超高地隙喷杆喷雾机风幕系统试验研究与仿真分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,我国玉米、甘蔗等高秆作物生长中后期病虫害防治难的问题一直没有得到解决。因此,研究高秆作物植保作业机械和防飘移技术对发展我国农药药械与施药技术有一定的理论意义,对高秆作物生长期全程病虫害高效防治具有一定的实用价值。
     本文根据国家高技术研究发展计划(863计划)项目课题“高秆作物高效施药技术研究与装备创制”(课题编号:2008AA100901)研究任务,结合项目研制的3WZC-2000型超高地隙自走式喷杆喷雾机,对高穿透性风幕系统进行了实验、设计和性能优化,对风幕式高穿透施药技术在高秆作物施药作业过程中雾滴的沉积分布特性和飘移规律进行了试验研究和CFD仿真分析。
     设计了风量(风速)和气流方向可调的新型风幕系统,能够进行风幕系统作业参数的实时调整,提高农药有效利用率,减少环境污染。
     建立了风幕系统的风幕结构基于k-ε标准湍流模型的气流场速度分布模拟模型,并对风幕结构进行了优化设计。改进后的风幕系统出口气流速度增加,辅助气流沿喷杆方向分布均匀性良好,风幕系统性能得到了大幅提高。
     在玉米生长高度分别为0.8、1.6和2.2m时对超高地隙喷杆喷雾机风幕式高穿透施药技术进行了田间试验,研究了喷雾压力、喷雾机作业速度、风幕出口风速及植物冠层特性对雾滴沉积量和分布均匀性的影响,论证分析了风幕系统的防飘效果和农药利用率使用效果。
     田间试验结果表明,超高地隙喷杆喷雾机风幕系统提供的辅助气流具有较强的穿透性,在施药作业过程中对增加高秆作物枝冠中下层的雾滴沉积特性具有显著作用;风幕系统的辅助气流速度大小与雾滴沉积分布均匀性呈正相关系,风幕出口风速越大,雾滴沉积分布均匀性越好,雾滴穿透性越强;在相同的作业条件下,增大喷雾压力使雾滴在冠层的单位面积沉积量增加,而对雾滴的分布均匀性无明显影响;在所研究的影响雾滴沉积量和分布均匀性的4个因素中,风幕出口风速是雾滴沉积分布均匀程度的决定因素,其次是植物冠层特性和喷雾压力,而喷雾机作业速度对其影响最小;超高地隙自走式喷杆喷雾机风幕系统能够有效的减少雾滴飘移,提高农药的使用效率。
     结合超高地隙喷雾机实际结构,应用计算流体力学软件Ansys Fluent,采用离散相模型、标准k-ε湍流模型与Couple算法,建立了风幕式高穿透施药技术雾滴沉积飘移分布模型。利用中心组合设计法设计模拟实验,重点对飘移率及其与影响因素之间的关系进行了仿真研究,确定了不同风机转速下雾滴飘移率与其各影响因素之间的函数关系,并利用试验对模拟研究结果的准确性进行了验证。结果表明,所建模拟模型能够比较准确的反映风幕系统各作业参数对雾滴飘移率的影响规律。
     基于响应曲面法对影响雾滴飘移的各参数进行了优化。确定了在风力等级为1、2、3、4级的作业条件下,获得较小雾滴飘移率时风机转速、辅助气流角度、喷头水平安装位置的合理取值范围。
Pest control for high-stalk crops, like corn and sugarcane, at their middle and late growing stages, has remained a problem over years in China. It is therefore of great theoretical and practical value to study anti-drift technology of pesticide droplets for the development of crop protection equipment and effective application practice for pest control over the entire growth period of high-stalk crops.
     This study is part of the Study on Efficient Application of Pesticide and Development of Sprayer for High-stalk Crops (project number:2008AA100901), a project funded under the National High-Tech R&D Program (or863Program). Experiment, design and performance optimization of a high-penetrable air-assisted system were conducted on super-high clearance self-propelled boom sprayer, modeled3WZC-2000, developed through the project. Experimental study and CFD simulation were focused on the distribution characteristics of deposited droplet and the law of droplet drift during the application of pesticide in high-stalk crops with the high-penetrable air-assisted system.
     A new type of air-assisted system was designed with the speed and direction of air flow adjustable so that the operational parameters could be regulated in real time for improved pesticide utilization and reduced environmental pollution.
     Simulating model of air-velocity distribution of air-assisted system was developed based on the standard k-ε turbulent model, then the structure of air-assisted system was optimized, As a result, the optimized exit flow speed of the air-assisted system was increased, and the assisted air flow was uniformly distributed along the direction of boom, resulting in improved system performance.
     Field experiments were conducted on the pesticide application technology of high penetration in the super-high clearance boom sprayer at the corn height of0.8m,1.6m and2.2m respectively, in order to study the influence of spraying pressure, working speed of sprayer, air speed at the outlet of air-assisted system, and characteristics of plant canopy on the deposit rate and the uniformity in distribution of droplets. The system performance in anti-drift and pesticide utilization was analyzed.
     The results of field experiments showed that the assisted air flow from air-assisted system on the super-high clearance boom sprayer had a strong penetrability by evidence that the droplets deposited on the middle and lower plant canopy of high-stalk crops increased significantly during the pesticide application; the assisted air speed was positively correlated to the distribution uniformity of droplets deposited. The higher the speed of air at the outlet of the system was, the more uniform the deposited droplet was distributed and the stronger the penetrability of droplets was; Given that all the working conditions remained unchanged, the deposition of droplets on unit canopy area would be increased with the spraying pressure, while the uniformity of droplet distribution did not vary obviously. Among the four factors that affected droplet deposition and uniformity of droplet distribution, the air speed at the outlet of the air-assisted system played a determinant role, followed by canopy characteristic, spray pressure and working speed of the sprayer. The air-assisted system of the super-high clearance boom sprayer had been proven to be highly effective in controlling the droplet drift and improving the pesticide utilization efficiency.
     A droplet deposition and drift distribution model was established for high-penetration air-assisted pesticide application in accordance with the actual structure of the sprayer, using the CFD software Ansys Fluent, adopting the Discrete Phase Model (DPM), standard k-ε turbulence model and Couple algorithm. The simulation test was designed using Central Composite Design to study the relationship of drift rate with its influencing factors. The functional relation of droplet drift rate with its influencing factors at different rotation speed of blower fan was established and the accuracy of the simulation result was validated, indicating that the model was well fitted.
     In order to achieve the least droplet drift, reasonable value ranges were worked out for the rotation speed of blower fan, the angle of air-assisted flow and the horizontal installation position of spray nozzles at the Beaufort wind scale1,2,3and4, respectively.
引文
[1].中国农业年鉴编辑委员会.中国农业年鉴2010[M].北京:中国农业出版社,2010:199,392.
    [2]. Graham, Matthews, Pesticide:Health, Safety and the Environments[M]. Blackwell Publishing, Oxford. ISBN:9781405130912,2006.
    [3].邵振润,郭永旺.我国施药机械与施药技术现状及对策[J].植物保护,2006,32(2):5-8.
    [4].钱玉琴.国内外农业施药技术研究发展[J].福建农机,2006(3):26-29.
    [5].孙文峰,王立君,陈宝昌,等.喷杆式喷雾机喷雾质量影响因素分析[J].农机化研究,2009,31(11):114-117.
    [6].何雄奎,曾爱军,刘亚佳,等.水田风送低量喷杆喷雾机设计及其参数研究[J].农业工程学报,2005,21(9):76-79.
    [7].何雄奎,严荷荣,储金宇,等.果园自动对靶静电喷雾机设计与试验研究[J].农业工程学报,2003,19(6):78-80.
    [8].张玲,戴奋奋.我国植保机械及施药技术现状与发展趋势[J].中国农机化,2002,(6):34-35.
    [9]. Ozkan H.E., Mkalles A., C.Sinfort, et al.Shields to Reduce Spray Drift[J]. J.agric.Engng Res,1997, (67):311-322.
    [10]. Almekinders H, Ozkan H E, Reichard D L, et al. Deposition efficiency of air-assisted charged sprays in a wind tunnel[J]. Transactions of the ASAE,1993,36(2):321-325.
    [11]. Pearson S L, Reed T. New developments in spray tips to reduce drift[J]. ASAE Paper,1993, 93-1081.
    [12]. Summer P E, Summer S A. Comparison of new driftreduction nozzles[J]. ASAE Paper,1993, 99-1156.
    [13]. Giles D K, Comino A. Droplet size and spray pattern characteristics of an electronic flow controller for spray nozzles[J]. Journal of Agricultural Engineering Research,1990,47(4):249-267.
    [14]. L.Tang, L.Tian, H.Yao, K.Thorp. A real-time in-field variability mapping system[C]//ASAE Annual International Meeting. USA,2001,1-13.
    [15]. Giles D.K., Slaughter D.C. Precision band spraying with machine-vision guidance and adjust able yaw nozzles[J]. Trans of the ASAE,1997,40(l):29-36.
    [16]].邱白晶,李佐鹏,吴昊,等.变量喷雾装置响应性能的试验研究[J].农业工程学报,2007,23(11):148-152.
    [17].王俊.变量喷雾系统喷雾质量控制研究及喷头设计:[硕士学位论文].中国农业大学,2005.
    [18]. Taylor, W.A., P. G. Andersen. The use of air assistance in field crop sprayer to reduce drift and modify drop trajectories[C]//Proc. Brighton Crop Protection Conference. U.K., BCPC Publications,1989,631-639.
    [19]. Quanquin, B. J. Air-assist applied to field sprayers[C]//In Proc.National Conference on Pesticide Application Technology. University of Guelph,1995,124-126.
    [20]. May, M. J. Early studies on spray drift, deposition manipulation and weed control in sugarbeet with two air assisted boom sprayers[J]. In air assisted Spraying in Crop Protecting-BCPC Monograph,1991, No.46.
    [21]. Hislop, E. C., N. M. Western. Air-assisted spraying of cereal plants under controlled conditions. In ANPP—BCPC—2nd Int. Symposium on Pesticide Application Techniques, Strasbourg. Farnham, Surrey, UK:The British Crop Protection Council,1993,289-296,
    [22]. Watson, D. G., R. L. Wolff. Air carrier technique for row crop spraying application[J]. Transactions of the ASAE,1985,28(5):1445-1448.
    [23]. Womac A.R., J. E. Mulrooney, W. P. Scott.. Characteristics of air-assisted and drop-nozzle sprays in cotton[J]. Transactions of the ASAE,1992,35(5):1369-1376.
    [24]. Howard, K.D., J. E. Mulrooney, et al. Penetration and depositionof air-assisted sprayers[J]. ASAE Paper,1994,94-1024.
    [25]. Taylor, W. A., P. G. Andersen. The use of air assistance in field crop sprayer to reduce drift and modify drop trajectories[C]//Proceedings of Brighton Crop Protection Conference.1989,2631-639.
    [26]. Manor, G, A. Hofner, R. Or, G. Phishler, et al. Air stream facilitated application of cotton foliage treatments[J]. Transactions of the ASAE,1989,32(1):37-40.
    [27]. Cooke, B.K., E.C. Hislop, P. J. Herrington, et al. Air-assisted spraying of arable crops in relation to deposition, drift and pesticide performance [J]. Crop Protection,1990,9:303-311.
    [28]. Young, B. W. A method for assessing the drift potential of hydraulic nozzle spray clouds, and the effect of air assistance[J]. BCPC MONO No.46 Air-assisted spraying in crop protection.1991, 77-86.
    [29]. Howard, K. D., J. E. Mulrooney. Testing protocol for the evaluation of air-assisted boom sprayers[J]. ASAE Paper,1995, No.96-116.
    [30]. A.Bayat, R.C.Derksen, R.D.Fox, et al. Wind tunnel evaluation of air-assist sprayer operating parameters[J]. An ASAE Meeting Presentation,1999, No.991117-991132.
    [31]. Hislop, E. C., N. M. Western, et al. Experimental airassisted spraying of young cereal plants under controlled conditions [J]. Crop Protection,1993,12:193-200.
    [32]. Panneton, B., H. Philion and R. Theriault. Spray chamber evaluation of air-assisted spraying[J]. ASAE Paper,1996, No.96-1078.
    [33]. Brown, R. B. General principles of air-assisted sprayers[C]//Proceedings of National Conference on Pesticide Application Technology. University of Guelph, Guelph,Ontario, Canada.1995, 97-102.
    [34]. Philion, H., B. Panneton, P. Dutilleul, et al. Statistical comparison of a full factorial design and a central composite design for spray droplet deposition[J]. CSAE Paper,1995, No.95-406.
    [35]. M. Piche, B. Panneton, R. Theriault. Field evaluation of air-assisted boom spraying on broccoli and potato[J]. Transactions of the ASAE,2000,43(4):793-799.
    [36]. Heping Zhu, Richard C. Derksen, Charles R. Krause, et al. Dynamic air velocity and spray deposition inside dense nursery crops with a multi-jet air-assist sprayer[C]//ASABE Annual International Meeting Sponsored by ASABE Oregon Convention Center, Protland, Oregon,2006, Paper Number:061125.
    [37]. G. Ade, V. Rondelli. Performance of an air-assisted boom sprayer in the control of Colorado beetle infestation in potato crops[J]. Biosystems Engineering,2007, (97):181-187.
    [38]. Reichard, D. L., H. Zhu, et al. Wind tunnel evaluation of a computer program to model spray drift[J]. Transactions of the ASAE,1992,35(3):755-758.
    [39]. Reichard, D. L., H. Zhu, et al. Computer simulation of variables that influence spray drift[J]. Transactions of the ASAE,1992,35(5):1401-1407.
    [40]. Hobson, P. A., P. C. H. Miller, et al. Spray drift from hydraulic spray nozzles:the use of a computer simulation model to examine factors influencing drift[J]. Journal of Agricultural Engineering Research,1993,54(2):293-305.
    [41]. Weiner, K. L., C. S. Parkin. The use of computational fluid dynamic code for modeling spray from a mistblower[J]. Journal of Agricultural Engineering Research,1993,55:313-324.
    [42]. Brown, R. B., M. M. Sidahmed. Simulation of spray dispersal and deposition from a forestry airblast sprayer:Part Ⅱ.Droplet trajectory model[J]. Trans. ASAE,2001,44(1):11-17.
    [43]. J.Tsay, L.Liang, L.H.Lu. Air-assisted boom spraying system under a no-canopy condition using cfd simulation[J]. Transactions of the ASAE,2004,47(6):1887-1897.
    [44]. J.Tsay, R.D.Fox, H.E.Ozkan, et al. Evaluation of a peneumatic-shielded spraying system by cfd simulation[J]. Transactions of the ASAE,2002,45(1):47-54.
    [45]. Delete M.A., Moor A.De., Sonck B., et al. Modelling and validation of the air flow generated by a cross flow air sprayer as affected by travel speed and fan speed[J]. Biosystems Engineering,2005, 92(2):165-174.
    [46]. Delete M.A., Jaeken P., Debaer C. et al. CFD prototyping of an air-assisted orachard sprayer aimed at drift reduction[J]. Computer and Electronics in Agriculture,2007,55:16-27.
    [47]. Baetens K.J.W., Nuyttens D., Verboven P., et al. The relative importance of environmental and field sprayer parameters for reducing drift:a CFD sensitivity study. Aspects of Applied Biology, 2006,77:International Advances in Pesticide Application 2006.
    [48].杨学军,严荷荣,徐赛章,等.植保机械的研究现状及发展趋势.农业机械学报,2002,33(6):129-131,137.
    [49].何雄奎.试论我国植保机械与施药技术[J].中国森林病虫,2010,增刊:1-3,6.
    [50].张师帅.计算流体动力学及其应用—CFD软件的原理与应用[M].武汉:华中科技大学出版社,2010.
    [51].郭烈锦.两相与多相流动力学[M].西安:西安交通大学出版社,2002.
    [52]. ANSYS, Inc. ANSYS FLUENT 12.1 User Guide. Computational Fluid Dynamics Software[M]. ANSYS, Inc.2009.
    [53].吴子牛.计算流体力学基本原理[M].北京:科学出版社,2001.
    [54].潘文全.工程流体力学[M].北京:清华大学出版社,1988.
    [55].陶文铨.数值传热学[M].西安:西安交通大学出版社,1988.
    [56]. Sidahmed M.M, Taher M.D., Brown R.B.. A Virtual Nozzle for Simulation of Spray Generation and Droplet Transport[J]. Biosystems Engineering,2005,92(3):295-307.
    [57].张京,宋坚利,何雄奎,等.扇形雾喷头雾化过程中雾滴运动特性.农业机械学报.2011,42(4):67-69,75.
    [58]. Tuck C.R., Butler Ellis M.C., Miller P.C..Techniques for measurement of droplet size and velocity distributions in agricultural sprays[J]. Crop Protection,1997,16(7):619-628.
    [59]. Holterman H.J., Van De Zande J.C., Porskamp, H.A.J., et al. Modeling spray drift from boom sprayers[J]. Comput. Electron.Agric.,1997,19:1-22.
    [60]. Zhu H., Reichard D.L., Fox, R.D., et al. DRIFTISM, a program to estimate drift distances of spray droplets[J]. Appl. Eng. Agric.,1995,11:365-369.
    [61]. Baetens K., Nuyttens D., Verboven P., et al. Predicting drift from field spraying by means of 3D computational fluid dynamics model[J]. Computers and Electronics in Agriculture,2007, 56:161-173.
    [62].王雪冬,王福顺,李伟英,等.雾化喷头雾滴直径分布测试环境的研究[J].农机化研究,2008(7):71-73.
    [63]. Graham D.L., Moyeed, R.A.. How many particles for my Lagrangian simulation[J]. Powder Technol,2002,125:179-186.
    [64].陆军,李萍萍,贾卫东,等.3种喷头雾滴输运沉积参数的试验与分析[J].农业机械学报,2009,40(10):53-57.
    [65].刘青,祁力钧,傅泽田,等.喷雾机雾滴运行时间和沉降规律的试验[J].农业机械学报,2007,38(6):62-65.
    [66].曾卓雄,姜培正,谢蔚明.喷嘴雾化粒径的实验研究[J].西安交通大学学报,2000,34(4):75-77.
    [67].吕晓兰,何雄奎,宋坚利,等.标准扇形雾喷头雾化过程测试分析[J].农业工程学报,2007,23(9):95-100.
    [68].李洪旗.刘鸿飞FLUENT软件在扁平扇形喷嘴设计中的应用[J].机电产品开发与创新,2008,21(5):106-107.
    [69].马承伟,严荷荣,袁冬顺,等.液力式雾化喷头雾滴直径的分布规律[J].农业机械学报,1999,30(1):33-39.
    [70].邱白晶,沙俊炎,汤伯敏,等.密闭空间雾滴沉积状态参数的显微图像解析[J].农业机械学报,2008,39(2):55-58,111.
    [71].邱白晶,史春建,吴春笃,等.植保机械雾化场雾滴特征分析与二维重建[J].农业工程学报,2005,21(11):7-10.
    [72].宋坚利,刘亚佳,张京,等.扇形雾喷头雾滴飘失机理[J].农业机械学报,2011,42(6):63-69,79.
    [73].杨学军,严荷荣,周海燕.扇形雾喷嘴的试验研究[J].中国农机化,2005,(1):39-42.
    [74]. D. Nuyttens, K. Baetens, M. De Schampheleire, et al. Effect of nozzle type, size and pressure on spray droplet characteristics[J]. Biosystems Engineering,2007,97:333-345.
    [75]. Sidahmed M.M, Taher M.D., Brown R.B.. A virtual nozzle for simulation of spray generation and droplet transport[J]. Biosystems Engineering,2005,92(3):295-307.
    [76].崔志华.风送式喷雾机风筒结构改进及对飘移性能影响的研究:[硕士学位论文],北京:中国农业大学,2007.
    [77].崔志华,傅泽田,祁力钧,等.风送式喷雾机风筒结构对飘移性能的影响[J].农业工程学报,2008,24(2):111-115.
    [78].张佳喜,陈发,赵志艳.风筒结构对风送式喷雾机喷幅的影响[J].农机化研究,2007,第1期:176-177.
    [79].欧亚明,刘青.轴流式风机在风送式喷雾机上的选型与计算[J].中国农机化,2004,(2):24-25.
    [80].戴奋奋.风送喷雾机风量的选择与计算[J].中国农业机械学会2008年学术年会论文集:798-802.
    [81].黄晓东,孙正军,江泽慧.风机叶片的发展概况和趋势[J].太阳能学报,2007(4):37-39.
    [82].范波涛,李绍珍,苑国强.风机叶片的几何形状研究[J].山东工业大学学报,2001,31(1):69-73.
    [83].靳交通,彭超义,潘利剑,等.大型风机叶片气动外形参数计算及三维建模方法[J].机械设计,2010,27(5):11-13.
    [84].周海燕.风机性能测试系统的设计与研究:[博士学位论文].北京:中国农业机械化科学研究院,2009.
    [85].王寒栋.泵与风机[M].北京:机械工业出版社,2009.
    [86].李永存,林爱晖,刘荣华,等.旋转风幕流场的数值模拟及实验研究[J].中国安全科学学报,2007,17(6):18-24.
    [87].彭军,李睿远,柴苍修.风送液力式超低量喷雾装置内流场的模拟分析[J].机械工程与自动化,2007,(2):52-55.
    [88].傅泽田,王俊,祁力钧,等.果园风送式喷雾机气流速度场模拟及试验验证[J].农业工程学报,2009,25(1):69-74.
    [89].宫少俊,秦贵.风幕式喷杆喷雾机性能试验[J].农机科技推广,2006(4):38-39.
    [90].何雄奎,曾爱军,何娟.果园喷雾机风速对雾滴的沉积分布影响研究[J].农业工程学报,2002,18(4):75-77.
    [91].陆军,李萍萍,贾卫东,等.温室轴流风送药雾标靶沉积试验[J].农业机械学 报,2009,40(12):88-92.
    [92].刘青,傅泽田,祁力钧,等.9WZCD-25型风送式超低量喷雾机性能优化试验[J].农业机械学报,2005,36(9):44-47.
    [93].刘青,欧亚明,史建新,等.91WDC-150型风送式喷雾机喷雾系统的试验研究[J].新疆农业大学学报,2002,25(4):47-50.
    [94].马伟伟.喷杆弥雾机气流辅助系统的设计与试验:[硕士学位论文].泰安:山东农业大学,2010.
    [95].邱白晶,沙俊炎,汤伯敏,等.密闭空间雾滴沉积状态参数的显微图像解析[J].农业机械学报,2008,39(2):55-58,111.
    [96].宋坚利,何雄奎,杨雪玲.喷杆式喷雾机雾流方向角对药液沉积影响的试验研究[J].农业工程学报,2006,22(6):96-99.
    [97].宋淑然,洪添胜,王卫星,等.水稻田农药喷雾分布与雾滴沉积量的试验分析[J].农业机械学报,2004,35(6):90-93.
    [98].宋淑然,洪添胜,孙道宗,等.风送式喷雾机变速喷雾雾滴沉积试验[J].农机化研究,2009,31(1):166-169.
    [99].商庆清,张沂泉,孙志武,等.雾滴在树冠中的沉积和穿透研究[J].南京林业大学学报:自然科学版,2004,28(5):45-48.
    [100]].汤伯敏,粱建,张秀珍,等.密闭空间农药分布密度及沉降规律初探[J].中华卫生杀虫药械,2005,11(6):387-389.
    [101].王俊,祁力钧.喷雾机喷杆压力损失及对喷雾质量的影响[J].农业机械学报,2006,37(3):42-45.
    [102].王凯,董长海,何雄奎.小麦不同生长期内冠层特征与雾滴沉积分布关系初探[C]//第三届“农药与环境安全”国际学术研讨会暨第七届“植物化学保护和全球法规一体化”国际研讨会论文集.北京:[出版者不详],2007.
    [103].张佳喜,陈发,王桂盛,等.影响9WZC-30喷雾机喷雾性能的因素研究[J].农机化研究,2006(12):174-175.
    [104].赵辉,王凯,何雄奎.棉花冠层温度变化规律及其对雾滴沉积的影响[J].2008年植保机械与施药技术国际研讨会.北京:2008,96-101.
    [105].赵东,张晓辉,蔡冬梅,等.基于弥雾机风机参数优化的雾滴穿透性和沉积性研究[J].农业机械学报,2005,36(7):44-49.
    [106].赵东,张晓辉,蔡冬梅,等.梯度风对雾滴穿透性影响的研究及试验[J].农业工程学报,2004,20(4):21-25.
    [107].周艳.棉田用气流辅助喷杆式喷雾机的设计与研究:[硕士学位论文].北京:中国农业大学,2006.
    [108].中华人民共和国国家质量监督检验检疫总局中国国家标准化管理委员会.GB/T24861.1-2009/ISO 22369-1:2006.植物保护机械喷雾飘移量分级第一部分:分级.北京:中国 标准出版社,2010-04-01.
    [109].中华人民共和国国家质量监督检验检疫总局中国国家标准化管理委员会.GB/T24861-2009/ISO22866:2005.植物保护机械喷雾飘移的田间测量方法.北京:中国标准出版社,2010-04-01.
    [110]. American Society of Agricultural Engineers. ASAE S561 FEB03. Procedures for Measuring Drift Deposits from Ground, Orchard, and Aerial Sprayers.
    [111]. Paolo Balsari, Paolo Marucco, Mario Tamagnone. A test bench for the classification of boom sprayers according to drift risk[J]. Crop Protection,2007,26:1482-1489.
    [112].崔志华,祁力钧,王俊,等.果园风送式喷雾机气体流场对飘移性的影响[J].《现代农业科技》,2007,(14):64-66.
    [113]].孙文峰,王立君,陈宝昌,等.喷杆式喷雾机喷雾质量影响因素分析[J].农机化研究,2009,31(11):114-117.
    [114]].宋坚利.“Ⅱ”型循环喷雾机及其药液循环利用与飘失研究:[博士学位论文].北京:中国农业大学,2007.
    [115]].唐志华.轴流风送静电喷雾实验与数值模拟研究:[硕士学位论文].镇江:江苏大学,2007.
    [116].王俊.果园风送式施药技术喷雾质量模拟及优化研究:[博士学位论文].北京:中国农业大学,2008.
    [117]].王旭,赵辉,何雄奎.模拟喷雾条件下雾滴的沉积规律[J].2008年植保机械与施药技术国际研讨会.北京:2008,133-138.
    [118].余宁,宋坚利,何雄奎.喷头喷雾高度及雾流方向角对飘失的影响.第二十二届中国植保信息交流暨农药械交易会.厦门,2006,180-185.
    [119].曾爱军.减少农药雾滴飘移的技术研究:[博士学位论文].北京:中国农业大学,2005.
    [120]. Li XinHuang, Kurichi Kumar, A. S. Mujumdar. A comparative study of a spray dryer with rotary disc atomizer and pressure nozzle using computational fluid dynamic simulations[J]. Chemical Engineering and Processing,2006,45:461-470.
    [121]. Panneton, B., H. Philion, P. Dutilleul, et al.. Full factorial design versus central composite design: Statistical comparison and implications for spray droplet deposition experiments[J]. Trans ASAE, 1999,42(4):877-883.
    [122].陈志刚,吴春笃,杨学军.喷杆喷雾雾量的分布均匀性[J].江苏大学学报(自然科学版),2008,29(6):466-468.
    [123]. Y. Lardoux, C. Sinfort, F. Sevila, et al. Test method for boom suspension influence on spray distribution, Part I:experimental study of pesticide application under a moving boom[J]. Biosystems Engineering,2007,96(1):29-39.
    [124]. Y. Lardoux, C. Sinfort, A. Miralles, et al. Test method for boom suspension influence on spray distribution, Part II:validation and use of a spray distribution model [J]. Biosystems Engineering, 2007,96(2):161-168.
    [125].宋坚利,何雄奎,曾爱军,等.罩盖喷杆喷雾机的设计与防飘试验[J].农业机械学报,2007,38(8):74-77,89
    [126].袁雪,王俊,周舟,等.喷雾荧光示踪剂回收率影响因素实验[J].农业机械学报,2010,41(10):54-57,85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700