转子尾迹和叶顶流场的时均结果分析表明,扩稳的周向槽机匣对应着约95%叶高以上的负载向约80%-95%叶高范围的迁移现象,而此负载迁移现象对应着叶顶间隙流动结构的优化。转子尾迹总压功率谱密度分布表明,当周向槽的存在能够使大约80%叶高以上的转子尾迹总压在近失速工况下出现的0.5倍叶片通过频带的功率降低,同时使1倍叶片通过频带的功率升高时,压气机转子的失速裕度增大。
     4.转子叶顶喷气对低速轴流压气机的扩稳效果及相应转子流场实验研究。
     转子叶顶喷气的研究主要分为喷气系统优化和扩稳机理分析两个方面,本文对一台低速轴流压气机开展了叶顶喷气状态下的转子尾迹实验研究。转子总压展向分布规律表明,与压气机转子扩稳效果直接相关的是约95%叶高以上的负载向下的迁移程度。从气流波动强度的角度看,有效抑制转子尾迹区与泄漏流波动强度的叶顶喷气能够获得较好的扩稳效果。从转子尾迹总压和叶顶静压的功率谱密度分布来看,压气机稳定性提高对应着0.5倍叶片通过频带功率的降低和1倍叶片通过频带功率的恢复。以上转子尾迹的时均和非定常特征与周向槽机匣处理的研究结论一致,这表明不同的叶顶干预扩稳技术背后应该具有相同的扩稳机理。
     总之,从转子尾迹的角度来看,压气机在临近失速工况时,叶顶区域的加载幅度较大,且伴随着转子尾迹和叶顶流场波动强度的增强,并出现非叶片通过频带的压力信号功率增大和叶片通过频带的压力信号功率降低现象。而对动叶端区流场进行干预的周向槽机匣处理技术和叶顶喷气技术,在定常层面降低叶尖的负载水平,在非定常层面削弱叶顶流场的非定常波动强度,减弱非叶片通过频带的信号功率,并使叶片通过频带的信号功率增强,从而达到提高压气机稳定性的效果。第七章的讨论一节针对两种特征频率与失速的关联展开了分析与讨论。
Rotor blade tip flow especially the tip leakage flow has close relationship with the compressor stability, and intervention of the blade tip flow is an effective stability enhancement strategy. The mechanisms of flow instability and stability control around blade tip flow are a hotspot in the aerodynamic research area.
     Rotor wake, which is a complex combination of blade boundary layer, tip leakage flow, trailing edge corner vortex, and some other secondary flows, plays a significant role in the performance and stability of multistage compressors. In this paper, the rotor wake was experimental studied as a breakthrough point to investigate the mechanisms of rotating stall and stability enhancement.
     Firstly, a time-resolved total pressure probe was designed to measure the compressor rotor wake flow field. This probe was structured with a Kiel head and a semi-infinite pressure tube. The Kiel head was able to accurately measure the total pressure of flows within45degree deflection, which enabled the probe to measure the highly three dimensional rotor wake flow. The semi-infinite pressure tube could decrease the pressure signal attenuation and the cavity effect in the probe. The dynamic transfer function of the probe was calibrated using the pulse pressure signals over a compressor rotor, and it was used to correct the input time domain pressure signal so as to improve the accuracy and frequency response of the probe.
     Using the probe, steady and unsteady features of the rotor wake of axial compressors were experimental investigated under smooth casing condition. The discipline of the rotor wake averaged total pressure dissipation along axial direction was clarified. The total pressure contours of the rotor wake shown that the interaction between main flow and wake flow along circumferential direction contribute the most to the total pressure decrease. As the mass flow rate of the compressor decreasing, the rotor blade loading increased much more at the tip span than that at the lower span. As the compressor operating toward the rotating stall, the power of the frequency band around0.5blade passing frequency increased and the power of frequency band around the1blade passing frequency decreased at the same time.
     Based on the understanding of the rotor wake characteristics, the stability and rotor tip wake of a low-speed axial compressor were experimental investigated with circumferential grooved casing treatment. The influence of the chordwise location of the circumferential groove on the stall margin improvement was studied and the results shown that the casing with the groove covering the50%chord produced the largest stability enhancement of the compressor. The rotor tip wake flow shown that when the blade loading at about95%and above span moved to the80%-95%span, and the power of the frequency band around0.5blade passing frequency decreased and the power of the frequency band around1blade passing frequency increased at the same time, the circumferential grooved casing treatment would improve the compressor stabilily.
     Then, the stability and the rotor tip wake of the low-speed axial compressor were experimental investigated with blade tip air injection. Influences of the flow momentum and angle of the tip air injection on the compressor stall margin improvement were studied and the results shown that smaller injection angle and larger air momentum produced wider stall margin of the compressor. Compared with the rotor wake at the near stall point of the compressor under smooth casing condition, the rotor wake with tip air injection shown the same steady and unsteady phenomena with that with circumferential grooved casing treatment. So these two kinds of stability control techniques might have the same mechanism of stability enhancement.
引文
[1]方昌德.航空发动机的发展前景.航空发动机.2004,30(1):1-5
    [2]季路成,陈江.从IHPTET到VAATE的技术方向探析.中国工程热物理学会热机气动热力学学术会议论文集.2005,论文编号:052086
    [3]梁春华,刘红霞.美国超高效发动机技术计划.航空发动机.2004,4:58
    [4]刘大响.航空动力发展的历史性机遇.航空发动机.2005,31(2):1-3
    [5]黄顺洲,黄红超,李刚团,刘德虎.核心机技术在发动机研制中的作用和地位.航空制造技术.2007,1:56-59
    [6]刘大响.对加快发展我国航空动力的思考.航空动力学报.2001,6(1):1-7
    [7]APTD计划取得阶段性成果.燃气涡轮试验与研究.2006,19(3):5-7
    [8]赵淑芬,刘大响.我国航空发动机技术发展探索.科学决策.2001,1:42-45
    [9]陈大光,张津,朱之丽.推重比15一级发动机有关总体性能的关键技术和难点分析.航空动力学报.2001,16(1):8-12
    [10]Camp T R, Day I J. A Study of Spike and Modal Stall Phenomena in a Low-Speed Axial Compressor. ASME Journal of Turbomachiney,1998,120:393-401
    [11]McDougall N M, Cumpsty N A, Hynes T P. Stall Inception in Axial Compressors, ASME Journal of Turbomachinery,1990,112(1):116-125
    [12]Garnier V H, Epstein A H, Greitzer E M. Rotating Waves as a Stall Inception Indication in Axial Compressors. ASME Journal of Turbomachinery,1991,113(2): 290-302
    [13]Day I J. Stall Inception in Axial Flow Compressors. ASME Journal of Turbomachinery,1993,115(1):1-9
    [14]Emmons H W, Pearson C E, Grant H P. Compressor Surge and Stall Propagation. ASME Journal of Tubomachinery,1955,77:455-469
    [15]Takata H, Nagano S. Nonlinear Analysis of Rotating Stall. ASME Paper 1972-GT-3
    [16]Moore F K, Greitzer E M. A Theory of Post-Stall Transients in Axial Compression System:Part I-Development of Equations. ASME Paper 1985-GT-171
    [17]Paduano J D, Valavani L, Epstein A H, Greitzer E M, Guenette G R. Modeling for Control of Rotating Stall. Automatica,1994,30(9):1357-1373
    [18]Mansoux C A, Gysling D L, Setiawan J D, Paduano J D. Distributed Nonlinear Modeling and Stability Analysis of Axial Compressor Stall and Surge. Proceedings of the American Control Conference,1994,2:2305-2316
    [19]Bonnaure L P. Modeling High Speed Multistage Compressor Stability. M. S. Thesis, MIT, Department of Aeronautics and Astronautics,1991
    [20]Hendricks G J, Bonnaure L P, Longley J P, Greitzer E M, Epstein A H. Analysis of Rotating Stall Onset in High-Speed Axial Flow Compressors. AIAA Paper 1993-2233
    [21]Feulner M R, Hendricks G J, Paduano J D. Modeling for Control of Rotating Stall in High Speed Multi-stage Axial Compressors. ASME Paper 1994-GT-200
    [22]Frechette L G. Implications of Stability Modeling for High-Speed Axial Compressor Desigh. M. S. Thesis, MIT, De partment of Aeronautics and Astronautics,1997
    [23]Sun X. Three-Dimensional Compressible Flow Stability Theory of Rotating Stall. BUAA Technical Report BH-B4765, Beihang University, Department of Jet Propulsion,1996
    [24]Jackson A D. Stall Cell Development in an Axial Compressor. ASME Journal of Turbomachinery,1987,109:492-498
    [25]Adamczyk J J, Celestina M L, Greitzer E M. Role of Tip Clearance in High-Speed Fan Stall. ASME Journal of Turbomachinery,1993,115(1):28-39
    [26]Hoying D A, Tan C S, Vo H D, Greitzer E M. Role of Blade Passage Flow Structures in Axial Compressor Rotating Stall Inception. ASME Journal of Turbomachinery, 1999,121(4):735-742
    [27]Koch C C. Experimental Evaluation of Outer Case Blowing or Bleeding of Single-Stage Axial-Flow Compressor. NASA CR-54592,1970
    [28]Vo H D, Tan C S, Greitzer E M. Criteria for Spike Initiated Rotating Stall. ASME Journal of Turbomachinery,2008,130(1):011023-1-9
    [29]Nie C, Xu G, Cheng X, Chen J. Micro Air Injection and Its Unsteady Response in a Low-Speed Axial Compressor. ASME Journal of Turbomachinery,2002,124(4): 572-579
    [30]邓向阳.压气机叶顶间隙流的数值模拟研究.博士学位论文,中国科学院工程热物理研究所.2006
    [31]童志庭.轴流压气机中叶尖泄漏涡、失速先兆、叶尖微喷气非定常关联性的试验研究.博士学位论文.中国科学院工程热物理研究所.2006
    [32]耿少娟.压气机叶顶间隙泄漏流对微喷气的非定常响应机制与扩稳效果研究.博士学位论文.中国科学院工程热物理研究所.2007
    [33]Lin F, Zhang J, Chen J, Nie C. Flow Structure of Short Length Scale Disturbance in an Axial Flow Compressor. AIAA Journal of Propulsion and Power,2008,24(6): 1301-1308
    [34]Epstein A H, Ffowcs Williams J E, Greitzer E M. Active Suppression of Aerodynamic Instabilities in Turbomachines. AIAA 10th Aeroacoustics Conference, Seattle, Paper 86-1994,1986
    [35]Epstein A H, Ffowcs Williams J E, Greitzer E M. Active Suppression of Aerodynamic Instabilities in Turbomachines. Journal of Propulsion and Power,1989, 5(2):204-211
    [36]Ffowcs Williams J E, Huang X. Active Stabilization of Compressor Surge. Journal of Fluid Mechanics,1989,204(1):245-262
    [37]Pinsley J E, Guenette G R, Epstein A H, et al. Active Stabilization of Centrifugal Compressor Surge. ASME Journal of Turbomachinery,1991,113:723-732
    [38]Gysling D L, Dugundji J, Greitzer E M, et al. Dynamic Control of Centrifugal Compressor Surge Using Tailored Structures. ASME Journal of Turbomachinery, 1991,113(4):710-722
    [39]聂超群.压缩系统喘振现象主动控制的实验研究.博士学位论文.中国科学院工程热物理研究所.1994
    [40]Paduano J D, Epstein A H, Valavani L, et al. Active Control of Rotating Stall in a Low-Speed Axial Compressor. ASME Journal of Turbomachinery,1993,115(1): 45-56
    [41]Day I J. Active Suppression of Rotating Stall and Surge in Axial Compressors. A SME Journal of Turbomachinery,1987,109:492-498
    [42]Hendricks G J, Gysling D L. A Theoretical Study of Sensor-actuator Scheme for Rotating Stall Control. Journal of Propulsion and Power,1994,10(1):101-109
    [43]Weigl H J, Paduano J D, Frechette L G, at al. Active Stabilization of Rotating Stall in a Transonic Single Stage Axial Compressor. ASME Journal of Turbomachinery,1998, 120(4):625-636
    [44]Vo H D, Paduano J D. Experimental Development of a Jet Injection Model for Rotating Stall Control. ASME Paper 1998-GT-308
    [45]Li Z, Gong Z, Liu Y, Lu Y. The Experimental Research on the Performance of Low Speed Axial-Compressor by External Acoustic Excitation. ASME Paper 2004-GT-53183
    [46]Bailey E E, Voit C H. Some Observation of Effects of Porous Casing on Operating Range of a Single Axial-Flow Compressor Rotor. NASA TM X-2120,1970
    [47]Osborn W M, Lewis G W, Heidelberg L J. Effect of Several Porous Casing Treatment on Stall Limit and on Overall Performance of an Axial-Flow Compressor rotor. NASA TN D-6537,1970
    [48]Oscarson R P, Wright D L. Experimental Evaluation of a Honeycomb Rotor Shroud Configuration to Improve the Stall Margin of a 0.5 Hub-Tip Ratio Single Stage Compressor. NASA CR-72809,1970
    [49]Moore R D. Effect of Casing Treatment on Overall and Blade Element Preformance of a Compressor Rotor. NASA TN D-6538,1971
    [50]Takata H, Tsakada Y. Stall Margin Improvement by Casing Treatment-Its Mechanism and Effectiveness. ASME Journal of Engineering for Power,1977,99(3):121-133
    [51]Orasek D C, Lewis G W, Moore R G. Effect of Casing Treatment on Performance of an Inlet Stage for a Transonic Multistage Compressor. NASA TM X-3347,1976
    [52]Azimian A R, Elder R L, Mckenzie A B. Application of Recess Vaned Casing Treatment to Axial Flow Fans. ASME Paper, GT-89-68,1989
    [53]Elder R L. Recess Vane Passive Stall Control. ASME Paper,1992-GT-36,1992
    [54]Kang C S, Elder R L. Recessed Casing Treatment Effects on Fan Performance and Flow Field. American Society of Mechanical Engineering, June 5-8,1995
    [55]杜辉,朱俊强,楚武利.凹槽叶片式机匣处理的结构尺寸优化研究.推进技术.1998,19(1):70-74
    [56]Lu X, Chu W, Zhu J. Experimental and Numerical Investigation of a Subsonic Compressor with Bend Skewed Slots Casing Treatment. Proceedings of the Institution of Mechanical Engineers Part C:Journal of Mechanical Engineering Science,2006,220(C 12):1785-1796
    [57]楚武利,刘志伟,朱俊强.折线斜缝式机匣处理的实验研究及机理分析.航空动力学报.1999,14(3):270-274
    [58]Yu Q, Li Q, Li L. The Experimental Researches on Improving Operating Stability of a Transonic Fan. ASME GT-2002-30640,2002
    [59]Prince D C, Wisler D C, Hilvers D E. Study of Casing Treatment Stall Margin Improvement Phenomena. NASA CR-134552,1974
    [60]Boyce M P, Schiller R N, Desai A R. Research on Casing Treatment of Axial Flow Compressor. ASME Paper, GT-94-79,1974
    [61]Hathaway M D. Self-circulating Casing Treatment Concept for Enhanced Compressor Performance. ASME Paper, GT-2002-30368,2002
    [62]Crook A J, Greitzer E M, Tan C S, et al. Numerical Simulation of Compressor Endwall and Casing Treatment Flow Phenomena. ASME Journal of Turbomachinery, 1993,115(3):501-512
    [63]Hall E J, Crook A J, Delaney R A. Aerodynamic Analysis of Compressor Casing Treatment with a 3-D Navier-Stokes Slover. AIAA Paper 94-2796,1994
    [64]Rabe D C, Hah C. Application of Casing Circumferential Grooves for Improved Stall Margin in a Transonic Axial Compressor. ASME Paper, GT-2002-30641,2002
    [65]Sun X, Yu W. An Investigation of Advanced Casing Treatment by 3-D Stability Theory. ISABE Paper,2003-1-82
    [66]刘志伟.周向槽扩稳机理的流动分析-一种简化的波状壁理论.工程热物理学报.1990,11(4):216-218
    [67]Koch C C, Smith L H. Experimental Evaluation of Outer Casing Blowing or Bleeding of Single Stage Axial Flow Compressor, Part IV-Performance of Bleed Insert Configuration. NASA CR-54590,1968
    [68]Spakovszky Z S, Weigl H J, Paduano J D, van Schalkwyk C M, Suder K L, Bright M M. Rotating Stall Control in a High-Speed Stage with Inlet Distortion:Part I-Radial Distortion. ASME Journal of Turbomachinery,1999,121(3):510-516
    [69]Spakovszky Z S, Weigl H J, Paduano J D, van Schalkwyk C M, Suder K L, Bright M M. Rotating Stall Control in a High-Speed Stage with Inlet Distortion:Part II-Circumferential Distortion. ASME Journal of Turbomachinery,1999,121(3): 517-524
    [70]Suder K L, Hathaway M D, Thorp S A, Strazisar A J, Bright M B. Compressor Stability Enhancement Using Discrete Tip Injection. ASME Journal of Turbomachinery,2001,123:14-23
    [71]Kefalakis M, Papailiou K D. Detailed Measurements on an Axial Compressor Stage with Application of Discrete Tip Injection for Increasing the Surge Margin. ECT 2001-044
    [72]Fisher F B. Application of Map Width Enhancement Devices to Turbocharger Compressor Stages. SAE Paper-8809794, SP-780,1989
    [73]Hunziker R, Dickmann H P, Emmrich R. Numerical and Experimental Investigation of a Centrifugal Compressor with an Inducer Casing Bleed. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy 215.6 (2001):783-791
    [74]Sivagnanasundaram S, Spence S, Early J, Nikpour B. An Investigation of Compressor Map Width Enhancement and the Inducer Flow Field Using Various Configurations of Shroud Bleed Slot. ASME Paper,2010-GT-22154,2010
    [75]Turner R C. Improvements in or Relating to Gas Turbines. British Patent(826,669), filed July 18,1955
    [76]Strazisar A J, Bright M M, Thorp S, Culley D E, Suder K L. Compressor Stall Control Through Endwall Recirculation. ASME Paper,2004-GT-54295,2004
    [77]Kerney P. Recirculating Cavity Casing Treatment Failure. Wright Laboratories Report WL-TR-94-2092,1994
    [78]Iyenar V, Sankar L N, Niazi S. Assessment of the Self-Recirculating Casing Treatment Concept to Axial Compressors. AIAA-2005-0632,3rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January 10-13,2005
    [79]Koff S G, Nikkanen J P, Massawy R S. Rotor Case Treatment. U.S. Patent Number: 5,308,225, May 3,1994
    [80]Mailach R, Vogeler K. Aerodynamic Blade Row Interactions in an Axial Compressor-Part I:Unsteady Boundary Layer Development. ASME Journal of Turbomachinery,2004,126:35-44
    [81]Mailach R, Vogeler K. Aerodynamic Blade Row Interactions in an Axial Compressor-Part II:Unsteady Pressure Profile Distribution and Blade Forces. ASME Journal of Turbomachinery,2004,126:45-51
    [82]Zachcial A, Nurnberger D. A Numerical Study on the Influence on Vane-Blade Spacing on a Compressor Stage at Sub-and Transonic Operating Conditions. ASME Paper,2003-GT-38020,2003
    [83]毛明明,宋彦萍,王仲奇.跨声压气机动静干涉效应的数值研究.航空动力学报.2007,22(9):1468-1474
    [84]Chen F, Gu Z, Lu H, et al. Experimental Study of Stator Clocking Effects in an Axial Compressor. Chinese Journal of Aeronautics,2006,19(4):278-285
    [85]Muller L, Mailach R, Vogeler K, et al. Unsteady Blade Loading with Clocking in Multistage Axial Compressors, Part II. Journal of Propulsion and Power,2010,26(1): 36-45
    [86]Key N L, Lawless P B, Fleeter S. An Experimental Study of Vane Clocking Effects on Embedded Compressor Stage Performance. ASME Journal of Turbomachinery, 2010,132(1)
    [87]van Zante D E, Adamczyk J J, Strazisar A J, et al. Wake Recovery Performance Benefit in a High-Speed Axial Compressor. ASME Journal of Turbomachinery,2002, 124:275-284
    [88]史亚峰,吴虎,陈立新,等.轴向间距对某跨声速轴流压气机叶排间干扰的影响规律.航空动力学报.2011,26(5):1085-1091
    [89]邹正平,綦蕾,李维,等.上游尾迹与涡轮转子泄漏流相互作用数值模拟.航空动力学报.2010,25(1):58-65
    [90]Nolan S P R, Botros B B, Tan C S, et al. Effects of Upstream Wake Phasing on Transonic Axial Compressor Performance. ASME Journal of Turbomachinery,2011, 133:021010
    [91]Ainsworth R W, Allen J L, Batt J J M. The Development of Fast Response Aerodynamic Probes for Flow Measurements in Turbomachinery. ASME Journal of Turbomachinery,1995,117:625-634
    [92]Buttsworth D R, Jones T V. A Fast-response Total Temperature Probe for Unsteady Compressible Flows. Journal of Engineering for Gas Turbines and Power,1998, 120(4):694-702
    [93]Buttsworth D R, Jones T V, Chana K S. Unsteady Total Temperature Measurements Downstream of a High-pressure Turbine. Journal of Turbomachinery,1998,120(4): 760-767
    [94]Buttsworth D R, Jones T V. A Fast-response High Spatial Resolution Total Temperature Probe Using a Pulsed Heating Technique. Journal of Turbomachinery, 1998,120(3):601-607
    [95]van Zante D E, Suder K L, Strazisar A J, et al. An Improved Aspirating Probe for Total Temperature and Total-Pressure Measurements in Compressor Flows. Journal of Turbomachinery,1995,117(4):642-649
    [96]Han B, Goldstein R J. Instantaneous Energy Separation in a Free Jet-Part II:Total Temperature Measurement. International Journal of Heat and Mass Transfer,2003, 46(21):3983-3990
    [97]Estevadeordal J, Gorrell S E, Copenhaver W W. PIV Study of Wake-Rotor Interactions in a Transonic Compressor at Various Operating Conditions. Journal of Propulsion and Power,2007,23(1):235-242
    [98]Wernet M P, van Zante D, Strazisar T J, et al. Characterization of the Tip Clearance Flow in an Axial Compressor Using 3-D Digital PIV. Experiments in Fluids,2005, 39(4):743-753
    [99]Nobach H, Kinzel M, Zimmermann R, et al. Measurement of Particle Accelerations with the Laser Doppler Technique. Turbulence and Interactions. Springer Berlin Heidelberg,2010:271-278.
    [100]Sullivan J P, Gregory J W, Liu T. Fast Pressure-Sensitive Paints for Flow and Acoustic Diagnostics. Annual Review of Fluid Mechanics,2014,46(1)
    [101]Kupferschmied P, Koppel P, Gizzi W, et al. Time-resolved Flow Measurements with Fast-response Aerodynamic Probes in Turbomachines. Measurement Science and Technology,2000,11(7):1036
    [102]Epstein A H. High Frequency Response Measurements in Turbomachines. VKI LS 1985-03
    [103]Brouckaert J F, Sieverding C H, Manna M. Development of Fast Response 3-Hole Pressure Probe. Proceedings of the 14th Symposium on Measuring Techniques in Transonic and Supersonic Flows in Cascades and Turbomachines, University of Limerick
    [104]Schaffer A, Miatt DC. Experimental Evaluation of Heavy Fan-High-Pressure Compressor Interaction in a Three-Shaft Engine-Part 1:Experimental Set-up and Results. Journal of Engineering for Gas Turbines and Power,1985,107:828-833
    [105]Kerrebrock J L, Epstein A H, Tompkins W T. A miniature High Frequency Sphere Probe. ASME Book No.100130 Measurement Methods in Rotating Components of Turbomachines
    [106]Cook S C P. The Development of a High Response Aerodynamic Wedge Probe and Use on a High Speed Research Compressor. Proceedings of 9th International Symposium on Air Breathing Engines, Athens, Greece
    [107]劳丽云,陈珙,张宏建,等.引压管路对动态差压检测影响的分析.计量学报.1999,20(4):286-291
    [108]张训文,陈曦,朱琦,等.压力传感器管腔效应问题研究.测试技术学报.2002,16(z1)
    [109]柳兆荣,陈金娥,黄东群.压力传感器频率相应的分析.力学学报.1980,(4):004
    [110]Cameron J D, Gendrich C P, Morris S C, et al. A Transonic Axial Compressor Facility for Fundamental Research and Flow Control Development. AIAA-2006-416, 2006
    [111]Morris S C. Private Communication.2012. (to be published)
    [112]王偲臣,林峰,Morris S C,杨林,聂超群.动态总压探针.专利申请号:201310112329.2
    [113]李继超.轴流压气机叶顶喷气扩稳技术-机理及智能调控.博士学位论文.中国科学院工程热物理研究所,2012

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700