微合金化高性能Cu-Ni-Si系引线框架材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对大规模集成电路对引线框架材料提出的性能要求,运用铜合金的微合金化原理成功研制和开发了三种新型高强度中导电Cu-Ni-Si系微合金化引线框架铜合金——Cu-2.0Ni-0.5Si. Cu-2.0Ni-0.5Si-0.15Ag和Cu-2.0Ni-0.5Si-0.03P合金,并对比研究了其时效析出特性、析出相结构、高温塑性变形行为及动态再结晶规律。
     对比研究了几种合金的时效析出行为和强化机理,探讨了微量合金元素Ag、P对Cu-Ni-Si合金析出强化特性的影响,研究发现:①固溶态Cu-2.0Ni-0.5Si合金在400~500℃进行时效时,时效初期其显微硬度大幅上升,且时效温度越高,显微硬度上升幅度也就越大,同时导电率迅速升高,且随着时效温度的提高,导电率增幅越大;时效前的预冷变形加速时效析出过程的进行。②微量合金元素Ag的加入有效的提高了合金的导电率,微量合金元素P的加入有效的提高了合金的显微硬度和抗拉强度,450℃时效2h后,0.15%Ag的加入,使显微硬度、导电率、抗拉强度分别提高2.1%、15.3%、8.7%;而0.03%P的加入,使显微硬度、导电率、抗拉强度分别提高18.6%、2.3%、29.8%。③TEM和HRTEM的分析结果均表明:Cu-2.0Ni-0.5Si、Cu-2.0Ni-0.5Si-0.15Ag合金时效析出强化,是由在铜基体上析出的Ni2Si相起到强化作用,Cu-2.0Ni-0.5Si-0.03P合金在时效过程中析出Ni2Si和Ni3P两种析出相起到强化作用。④在分析Cu-2.0Ni-0.5Si合金时效过程中导电率变化规律的基础上,利用合金时效过程中析出相的体积分数与导电率的线性关系,推导出试验条件下合金的Avrami相变动力学方程与导电率方程。
     采用第一性原理,利用密度泛函理论的广义梯度近似下的平面波赝势法(DFT-GGA-PWP),对Cu-Ni-Si合金析出相δ-Ni2Si的晶体结构、形成热与结合能、电子结构等进行了理论计算与分析。结果表明δ-Ni2Si是较为稳定的析出相,与TEM和HRTEM分析结果相吻合,这加深了对Cu-Ni-Si合金析出过程以及析出机理的理解,表明DFT-GGA-PWP方法也可应用于析出强化型铜合金析出相结构的分析和预测。
     本文在Gleeble-1500D热模拟试验机上,采用高温等温压缩试验,对Cu-2.0Ni-0.5Si、Cu-2.0Ni-0.5Si-0.15Ag和Cu-2.0Ni-0.5Si-0.03P合金在应变速率为0.01~5s-1、变形温度为600~800℃、最大变形程度为60%条件下的流变应力行为进行了研究。分析了实验合金在高温变形时的流变应力和应变速率及变形温度之间的关系。并研究了在热压缩过程中组织的变化。从流变应力、应变速率和温度的相关性,得出了该合金高温热压缩变形时的应力指数n,应力参数α,热变形激活能Q和流变应力方程。采用加工硬化率曲线(θ—ε),确立了Cu-2.0Ni-0.5Si-0.15Ag和Cu-2.0Ni-0.5Si-0.03P合金的动态再结晶(DRX)温度为T≥700℃。获得了合金动态再结晶发生的临界条件与变形条件之间的关系。得到了Cu-2.0Ni-0.5Si-0.15Ag和Cu-2.0Ni-0.5Si-0.03P合金动态再结晶动力学数学模型,模型与实验数据吻合较好。研究了Cu-2.0Ni-0.5Si-0.15Ag和Cu-2.0Ni-0.5Si-0.03P合金动态再结晶晶粒尺寸d与Z参数关系,从而建立了合金动态再结晶尺寸模型。
     在上述试验基础上,对Cu-Ni-Si合金引线框架材料的时效工艺进行了优化,优化的多级时效工艺为:900℃×1h固溶→40%冷变形→450℃×2h时效→40%冷变形→420℃、460℃下分别时效不同时间。经上述工艺加工处理后,三种合金在420℃时效0.5h后,合金的导电率和抗拉强度、抗软化性能等综合性能最佳,如Cu-2.0Ni-0.5Si-0.15Ag合金的导电率、抗拉强度、抗软化温度分别为:54.2%IACS、754.8MPa和475℃;Cu-2.0Ni-0.5Si-0.03P合金的导电率、抗拉强度、抗软化温度分别为:48.6%IACS、803.9MPa和475℃。其综合性能完全达到了集成电路用Cu-Ni-Si引线框架材料的主要性能要求。
To meet the property requirements for large-scale integrated circuits of the lead frame materials,three kinds of new high-strength and medium-conductivity Cu-Ni-Si alloys were successfully developed by use of trace alloy principle for copper alloy such as Cu-2.0Ni-0.5Si,Cu-2.0Ni-0.5Si-0.15Ag and Cu-2.0Ni-0.5Si-0.03P alloys. The aging properties, precipitates structures, high-temperature plastic deformation and dynamic recrystallization behavior were comparatively studied.
     The aging behavior and strengthen mechanism were comparatively studied for the three alloys.The effect of addition trace elements Ag and P on the precipitation strengthening properties were studied.While the solid solution Cu-2.0Ni-0.5Si alloy aging at 400~500℃,the micro-hardness greatly increased at the early stage of aging.The higher the aging temperature,the higher the micro-hardness.The electrical conductivity rapidly increased at the same time and the higher the aging temperature,the higher the electrical conductivity.The cold rolling deformation before aging accelerated aging precipitation.The electrical conductivity was effectively increased by addition trace element Ag. The microhardness and tensile strength were effectively increased by addition trace element P. With the 0.15% Ag addition, the values of the microhardness, electrical conductivity and the tensile strength could increase 2.1%、15.3%、8.7% after aging at 450℃for 2h,respectively. With the 0.03% P addition, the values of the microhardness, electrical conductivity and the tensile strength could increase 18.6%、2.3%、29.8% after aging at 450℃for 2h,respectively.The Ni2Si was the precipitated phase to strengthen the Cu-2.0Ni-0.5Si and Cu-2.0Ni-0.5Si-0.15Ag alloys,the Ni2Si and Ni3P were the precipitated phases to strengthen Cu-2.0Ni-0.5Si-0.03P alloy on aging process by means of transmission electron microscope (TEM) and high-resolution transmission electron microscope (HRTEM) analysis. On the basis of analysising the changes of electrical conductivity for Cu-2.0Ni-0.5Si alloy,the Avrami phase transformation kinetics equation and electrical conductivity equation were derived by use of the linearity between electrical conductivity and volume fraction of precipitates under the aging process.
     The crystal structure,combining energy and power,electronic structure of 8-Ni2Si were studied by using the plane wave pseudo-potential method(PWP) with GGA and DFT of the first principle method for the first time.The result show thatδ-Ni2Si was a stable precipitate phase. The results deepened on the understanding of precipitation mechanism of Cu-Ni-Si alloy. The results also show that the DFT-GGA-PWP method can be used to analysis and forecast the structure of precipitating strengthen copper-alloy.
     The flow stress behaviors of Cu-2.0Ni-0.5Si,Cu-2.0Ni-0.5Si-0.15Ag and Cu-2.0Ni-0.5Si-0.03P alloys during hot compression deformation was studied by isothermal compression test with Gleeble-1500D thermal-mechanical simulator when the temperature from 600℃to 800℃and strain rate from 0.01s-1 to 5s-1 under maxium strain of 60%. The relationship between the flow stress,strain rates and deformation temperatures were studied.The microstructure of the experimental alloys were studied in the hot-compression procedure. Stress index n,stress scale parameter a, hot deformation activation energy Q,and constitutive equation were derived from the correlativity of flow stress,strain rate and temperature. The condition of dynamic recrystallizaiton (DRX) for the Cu-2.0Ni-0.5Si-0.15Ag and Cu-2.0Ni-0.5Si-0.03P alloys is T≥700℃by using plot of work-hardening rate versus strain (θ-ε) curves.The relationship between the critical condition of dynamic recrystallizaiton (DRX) and deformation condition was obtained.The DRX kinetic equation is submitted and the calculated fraction of DRX by using the model has good agreement with that of experiments. The relationship between the dynamic recrystallizaiton (DRX) grain size and the parameter Z was obtained.A dynamic recrystallizaiton (DRX) grain size model was obtained.
     Thg aging processes for Cu-Ni-Si lead frame alloy were developed based on the optimization of the process parameters.The multi-aging production process for Cu-Ni-Si alloy was as follow:solid solution at 900℃for 1h→40% cold rolling→aging at 450℃for 2h→40% cold rolling→aging at 420℃and 460℃.The electrical conductivity and strength have optimum combination after the alloy aged at 420℃for 0.5h.The combinations of electrical conductivity,tensile strength and soft temperatures were as follow: 54.2%IACS,754.8MPa and 475℃for Cu-2.0Ni-0.5Si-0.15Ag alloy respectively; 48.6%IACS,803.9MPa and 475℃for Cu-2.0Ni-0.5Si-0.03P alloy respectively. These properties can meet the requirements of high strength and high electrical conductivity copper alloy for lead frame.
引文
[1]L.Blaz, A.Korbel, J.Kusinski. Retardation of fracture by static precipitation in a hot deformed Cu-Ni-Cr-Si-Mg alloy[J]. Script Metallurgic et material,1995,33(4):657-660
    [2]刘平,赵冬梅,田保红.高性能铜合金及其加工技术[M].北京:冶金工业出版社,2004,16-50
    [3]Tomioka Y. Miyake. A copper Alloy Development for Leadframe[M]. Japan:Electronic Manufacturing Technology Symposium,1995,420-489
    [4]苏娟华,董企铭,刘平,等.Cu-0.3Cr-0.15Zr-0.05Mg合金变形时效强化与再结晶[J].金属热处理,2004,29(2):18-21
    [5]刘平,顾海澄,曹兴国.铜基集成电路引线框架材料的发展概况[J].材料开发与应用,1998,13(3):37-41
    [6]#12
    [7]董志力,唐祥云,崛茂德,等.Cu-Zr和Cu-Zr-Si合金的时效特性及冷变形对时效析出的影响[J].金属学报,1989,25(6):A462-465
    [8]韩胜利,田保红,刘平.点焊电极用弥散强化铜基复合材料的进展[J].河南科技大学学报(自然科学版),2003,24(4):16-18
    [9]田保红,刘平,宋克兴,等.纳米Al2O3p/Cu复合材料的再结晶微观结构分析[J].材料热处理学报,2005,26(5):10-13
    [10]李红霞,田保红,宋克兴,等.低铝含量Cu-Al合金的表面弥散强化及其性能[J].材料热处理学报,2005,(26)2:94-98
    [11]张毅,田保红,陈小红,等.纯铜固体法渗铝及内氧化研究[J].特种铸造及有色合金,2005,25(153):715-717
    [12]刘平,曹兴国,康布熙,等.快速凝固Cu-Cr合金导电性分析[J].洛阳工学院学报,1998,19(4):1-5
    [13]刘平,曹兴国,康布熙,等.快速凝固Cu-Cr-Zr-Mg合金时效析出与再结晶的交互作用及其对性能的影响[J].功能材料,2000,31(2):167-169
    [14]刘平,康布熙,曹兴国,等.快速凝固Cu-Cr合金时效析出的共格强化效应[J].金属学报,1999,35(6):561-564
    [15]Su Juan-hua, Dong Qi-ming, Liu Ping. Prediction of properties in thermomechanically treated Cu-Cr-Zr by an article neural network. Journal of Materials Science and Technology [J]. Materials Science and Engineering A, 2003,19(6):529-532
    [16]Hong S I, HILL M A. Microstructure and conductivity of Cu-Nb microcomposites fabricated by the bundling and drawing process[J]. Scripta Materialia,2001,44(10):2509-2515
    [17]Shigeki Skai, Suzuki H G, Mihara K, Jusheng Ma. Effect of Sn addition on the mechanical and electrical properties of Cu-15%Cr in-situ composites[J]. Materials Transaction,2003,44(2):232-234
    [18]Suzuki H G, Ma J, Mihara K, et al. Effect of alloying elements on mechanical properties in Cu-15%Cr in-situ composites[J]. Trans. Nonferrous Met. Soc. China,2004,14(2):284-290
    [19]S. H. Kin, D. N. Lee. Annealing behavior of alumina dispersion-strengthened copper strips under different conditions [J]. Metallurgical and materials transactions,2002,33A(6):1605-1616
    [20]Jongsang Lee, J.Y.Jung, Eon-Sik Lee, et al. Microstructure and properties of titanium boride dispersed Cu alloys fabricated by spray forming [J]. Materials Science and Engineering A, 2000,277(2):274-283
    [21]刘勇,刘平,田保红,等.微量RE对接触线用铜合金时效析出特性和软化温度的影响[J].中国稀土学报,2005,23(4):482-485
    [22]付会敏,赵文辉.高强高导CrZrCu合金结品券的研制[J].铸造技术,2002,23(4):230-232
    [23]方善锋, 汪明朴, 程建奕, 等.高强高导Cu-Cr-Zr系合金材料的研究进展[J].材料导报,2003,17(9): 21-24
    [24]D. M. Zhao, Q. M. Dong, P. Liu. et al. Structure and strength of the age hardened Cu-Ni-Si alloy[J]. Materials Chemistry And Physics,2003,79:81-86
    [25]P. Liu, B. X. Kang, X. G.Cao, et al. Aging precipitation and recrystallization of solidified Cu-Cr-Zr-Mg alloy [J]. Materials Science and Engineering A,1999,265:262-267
    [26]Juan-hua Su, Qi-ming Dong, Ping Liu, et al. Research on aging precipitation in a Cu-Cr-Zr-Mg alloy [J]. Materials Science and Engineering A,2005,392(1-2):422-426
    [27]S.Suzuki, N.Shibutani, K.Mimura, et al. Improvement in strength and electrical conductivity of CuNiSi alloy by aging and cold rolling[J]. Journal of Alloys and Compounds,2006,417:116-120
    [28]张凌蜂,刘平,康布熙,等.Cu-3.2Ni-0.75Si-0.30Zn合金时效过程的动力学分析[J].中国有色金属学报,2003,13(3):717-721
    [29]V.T. Witusiewicz, I. Arpshofen, H.J. Seifert, F. Sommer, F. Aldinger. Enthalpy of mixing of liquid and undercooled liquid ternary and quaternary Cu-Ni-Si-Zr alloys[J]. Journal of Alloys and Compounds,2002, 337:155-167
    [30]赵冬梅,董企铭,刘平,等.铜合金引线框架材料的发展[J].材料导报,2001,15(5):25-27
    [31]黄福祥,张津,杜长华,等.引线框架材料的研究发展现状[J].材料报,2004,18(8A):64-67
    [32]潘志勇,汪明朴,李周,等.超高强度Cu-Ni-Si合金的研究进展[J].金属热处理,2007,32(7):55-59
    [33]赵谢群.引线框架铜合金材料研究及开发进展[J].稀有金属,2003,27(6):777-781
    [34]赵冬梅,董企铭,刘平,等.高强高导铜合金成分设计[J].功能材料,2001,6:609-611
    [35]曹育文,马莒生,唐祥云.引线框架Cu-Ni-Si合金成分设计[J].中国有色金属学报,1999,9(4):723-727
    [36]林高用,张胜华.Cu-Ni-Si-Cr-Fe合金时效强化特性的研究[J].金属热处理,2001,26(4):28-30
    [37]]北风敬三.Cu-Ni-Si-P合金的诸特性及P对显微组织的影响效果[J].铜加工,1991,2(1):104-111
    [38]Rdzawski Z, Stobrawa I. Mechanical processing of Cu-Ni-Si-Cr-Mg alloy[J]. Materials Science and Technology,1993, (2):142-148
    [39]Young.G.Kim, Chung Ryu. Designing an advanced copper-alloy lead frame material[J]. Semiconductor international,1985,8(4)250-253
    [40]雷静果,刘平,赵冬梅,等.用导电率研究Cu-Ni-Si-Cr合金时效早期相变动力学[J].材料热处理学报,2003,24(4):22-25
    [41]Lockyer S A, Noble F W. Precipitate structure in Cu-Ni-Si alloy[J]. Mater.Sci,1994,29:218-226
    [42]Fuxiang H, Jusheng M, Honglong N. et al. Precipitation in Cu-Ni-Si-Zn alloy for lead frame[J]. Mater Lett, 2003,57:2135-2139
    [43]D. M. Zhao, Q. M. Dong, P. Liu, et al. Transformation and strengthening of early stage of aging in Cu-3.2Ni-0.75Si alloy [J],2002,12(6):1167-1171
    [44]张凌峰,刘平,康布熙,等.时效对Cu-1.0Ni-0.25Si-0.1Zn合金硬度与导电率的影响[J].洛阳工学院学报,2002,23(3):7-11
    [45]潘志勇,汪明朴,李周,等.添加微量元素对Cu-Ni-Si合金性能的影响[J].材料导报,2007,21(5):86-89
    [46]王深强,陈志强,彭德林.高强高导铜合金的研究概述[J].材料工程,1995,(7):3-6
    [47]#12
    [48]山根寿已.高强度高传导性铜合金设计の基础[J].伸铜技术研究会志,1990,29:13-17
    [49]岩坂光富,中岛和隆,大山繁,等.合金设计法にょゐ新高强度铜基合金の开发[J].伸铜技术研究会志,1985,24:126-132
    [50]有色金属及其热处理编写组.有色金属及其热处理[M].北京:国防工业出版社,1981,269-327
    [51]汪黎,孙扬善,付小琴,等.Cu-Ni-Si基引线框架合金的组织和性能[J].东南大学学报(自然科学),2005,35(5):729-731
    [52]#12
    [53]牛济泰.材料和热加工领域的物理模拟技术[M].北京:国防工业出版社,1999,60-100
    [54]李新生,王能为.钢的微合金化强化机理浅析[J].冶金丛刊,2001,6:41-44
    [55]戚正风.固态金属中的扩散与相变[M].北京:机械工业出版社,1998,198-200
    [56]李震彪,陈青松.电触头复合材料电阻率的理论研究[J].中国电机工程学报,1996,16(3):185-189
    [57]Correia J B, Davies H A, Sellars C M. Strengthening in rapidly solidified age hardened Cu-Cr and Cu-Cr-Zr alloy[J]. Acta Mater,1997,45(1):177-190
    [58]杨素华.单壁BN和AIN纳米管电子谱及其光学性质的第一性原理研究[D].天津:南开大学,2007:30-45
    [59]黄昆,韩汝琦.固体物理学[M].北京:高等教育出版社,1988,153-202
    [60]谢希德,陆栋.固体能带理论[M].上海:复旦大学出版社,2000,1-20
    [61]赵成大.固体量子化学[M].北京:高等教育出版社,2003,128-139
    [62]W.Kohn and L.J.Sham. Self-consistent equations including exchange and correlation effects[J]. Phys.Rev, 1965, A1133:140-145
    [63]胡利云.锂离子电池正极材料LiCoO2的第一性原理研究[D].南昌:江西师范大学,2005:25-50
    [64]马健新.铅盐的电子结构和光学性质及其(001)面结构的理论研究[D].郑州:郑州大学,2004:15-53
    [65]罗晓光.BC2N和B2CN高密度相的第一性原理预测[D].秦皇岛:燕山大学,2003:10-51
    [66]陈律,彭平,韩亚利.Llo-TiAl基本物性的计算与比较研究[J].材料科学与工艺,2007,15(1):47-51
    [67]周惦武,刘金水,杨峰,等.A12Mg合金晶粒细化及电子机制研究[J].特种铸造及有色合金,2006,26(2):115-117
    [68]K.Toman. The structure of Ni2Si [J]. Acta Cryst,1952,5:329-331
    [69]W. Oelson and H. Samson-Himmelstjema. The Enthalpy of Formation of Nickel-Silicon Alloys and Liquid[J]. Mitt.Kaiser-Wilhelm Inst. Eisenforch.Dusseldorf,1936,18:131-133
    [70]Meschel S V, Kleppa O J. Standard enthalpies of formation of some 5d transition metal silicides by high temperature direct synthesis calorimetry [J]. Journal of Alloys and Compounds,1998,280:231-239
    [71]M.Lindholm, B.Sundman. A thermodynamic evaluation of the nickel-silicon system[J]. Mater. Trans.A, 1996,27A:2897-2903
    [72]J. Acker and K. Bohmhammel. Optimization of thermodynamic data of the Ni-Si system [J]. Thermochimica Acta,1999,337:187-193
    [73]Tatsuya Tokunaga, Kazumasa Nishio, Hiroshi Ohtani,et al. Thermodynamic assessment of the Ni-Si system by incorporating ab initio energetic calculations into the CALPHAD approach [J]. Computer Coupling of Phase Diagrams and Thermochemistry,2003,27:161-168
    [74]Karhausen.K, F.Rosters.F. Development and application of constitutive equations for the multiple-stand hot tolling of Al-alloy[J]. Journal of Materials Processing Technology,2002,123(1):155-166
    [75]S.B. Davenport, N.J.Silk.C.N. Sparks, C. M.Sellars. Development of constitutive equations for modeling of hot rollin[J]. Materials Science and Technology,2000,16(5):539-546
    [76]林志.α-Fe动态再结晶机理研究:[硕士学位论文][D].北京:北京科技大学,2004:11-53
    [77]Garofalo.F. An Empirifcal Relation Refining the Stress Dependence of Minimum Creep Rate in Metals[J]. Trans Metall Soc AIME,1963,227(2):351-35
    [78]PoirierJ. P,关德林,译.晶体的高温塑性变形[M].大连:大连理工大学出版社,1989,30-61
    [79]何宜柱,陈大宏,雷廷权,等.形变Z因子与动态再结晶晶粒尺寸间的理论模型[J].钢铁研究学报,2000,12(1):26-30
    [80]Puchi E S. Staia M H. High-temperature Deformation of Commercial-purity Aluminum[J]. Metall and Mater TransA,1998,29A(9):2345-2359
    [81]Garofalo F. Fundamentals of Creep and Creep Rupture in Metals[M]. Macmillan: New York,1965,50-130
    [82]McQueen H.J, Yue S, Ryan N D, et al. Hot Working Characteristics of Steels in Austenitic State[J]. J Mater Process Technol,1995,53:293-310
    [83]Castro-Femandez F R, Selllars C M, Whiteman J A. Change of Stress and Microstructure during Hot Deformation of Al-Mg-1Mn, Mater Sci. and Technol[J].1990,6(5):453-460
    [84]Shi H, Mclaren J, Sellers C M, et al. Constitutive Equations for High Temperature Flow Stress of Aluminum Alloys[J]. Mater Sci. and Technol,1997,13(3):210-216
    [85]Sellars C M, T egart, W J McG. La Relation Entre la Resistance et la Structure Dans le Deformation a Chaud[J]. Mem Sci Rev Metall,1966,63:731-746
    [86]Kreuss G. Deformation Processing and Structure[M]. Ohio:American Society for Metal,1984,109-230
    [87]Davenpot S.B., Silk N. J., Sparks C.N., et al. Development of Constitutive Equations for Modeling of Hot Rolling[J]. Mater Sci and Technol,2000,16(5):539-546
    [88]Rao K.P., Hawbolt E.B. Development of Constitutive Relationship Using Comperssing Testing of a Medium Carbon Steel[J]. ASME J Eng.Mater and technol,1992,114(3):116-123
    [89]Jonas J J, Sellars C M, Tegart. Strength and Structure under Hot Working Conditions Int[J]. Metallurgical Reviews,1969,14: 1-24
    [90]Zener C., Hollomon J.H. Efect of Strain Rate upon the Plastic Flow of Steel[J]. J Appl. Phys.,1944,15(1): 22-32
    [91]Clifton R J, Hartley K A, Shawki T C. On Critical conditions for Shear Band Formation at High Strain Rates[J]. Sci.Metall,1984,18(5):443-448
    [92]Hodgson P D. Microstructure Modeling for Property Prediction and Control[J]. J mater Process Technol., 1996,60:27-33
    [93]Jonas J J, McQueen H J, Wong W A. Deformation under Hot working Conditions[M]. London: Iorn and Steel Institute,1968,49-60
    [94]Petkovic R.A., Luton M.j, J.J.Jonas, et al. Recovery and Recrystallization of Carbon Steel between Intervals of Hot Working[J]. Canadian M tallurgical Quarterly,1975,14:137-145
    [95]徐洲,酒井拓.Fe-5Ni合金奥氏体高温变形行为[J].热加工工艺,1996,6:8-10
    [96]Blaz L., Sakai T., Jonas J.J.. Effect of Initial Grain Size on Dynamic Recrystallization of copper[J]. Metal Science,1983,17:309-616
    [97]Taku Sakai. Dynamic Recrystallization Microstructuers under Hot working Conditions[J]. Journal of Materials Processing Technology,1995,53:349-361
    [98]Gao W., Belyakov A.. Dynamic recrystallization of copper polyerystals with diferent purities[J]. Materals Science and Engineering,1999, A265:233-238
    [99]Hameda A.A., Blaz L. Microstructure of Hot-deformed Cu-3.45wt%Ti Alloy[J]. Materials Science and Engineering,1998, A 254:83-89
    [100]Blaz L., Eangelista E, M.Niewczas. Precipitation Efects during Hot Deformation of a Copper Alloy[J]. Metallurgical and Materials TransactionsA,1994,25A:257-266
    [101]张红钢Cu-Fe-P合金高温热变形行为研究:[硕士学位论文][D].长沙:中南大学,2004:1-50
    [102]李艳梅.纯Cu高温压缩变形形变特性及位错组态的演化:[硕士学位论文][D].沈阳:东北大学,1999:10-50
    [103]肖荫果.汽车同步器齿环用HAL62-4-3-0.1合金组织与性能的研究:[硕士学位论文][D].长沙:中南 大学,2003:1-35
    [104]申玉田,崔春翔,徐艳姬,等.Cu-A1203复合材料的高温塑性变形[J].材料研究学报,2001,15(6):610-614
    [105]Roberts W, Ahlblom B. A. Nucleation of Criterion for Dynamic Recrystallization during Hot Working[J]. Acta Metall,1978,26(5):801-813
    [106]毛卫民,赵新兵.金属的再结晶与晶粒长大[M].北京:冶金工业出版社,1994,204-206
    [107]申玉田,崔春翔,申玉发,等.Cu-Al合金内氧化的热力学分析[J].稀有金属材料与工程,2004,33(6):576-579
    [108]樊百林,黄钢汉.紫铜热塑性变形的研究[J].塑性工程学报,2000,7(3):37-39
    [109]Gronostajski Z. The Deformation Precessing map for Control of Microstructure in CuA19.2Fe3 Aluminum Bornze[J]. Journal of Materials Processing Technology,2002,125-126:119-124
    [110]Sandstom R, Lagneberg R.A. Model for Hot Working Occurring by Recrystallization[J]. Acta Metall,1975, 23(3):387-398
    [111]Blaz L., Sakai T.. Effect of Initial Grain Size on Dynamic recrystallization of copper[J]. Metal Science, 1983,17(12):609-616
    [112]Niewczas M., Evangelista E., Blaz L.. Strain Localization During a Hot compression test of Cu-Ni-Cr-Si-Mg alloy[J]. Scripta Metallurgical et Material,1992,27:1735-1740
    [113]陈良生,徐有容,王德英.高铝不锈钢热加工特性与综合流变应力模型[J].钢铁,2000,35(5):55-59
    [114]Shen G, Semiatantin S L, Altan T. Investigation of flow stress and microstructure development in non-isothermal forging of Ti-6242[J]. J Mater ProcessTechnol,1993,36:303-307.
    [115]C.C.葛列克.金属和合金的再结晶[M].北京:机械工业出版社,1985,207-208
    [116]J.R.K.lepaczko. Generalization of the Krupkowski law of strain hardeing of metals[J]. Eng.Trans,1965,13 (5):516-524
    [117]C.M.Sellars and W.J.McG Tgart. Hot workability, Int[J]. M.Reviews,1972,17:1-24
    [118]H.J.McQueen. and J.J.Jonas. Recent advance in hot working:foundmentaldynamic softening mechani c[J]. JAppl.Metalworking,1984,3:233-241
    [119]M.Zhou, M.P.Clode. Constitutive equation for modeling flow softening due to dynamic recovery and heat generation during plastic deformation[J]. Mechanics of Materials,1998,27:63-76
    [120]刘国金,张辉,林高用,等.铝合金多道次热变形过程的动态与静态软化[J].热加加工艺,2002,6:13-15
    [121]周海涛.Mg-Al-Zn镁合金高温塑性变形行为及管材热挤压研究:[博士学位论文][D].上海:上海交通大学,2004:10-100
    [122]张斌.结构钢热加工过程的物理与数值模拟:[博士学位论文][D].上海:上海交通大学,2002:10-120
    [123]J.C.Tan, M.J.Tan. Dynamic continuous recrystallization characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet [J]. Materials Science and Engineering,2002, A00:1-9
    [124]李超.金属学原理[M].哈尔滨:哈尔滨工业大学出版社,1989,326-327
    [125]K Karhausen, R Kopp. Model for integrated process and microstructure simulation in hot forming[J]. Steel Res,1992,63:247-256
    [126]Anan G, Nakajima S, Miyahara M, et al. A model for recovery and recrystallization of hot defor med austenite considering structure heterogeneity[J]. ISIJ Int,1992,32:261
    [127]C M Sellars, J A Whiteman. Recrystallization and grain growth in hot rolling[J]. Met Sri,1979,1 3:187-194

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700