湿空气透平循环性能仿真与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源是整个世界发展和经济增长最基本的驱动力。随着世界经济的发展、世界人口的剧增和人民生活水平的提高,世界能源消费量持续增长,能源问题的重要性日益突出。加湿工质是提升燃气轮机效率与输出功率的一个有效途径。湿空气透平(Humid air turbine,HAT)循环是新型动力循环的代表,具有效率高、比功高、单位投资成本低、燃烧室氮氧化物(NOx)排放低、输出功率受环境条件影响小以及与联合循环相比变工况性能更出色等优点。然而,目前国内外对HAT技术的研究还不够充分,尤其缺少HAT循环的试验研究,试车数据更为稀缺。因此,本文将通过试验研究对HAT循环性能的仿真计算结果进行验证,并由仿真计算对试验方案提出修正和改进。能够提高对HAT循环性能的理解和认识,是HAT循环燃气轮机技术应用到实际机组和系统的基础。
     本文首先研究了燃气轮机性能仿真技术以及SJGT燃气轮机性能仿真软件的开发。研究了燃气轮机性能计算方法以及软件实现,包括热物性研究中的变比热法、稳态性能研究中的记忆时序性迭代法和嵌套式多层迭代的实现以及动态性能研究中变偏微分系数偏差线性化方法。分析了SJGT软件的构架和功能,以及该软件五大建模特色:多输入多输出计算模块、通用部件模块库、拖曳方式建模、动态链接库技术以及友好人机交互界面。以SJGT软件为平台,对燃气轮机进行了详细的部件级建模,特别考虑了压气机抽气模型和涡轮冷却模型,使仿真系统更加逼近真实系统。最后对各部件模块进行汇总,并创建模块库,为燃气轮机的性能研究打下基础。
     本文自主设计并建立了一套分离式的分轴燃气轮机试验装置,并通过加装饱和器空气湿化系统构成了HAT循环分轴燃气轮机试验装置。通过试验研究的方法来考察HAT循环在湿空气作用下对系统总体性能的提升,观察含湿量的变化对燃气初温、输出功率和循环效率等一些主要性能参数以及污染物排放情况的影响规律。HAT循环分轴燃气轮机性能试验主要分为两个工况进行:(1)将燃油量控制在48kg/h的等燃油控制试验工况;(2)将涡轮进气温度控制在650℃的等燃气初温控制试验工况。研究结果发现,空气加湿作用能够立即对HAT循环性能造成影响,饱和器出口处的含湿量是HAT循环性能研究中的一个重要参数。当燃油量保持不变,增加含湿量能够降低燃烧室燃烧温度,降低NOx的排放,并且由于蒸汽的加入增加了涡轮的工质流量,使得燃气轮机的输出功率也有所提升。当燃气初温保持不变时,系统中含湿量的增大可以大幅度提升HAT循环燃气轮机的输出功率。这表明,在燃气初温限制不变的情况下,HAT循环能够通过对燃气轮机循环进行革新来改善燃气轮机性能。
     基于HAT循环分轴燃气轮机试车试验研究,本文还对HAT循环分轴燃气轮机的总体性能进行了理论性研究。通过对分轴燃气轮机模型进行在更改工质热物性计算方法、添加饱和器模型、修正燃烧室模型等方面的改型,得到HAT循环分轴燃气轮机性能计算模型。通过模拟计算结果与试车试验结果的对比研究,可以发现两者吻合较好。结果表明:含湿量的变化对HAT循环燃气轮机的比功影响巨大。在现有试验条件范围内,增大含湿量能大幅度提高循环比功,更高的含湿量能为循环带来更好的热效率和热经济性,而且增大含湿量能够增大压气机喘振裕度,提高压气机运行的安全性。
     为了进一步了解HAT循环的潜力,本文还对现有HAT循环试验系统进行了改进,通过添加回热器、经济器和后冷器以构成更完整的HAT循环分轴燃气轮机系统。研究结果表明,在π=3.0和π=2.5工况下,对现有HAT循环、回热HAT循环和回热后冷HAT循环这三种HAT循环性能的比较分析后,发现回热HAT循环是三者中循环效率最高的一种循环,也是最节能环保的一种循环;当饱和器液气比在0.85~1.2范围内,增加饱和器液气比能够增大饱和器出口湿空气的含湿量,提高HAT循环的比功和热效率。但是,液气比会受到试验装置的尺寸、管道流量和水箱大小的限制;回热器回热度的增加有助于燃烧过程的进行,使系统更省油,同时提高HAT循环的热效率降低排烟温度。综合考虑回热器尺寸和HAT循环性能之后,本文在改型HAT循环的设计中,选取回热度为0.6;在HAT循环中设置后冷器的目的是降低饱和器入口处压缩空气的温度,然而对于现有试验台而言,提升后冷器出口空气温度将增大湿空气含湿量,循环比功和热效率将会增大,耗油率下降,排烟温度降低。因此对现有试验台而言,不推荐在系统的改进设计中加入后冷器。
     在对HAT循环分轴燃气轮机的性能有了较为全面的了解之后,本文对发电系统三轴燃气轮机的变工况性能和包括起动过程在内的动态性能进行分析,对甩负荷情况下的控制策略进行了深入研究,并开展了HAT循环技术在三轴燃气轮机上的应用性研究。研究结果表明,三轴燃气轮机在带动螺桨负载和带动恒速发电负载下的变工况性能相差不大;相比较带动螺桨负载和带动恒速发电负载的三轴燃气轮机系统,后者在低工况运行时低压压气机的喘振裕度要大于前者,但两者都应在低压压气机上采取旁通放气的方法来避免喘振。发电系统三轴燃气轮机在甩负荷情况下的动态性能仿真实验研究表明,串级控制系统相比单回路控制系统和前馈反馈控制系统具有更快速的响应特性以及更好的鲁棒性和稳定性。三轴燃气轮机动态过程的仿真实验,实验结果能够用于发动机的起动控制过程的分析和优化,具有重要的工程应用价值。对比简单循环、间冷回热循环、间冷回热HAT循环和间冷后冷回热HAT循环的三轴燃气轮机总体性能,结果表明,间冷回热HAT循环三轴燃气轮机功率输出能力最强,是简单循环三轴燃气轮机的2.73倍,间冷回热循环的1.74倍;间冷回热HAT循环具有非常高的循环效率,将近50%左右,耗油率均相对较低,经济性能好;间冷回热循环的排烟温度相对最低,从环保角度考虑为最优。在后冷器加入间冷回热HAT循环之后,虽然循环效率略有上升,排烟温度略有下降,但是会引起输出功率下降较多,降幅达到11.2%。
Energy is the basic driving force of development and economic growththroughout the world. With the development of world economy, the rapid increase inworld population and improve of people's living standards, the world's energyconsumption continues to grow, the importance of energy issues have becomeincreasingly prominent. Humidifying working fluid is an effective way to enhance theefficiency and power output of gas turbine. Humid air turbine (HAT) cycle is arepresentative of the new power cycle. The advantages of HAT cycle including highefficiency, high specific work, low unit investment costs, low combustion nitrogenoxide (NOx) emissions, low impact of power output by environmental conditions, andgood off-design performance. However, the current domestic and internationalresearch on the HAT technology is not sufficient. It seems to be particularly lack ofHAT cycle of experimental research and the test data is more scarce. Therefore, thisthesis will study HAT cycle performance using the method of combining theexperimental research and theoretical study. Improving understanding and awarenessof the HAT cycle performance is the base of applying HAT cycle gas turbinetechnology to the actual units and systems.
     The gas turbine performance simulation technology and SJGT gas turbineperformance simulation software development were first studied. The gas turbineperformance calculation method and software implementation were studied, includingthe study of thermal properties of variable specific heat, the memory sequentialiterative method and the variable partial differential coefficients deviationlinearization method. The structure and function of the SJGT software were analyzed,as well as five of the software modeling features: multi-input multi-output calculationmodule, common parts module library, dragging modeling, dynamic link librarytechnology and a friendly man-machine interface. Using SJGT software, the detailedcomponent level model of gas turbine was carried on, especially considering thecompressor air-extraction model and turbine cooling air-injection model. Finally, thecomponent modules were gathered and the module library was created, which laid thefoundation for the research of the performance of gas turbine.
     Then, a test investigation on Humid Air Turbine (HAT) cycle was conducted on asmall-size two-shaft gas turbine test rig. The test rig was made up of a centrifugalcompressor, a centripetal turbine, an individual direct flow flame tube, a free power turbine, a dynamometer and a saturator with structured packing. The goals of thisthesis were to study the gas turbine overall performance improvement in HAT cyclesuch as the turbine inlet temperature, power output and cycle efficiency. The effect ofthe humid air on pollutant emission was also examined.
     Two different test conditions were taken into account for the test investigation: inthe first case, the fuel flow rate was kept constant at48kg/h by the control system,while in the second case, the turbine inlet temperature was kept constant at650℃.The results show that the air humidification can immediately affect the performanceof HAT cycle. The saturator outlet humidity ratio is an important parameter in thestudy of HAT cycle performance. When the fuel flow rate keeps constant, increasinghumidity ratio can decrease the combustion temperature, reduce the discharge of NOxand increase the power output due to the increase of flow rate of working fluidthrough the turbine. When the turbine inlet temperature keeps constant, increasinghumidity ratio will substantially increase the power output in HAT cycle gas turbine.It provides an alternative to improve gas turbine performance without being restrictedby a higher TIT depending on the development of material technology.
     Retrofit design from two-shaft gas turbine to HAT cycle two-shaft gas turbinecontains changing calculation method of working medium thermal physical property,adding the saturator model and modifying the combustion model. Based on the gasturbine parts characteristics and test conditions, the off-design performance of HATcycle was calculated and its results were coincident with the test ones. The studiesshow that the humidity ratio of the HAT cycle has a huge impact on the specific workof gas turbine, increasing the humidity ratio will greatly improve the cycle specificwork and the thermal efficiency. Increasing the humidity ratio can also increase thecompressor surge margin, which improves the compressor operation safety.
     In order to further understand the potential of HAT cycle, improved design on theexisting HAT cycle test system was studied, by adding the regenerator, economizerand aftercooler to form a more complete HAT cycle two-shaft gas turbine system.Research shows that in theπ=3.0andπ=2.5working conditions, the regenerativeHAT cycle shows the best performance and the most energy conservation among theexisting HAT cycle, the regenerative HAT cycle and the regenerative HAT cycle withaftercooler. Increasing liquid-gas ratio of saturator can increase the humidity ratio andimprove the cycle specific work and the thermal efficiency. However, the liquid-gasratio will be restricted by the size of the test unit, pipe flow and the tank size. Theincrease of the heat regenerator efficiency contributes to the combustion process, makes the system more fuel saving, and reduces the exhaust temperature. Afterconsidering both the size of regenerator and the HAT cycle performance, theregenerator efficiency is set to0.6. The purpose of setting up the after-cooler is toreduce the saturator inlet air temperature. However, increasing after-cooler outlet airtemperature will increase the humidity ratio, enhance cycle specific work and raisethe thermal efficiency, also reduce fuel consumption rate and decrease exhaust gastemperature as well. Therefore, the after-cooler is not recommended to be added to theimproved design system.
     Finally, the off-design performance and dynamic performance of the three-shaftgas turbine in power generation system of were analyzed. The thesis placed emphasison study of the control strategy in the case of load rejection. At last, the research onapplying HAT technology to the three-shaft gas turbine was discussed. The resultsshow that the off-design performances of three-shaft gas turbine driving the constantspeed load and the propeller load were similar. Compare the compressor performancebetween the propeller load system and the constant speed load system, compressorsurge margin of the latter system is greater than the former one. In the powergeneration system, single-loop control system, feedforward feedback control systemand cascade system were assessed in order to control the engine in the case of loadrejection. According to the results, the cascade control system is most satisfactory dueto its fastest response and best stability and robustness. The simulation experimentalresults of the gas turbine starting progress have the important value of engineeringapplication. Comparison is made among the general cycle, the regenerative cycle withintercooler, the regenerative HAT cycle with intercooler and the regenerative HATcycle with intercooler and aftercooler. The research shows that the regenerative HATcycle with intercooler is most optimal cycle, which performs the highest power outputof65703kW, relatively high cycle efficiency of49.03%and the lowest specific fuelconsumption of0.172kg/kWh.
引文
[1] World IEA. Energy outlook Paris. France: International Energy Agency;2002.
    [2]节能中长期专项规划(2004-2020年)[R],国家发展和改革委员会,北京,2004.
    [3] J. Luckey. Booming market [J]. Energy Markets,2000,5(10):66–74.
    [4] M. McNeely. Engine order survey—engine orders go through the roof Dieseland gas turbine worldwide, October2001.
    [5] J. B. Burnham, M. H. Giuliani, D. J. Moeller. Development, installation, andoperating results of a steam injection system (STIG) in a general electricLM5000gas generator [J]. Journal of Engineering for Gas Turbines and Power,Transactions of the ASME.1987,109(3):257-262.
    [6] Q. Zheng, G. X. Wang, Y. F. Sun. Experiments on water and heat recovery ofsteam injection gas turbine (STIG) power plant [C]. ASME, Orlando, FL, USA,P.5,1997.
    [7] N. Sayama, H. Nakamura. Regenerative gas turbine with water addition andmethod of operation thereof. European Patent EP0,053,045, Jun1982.
    [8] A. D. Rao. Process for producing power. European Patent0,150,990, Aug1985.
    [9] A. D. Rao. Process for producing power. US Patent4,829,763, May1989.
    [10] Y. Mori, H. Nakamura, T. Takahashi, K. Yamamoto. A highly efficientregenerative gas turbine system by new method of heat recovery with waterinjection [C]. Proceedings of the1983Tokyo International Gas TurbineCongress, pages297-303, Tokyo, Japan,1983.
    [11] T. R. Morton, A. D. Rao. Perspective for advanced high efficiency cycles usinggas turbines [R]. Technical report, Flour Daniel, Michelson Drive, Irvine, CA(1989).
    [12] P. Chiesa, G. Lozza, E. Macchi, S. Consonni. An assessment of thethermodynamic performance of mixed gas-steam cycles: Part B Water-injectedand HAT cycles [J]. Journal of Engineering for Gas Turbine and Power,1995,117:499-508.
    [13] E. Macchi, S. Consonni, G. Lozza, P. Chiesa. An assessment of thethermodynamic performance of mixed gas-steam cycles: Part A Intercooled andsteam-injected cycles [J]. Journal of Engineering for Gas Turbine and Power,1995,117:489-498.
    [14] W. L. R. Gallo, G. Bidini, N. Bettagli. Effect of turbine-blade cooling on theHAT (Humid Air Turbine) cycle[J]. Energy,1997,22(4):375-380.
    [15] A. Traverso, A. F. Massardo. Thermoeconomic analysis of mixed gas-steamcycles [J]. Applied Thermal Engineering,2002,22(1):1-21.
    [16] M. Jonsson, J. Yan. Humidified gas turbines—a review of proposed andimplemented cycles [J]. Energy,2005,30:1013-1078.
    [17] R. M. Kavanagh, G. T. Parks, M. Obana. Multi-objective optimisation of thehumid air turbine [C]. Proceedings of ASME Turbo Expo2007, GT2007-27456,2007.
    [18] B. Nyberg, M. Thern. Thermodynamic studies of a HAT cycle and itscomponents [J]. Applied Energy,2012,89(1):315-321.
    [19] A. D. Rao, J. R. Joiner. A technical and economic evaluation of the humid airturbine cycle [C]. Seventh Annual International Pittsburgh Coal Conference,pages437-446, CONF-900958,1990.
    [20] D. T. Cook, J. E. McDaniel, A. D. Rao. HAT cycle simplifies coal gasificationpower [R]. MPS Review, pages20-25, may1991.
    [21] W. H. Day, A. D. Rao. FT4000HAT: A250MW class aero-derivative gasturbine [C].10th Annual EPRI Conference on Gasification Power Plants,Houston, TX, USA. EPRI, USA,1991.
    [22] P. Alto. A comparison of humid air turbine (HAT) cycle and combined-cyclepower plants [R]. EPRI IE-7300, Project2999-7, Final Report. CA: ElectricPower Research Institute,1991.
    [23] A. D. Rao, A. L. Tanner, T. H. Vu. Closed cycle gas turbine with humidificationof the working fluid [C]. Proceedings of the Intersociety Energy ConversionEngineering Conference,5:493-498,1991.
    [24] W. H. Day, A. D. Rao. FT4000HAT with natural gas fuel [C]. ASMECOGEN-TURBO6th International Conference on Gas Turbines inCogeneration and Utility Industrial and Independent Power Generation,7:239-245, Houston, TX, USA,1992.
    [25] Humid air turbine cycle technology development program technical progressreport [R]. Prepared for National Energy Technology Center; Prepared by Pratt&Whitney, Jul2002.
    [26] S. S. Stecco, U. Desideri, N. Bettagli. Humid air gas turbine cycle: A possibleoptimization. American Society of Mechanical Engineers (Paper), page7pp,1993.
    [27] S. S. Stecco, U. Desideri, B. Facchini, N. Bettagli. Humid air cycle: Somethermodynamic considerations. American Society of Mechanical Engineers(Paper), page8pp,1993.
    [28] F. Di Maria, V. Mastroianni. Humid air turbine cycle blade cooling exergeticanalysis [J]. International Journal of Energy Research,1999,23(10):841-852.ISSN:0363-907X.
    [29] T. S. Kim, C. H. Song, S. T. Ro, S.K. Kauh. Inuence of ambient condition onthermodynamic performance of the humid air turbine cycle [J]. Energy (Oxford),2000,25(4):313-324.
    [30] J. van Liere, G. H. M Laagland. The TOPHAT project: Swirl flash technology toreduce maintenence cost [C]. In Proceedings of ASME TURBO EXPO'00,Münich, Germany,2001.
    [31] A. Lazzaretto, F. Segato. Thermodynamic optimization of the HAT cycle plantstructure Part I: Optimization of the basic plant configuration [J]. Journal ofEngineering for Gas Turbines and Power,2001,123(1):1-7.
    [32] A. Lazzaretto, F. Segato. Thermodynamic optimization of the HAT cycle plantstructure Part II: Structure of the heat exchanger network [J]. Journal ofEngineering for Gas Turbines and Power,2001,123(1):8-16.
    [33] A. Lazzaretto, F. Segato. A thermodynamic approach to the definition of theHAT cycle plant structure [J]. Energy Conversion and Management,2002,43(9-12):1377-1391
    [34] M. Jonsson, J. Yan. Exergy analysis of part flow evaporative gas turbine cyclesPart1: Introduction and method [C]. ASME, International Gas Turbine Institute,Turbo Expo IGTI,2A:457-464,2002.
    [35] M. Jonsson, J. Yan. Exergy analysis of part flow evaporative gas turbine cyclesPart2: Results and discussion [C]. ASME, International Gas Turbine Institute,Turbo Expo IGTI,2A:465-473,2002.
    [36] M. Jonsson, J. Yan. Economic assessment of evaporative gas turbine cycles withoptimized part flow humidification systems [C]. ASME, International GasTurbine Institute, Turbo Expo IGTI,3:1-10,2003.
    [37] M. Bartlett. Developing humidified gas turbine cycles [D]. Doctoral thesis,Royal Institute of Technology, Department of Chemical Engineering andTechnology, Division of Energy Processes, SE-10044Stockholm,2002. ISSN1104-3466,ISBN91-7283-443-9.
    [38] J. Parente, A. Traverso, A. F. Massardo. Micro humid air cycle Part A:Thermodynamic and technical aspects [C]. Proceedings of ASME TURBOEXPO'03, Atlanta, Georgia, USA,2003.
    [39] J. Parente, A. Traverso, A. F. Massardo. Micro humid air cycle Part A:Thermoeconomic analysis [C]. Proceedings of ASME TURBO EXPO'03,Atlanta, Georgia, USA,2003.
    [40] S. Dodo, S. Nakano, T. Inoue, M. Ichinose, M. Yagi, K. Tsubouchi, K.Yamaguchi, Y. Hayasaka. Development of an advanced microturbine systemusing humid air turbine cycle [C]. Proceedings of the ASME Turbo Expo2004,6:167-174, Vienna, Austria,2004.
    [41] S. Nakano, T. Kishibe, H. Araki. Development of a150kW microturbinesystem which applies the humid air turbine cycle [C]. Proceedings of ASMETurbo Expo2007, GT2007-28192,2007.
    [42] A. A. Pedemonte, A. Traverso, A. F. Massardo. Experimental analysis ofpressurised humidifcation tower for humid air gas turbine cycles. Part A:Experimental campaign [J]. Applied Thermal Engineering,2008,28:1711-1725.
    [43] A. A. Pedemonte, A. Traverso, A. F. Massardo. Experimental analysis ofpressurised humidifcation tower for humid air gas turbine cycles. Part B:Correlation of experimental data [J]. Applied Thermal Engineering,2008,28:1623-1629.
    [44] A. Traverso. Humidifcation tower for humid air gas turbine cycles:Experimental analysis [J]. Energy,2010,35:894-901.
    [45] H. Araki, Y. Katagiri, S. Marushima. Experimental results of humidification andwater recovery of the advanced humid air turbine system pilot plant [C].Proceedings of the International Gas Turbine Congress2007Tokyo,IGTC2007Tokyo TS-012,2007.
    [46] M. Thern, T. Lindquist, T. Torisson. Theoretical and experimental evaluation ofa plate heat exchanger aftercooler in an evaporative gas turbine cycle [C].Proceedings of ASME Turbo Expo, Atlanta, US, ASME,2003, PaperNo.GT2003-38099,2003.
    [47] T. Lindquist, Per M. Rosen, T. Torisson. Theoretical and experimentalevaluation of the EvGT-process [C]. Proceedings of the ASME advanced energysystems division, ASME, AES-vol.40, p.457–469,2000.
    [48] P. von Heiroth, J-O. Gustafsson, T. Lindquist. Model of an evaporative cycle forheat and power production [J]. Energy Conversion and Management,40(15):1701-1711,1999.
    [49] J-O. Gustafsson. Static and dynamic modelling of gas turbines in advancedcycles [D]. Thesis for Degree of Licentiate of Engineering, ISRNLUTMDN/TMVK–7030–SE. Lund: Department of Heat and PowerEngineering, Division of Thermal Power Engineering, Lund Institute ofTechnology, Lund University,1998.
    [50] T. Lindquist. Theoretical and experimental evaluation of the EvGT-process [D].Thesis for degree of licentiate in engineering, Lund Institute of Technology,Lund University,1999.
    [51] T. Lindquist, P. M. Rosen, T. Torisson. Evaporative gas turbine cycle-Adescription of a pilot plant and operating experience [C]. ASME, AdvancedEnergy Systems Division (Publication) AES,40:511-520,2000.
    [52] T. Lindquist, P. M. Rosen, T. Torisson. Theoretical and experimental evaluationof the EvGT-process [C]. ASME, Advanced Energy Systems Division(Publication) AES,40:457-469,2000.
    [53] T. Lindquist, M. Thern, T. Torisson. Experimental and theoretical results of ahumidification tower in an evaporative gas turbine cycle pilot plant [C].Proceedings of ASME Turbo Expo2002, GT2002-30127,2002.
    [54] T. Lindquist. Evaluation, Experience and potential of gas turbine based cycleswith humidification [D]. Doctoral thesis, Lund Institute of Technology, LundUniversity, P.O. Box118, SE-22100Lund,2002.
    [55] S. Hatamiya. Gas turbine power generation technology utilizing high humidityair, Thermal Nuclear Power,2002,53:1031–1038.
    [56] T. Koganezawa, H. Inoue, N. Kobayashi. Experimental study on diffusion flamecombustor for advanced humid air turbine [C], JSME Annual Meeting,4:187–188,2002.
    [57] S. Numata, O. Yokota, S. Hatamiya. Analysis of condensation heat transfer towater spray for water recovery system [C]. JSME the39th National Heat andMass Transfer Symposium pp.661–662,2002.
    [58] S. Higuchi, S. Hatamiya, N. Seiki, S. Marushima. A study of performance onadvanced humid air turbine systems [C]. Proceedings of the International GasTurbine Congress2003Tokyo,2003.
    [59] S. Hatamiya, H. Araki, S. Higuchi. An evaluation of advanced humid air turbinesystem with water recovery [C]. Proceedings of the ASME Turbo Expo2004,7:585-591,2004.
    [60] H. Araki, S. Higuchi, S. Marushima. Design study of a humidification tower forthe advanced humid air turbine system[J]. Journal of Engineering for GasTurbines and Power,2006,128:543-550.
    [61] T. Koganezawa, K. Miura, T. Saito. Full scale testing of a cluster nozzle burnerfor the advanced humid air turbine[C]. Proceedings of ASME Turbo Expo2007,GT2007-27737,2007.
    [62] Y. Katagiri, H. Araki, T. Koganezawa. Humidity and plant control system forthe advanced humidified air turbine pilot plant [C]. Proceedings of theInternational Gas Turbine Congress2007Tokyo,IGTC2007Tokyo TS-013,2007.
    [63] H. Araki, Y. Katagiri, S. Marushima. Experimental results of humidification andwater recovery of the advanced humid air turbine system pilot plant [C].Proceedings of the International Gas Turbine Congress2007Tokyo,IGTC2007Tokyo TS-012,2007.
    [64] H. Kuroki, S. Hatamiya, T. Shibata. Development of elemental technologies foradvanced humid air turbine system [J]. Journal of Engineering for Gas Turbinesand Power,2008,130:031701-1-6.
    [65] S. Higuchi, T. Koganezawa et al. Test results from the advanced humid airturbine system pilot plant-Part1: Overall performance [C]. ASME,GT2008-51072,2008.
    [66] S.Higuchi, T. Koganezawa, et al. Test results from the advanced humid airturbine system pilot plant-Part2: Humidification, water recovery and waterquality [C]. ASME, GT2008-51089,2008.
    [67] H. Araki, T. Koganezawa et al. Experimental and analytical study on theoperation characteristics of the AHAT system [C]. ASME, GT2011-45168,2011.
    [68]林汝谋,方钢,蔡睿贤,张娜,金洪光. HAT循环性能分析研究[J].工程热物理学报,1993,2(14):129-132.
    [69]林汝谋,蔡睿贤,张娜.跨世纪的HAT热力循环[J].燃气轮机技术,1993,6(2):1-6.
    [70]肖云汉,林汝谋,蔡睿贤. HAT循环的系统优化[J].工程热物理学报,1994,15(2):133-136.
    [71]肖云汉,蔡睿贤,林汝谋. HAT循环的模化与热力学评价[J].工程热物理学报,1995,17(3):257-260.
    [72]焦树建. HAT循环的热力学分析[J].燃气轮机技,1995,8(2):1-11.
    [73]焦树建,段志鹏. HAT循环热力参数的优化选择[J].燃气轮机技术,1995,8(2):25-30.
    [74]王永青,严家騄.一种新的热力循环性能的估算方法和HAT循环的性能估算公式[J].热力动力工程,1998,13(5):345-347.
    [75]黄欧,邹介棠,吴铭岚. S TIG循环和HAT循环的分析比较[J].燃气轮机技术,1996,9(1):27-30.
    [76]靳海明. HAT循环的一种改型——CHAT循环[J].热能动力工程,1996,11(1):37-39.
    [77]孙晓红,王永泓,翁史烈.湿空气透平循环流程优化分析[J].上海交通大学学报,1999,33(3):309-312.
    [78]靳海明,蔡颐年,蔡睿贤,林汝谋. HAT循环中关键部件——饱和器实验台的研制[J].热能动力工程,1995,10(1):8-12.
    [79]王新军,靳海明.利用马尔文粒度分析仪对饱和器特性的实验研究[J].热力发电,1999,1:43-45.
    [80]赵丽凤,张世铮,王逊. HAT循环关键部件一一空气湿化器的初步实验性能[J].工程热物理学报,1999,20(6):677-680.
    [81]徐震. HAT循环空气湿化过程研究[D].中国科学院工程热物理研究所,北京,2006.
    [82]杨文滨,苏明. HAT循环系统动态仿真的研究[J].系统仿真学报,2005,17(9):2269-2272.
    [83]杨文滨.复合工质新型动力系统——湿空气透平循环动态仿真的研究[D].上海交通大学,上海,2005.
    [84]王玉璋.湿空气透平(HAT)循环饱和器内传热传质机理实验和数值研究[D].上海交通大学,上海,2005.
    [85]张会生,苏明,翁史烈.基于回热循环的燃气轮机发电系统技术分析[J].热力透平,2004,33(3):137-141.
    [86]王玉璋,王永泓,翁史烈.逆流式空气湿化器实验系统的研制[J].燃气轮机技术,2004,17(2):41-45.
    [87]王玉璋,翁史烈,李一兴.逆流式空气湿化器加湿性能的实验研究[J].中国电机工程学报,2004,24(8):152-156.
    [88]李一兴,王玉璋,翁史烈,王永泓.逆流式空气湿化器热力性能的效率分析[J].动力工程,2006,26(1):112-115.
    [89]王玉璋,李一兴,翁史烈,王永泓.逆流喷雾式饱和器内两相速度场的实验研究[J].中国动力工程学报,2005,25(2):188-192.
    [90]王玉璋,王永泓.利用相位多普勒分析仪对饱和器冷态液相的实验研究[J].流体力学实验与测量,2003,17(3):13-17.
    [91] Y. Z. Wang, Y. X. Li, S. L. Weng. Experimental investigation on innertwo-phase flow in counter-flow spray saturator for HAT cycle[J]. AppliedThermal Engineering,2006,26:2417-2424.
    [92]孙绍芹,宋华芬,刘春琪.工作压力对湿空气透平循环饱和器性能的影响[J].能源技术,2009,30(3):145-148.
    [93]邱超,宋华芬,王龙文. HAT循环中加填料饱和器的实验研究[J].动力工程2007,27(1):90-93.
    [94]惠宇,张坤,王玉璋,翁史烈.新型加压填料饱和器及其关键结构研究[J].燃气轮机技术,2009,22(4):4-7.
    [95]孙博.整体煤气化湿空气透平(IGHAT)循环关键部件的特性建模与实验研究[D].上海交通大学,上海,2012.
    [96] C. Y. Wei, S. S. Zang. Experimental investigation on the off-design performanceof a small-sized humid air turbine cycle [J]. Applied Thermal Engineering,2013,51:166-176.
    [97]蒲强,卫琛喻,葛冰,臧述升.微型分轴燃气轮机HAT循环性能的机理试验研究[J].热能动力工程,2012,27(5):544-548.
    [98]翁史烈,蒲强,卫琛喻,葛冰,臧述升.燃气轮机的湿空气循环性能分析与试验[J].电力与能源,2011,32(6):453-456.
    [99]朱行健,王雪瑜.燃气轮机工作原理及性能[M],北京:科学出版社,1992.
    [100]严家騄,余晓福,王永青.水和水蒸气热力性质图表[M],北京:高等教育出版社,2004.
    [101] J. M. Apsley, A. C. Smith. Propulsion drive models for full electric marinepropulsion systems [J]. IEEE Transactions on Industry Applications,2009,45(2):676-684.
    [102] D. S. Parker, C. G. Hodge. The Electric Warship [C]. EMD971-3September1997Conference Publication No.444,319-325,1997.
    [103]赵士杭.燃气轮机循环与变工况性能[M],北京:清华大学出版社,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700