3WF-8型风送式果园喷雾机的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着西部大开发战略的稳步推进,作为我国最大的林果业基地之一的新疆定会在林果业上得到长足的发展。当前,化学防治仍是人类对病虫害进行综合防治中最有效、最主要的手段。所以,果园喷雾机的研制与推广,对于提高我区的林果业种植水平,增加果农的收入,提高化学防治的效果以及促进林果种植业的可持续发展都具有重大的意义。因此,在新疆研制果园喷雾机是有必要的,具有重要的现实意义。本文对3WF-8型风送式果园喷雾机进行了模拟与试验研究。通过理论分析、模拟分析和试验研究相结合的方法,分析模拟结果和试验数据,揭示了喷雾机的结构参数与试验指标之间的关系,为喷雾机的研制提供了理论和试验依据。本文主要涉及到以下内容:
     1.借助三维机械辅助设计软件,使我们在很短的时间内完成了机具的设计工作。
     2.通过对喷雾机主要结构参数的分析,确定了喷雾机均匀试验模拟的模型。得出均匀试验的试验因素为:入口风速、入口直径、出口截距。
     3.根据均匀试验的模拟结果,确定了影响喷雾机出口风速的主次因素为:截距﹥入口风速﹥入口直径。具体参数为:出口截距选取50mm,入口风速选取15m/s,入口直径选取750mm。
     4.对样机的送风系统进行三维实体建模,从喷雾机内部风场的模拟分析得出,在喷雾机顶部,出口风速较低,由此提出三种假设:(1)风机的流量不够大;(2)喷雾机导风上翼的位置偏高;(3)风机产生的气流没有得到充分地利用。
     5.通过模拟试验得出:第三种假设是影响喷雾机出口风速稳定的主要原因,对此,设计了内部风场的导流装置。根据试验结果可以看出:增加了导流装置之后,左侧风速较之前整体上提高了5%,右侧风速较之前整体上提高了1.5%,最重要的是通过试验证明了喷雾机内部风场得到了改善和优化。
     6.对传动主轴进行校核,计算后得出:直径为30mm的主轴在1800r/min的条件下,同时带动两个负载风扇工作,经校核能够满足强度要求。
     7.通过对喷雾机的机理分析,得出了正交试验的试验因素为:喷雾压力,风机转速以及喷孔直径;试验指标分别是:水平射程、喷雾高度以及雾滴均匀性。在增加了导流装置以后,制定均匀试验方案,均匀试验的因素为:喷雾压力,风机转速,喷孔直径,导流器;试验指标为雾滴均匀性。
     8.通过正交试验确定了影响喷雾机性能的主次因素为A B C,即喷雾压力、风机转速、喷孔直径,最优组合是A_3B_1C_2,并且,通过此次试验了解了雾滴的运动情况及其破碎机理。
     9.通过均匀试验,得到了喷雾机主要结构参数与试验指标间的数学模型,求解方程得出,当综合指标最大时,主要结构参数值为:喷雾压力2.0MPa,风机转速1800r/min,喷孔直径0.8mm,有导流器。最后,通过试验验证了最终的试验结果与回归方程所得到的结果相吻合。
As the strategy of the western regions developing is steadily pushed forward. It is a must for Xinjiang province where is one of the biggest base of growing trees and apples, and has a great progress at the aspect of growing trees and apples. At present, chymic prevention is still a method which is the best and the primary measure for human confronting plant diseases and insect pests. So, research and spread orchard sprayer has a significant meaning for promoting planting level of Xinjiang province with its growing trees and apples, increasing farmer’s earning, improving chymic prevention effect, and boosting keeping developing with growing trees and apples industry. Therefore, it has necessity to research orchard sprayer, and it has an important reality meaning.
     This paper carry through simulating and testing for 3WF-8 air-assistant orchard sprayer. Combine with analyzing theory, simulating method, and testing research, and according to the results of simulating and testing dates, it find the relationship between structure parameter and trial index which can offer theory and testing dates for air-assistant orchard sprayer. In this passage, including as follows:
     1. By 3D machine assistance software, it help us complete design working of machine in a short time.
     2. With the analyzing of primary structure parameter, ascertain the model of uniformity experiment. Find the testing factor of uniformity experiment is: inlet wind speed, inlet diameter, and outlet magnitude.
     3. According to the simulating results, ascertain the order of influence to outlet wind speed: outlet magnitude>inlet wind speed>inlet diameter. Special parameters is: outlet magnitude equal to 50mm, inlet wind speed equal to 15m/s, inlet diameter equal to 750mm.
     4. Modeling the 3D of pattern machine, it is conclude that: at the top of sprayer, outlet wind speed is low, for this, put forward three hypothesizes: (1) Dynamotor’s flux is not enough; (2) The position of oriented equipment is higher; (3) Dynamotor’s current utilization is not sufficient.
     5. Simulating experiment conclude that the third hypothesis is primary factor for outlet wind speed. For this, designing a oriented equipment inside of sprayer. According to the results, it can find that: after appending the oriented equipment, left wind speed of sprayer is increasing 5% than before, and right increasing 1.5%. Last but not least, it testify that sprayer interior wind field have improve and optimizing.
     6. After checking-up the transmission shaft, conclude that: 30mm shaft can normally work at 1800r/min which also appending two load fan.
     7. By analyzing the sprayer, find orthoplan experiment factors are: spray pressure, rotate speed of fan, and spout diameter; Testing index are: level range, spray height, and fogdrop coherence. After appending the oriented equipment, set down uniform design, and its factors are: spray pressure, rotate speed of fan, spout diameter, and oriented equipment, testing index is fogdrop uniformity.
     8. By orthoplan experiment, ascertain the order of influence to performance of sprayer: A B C, spray pressure, speed of fan, and spout diameter, optimum combination is A_3B_1C_2. Meanwhile, realizing the fogdrop movement and fragmentation theory.
     9. By uniform design, find out the mathematic model between structure parameter and trial index. According to the equation, when the index reach to the max, primary structure parameters are: spray pressure 2.0MPa, speed of fan 1800r/min, spout diameter 0.8mm, oriented equipment existing. Finally, proving it has inosculation between testing outcome and regressive result.
引文
[1]毕士成.浅议我国果园喷药机械化问题[J].北方果树,1998(2):33-35.
    [2]张立学.“十五”期间新疆林果业发展迅猛[N].中国国土资源报,2006-1-18.
    [3]刘青. 9WZCD-25型风送式喷雾机喷雾性能优化试验研究[D].新疆:新疆农业大学机械交通学院,2003.
    [4]陈艳巧,张晓辉.我国植保机械现状及其发展策略[J].农业装备与车辆工程,2006(2):3-4.
    [5]武长孝,李荣华.植保新技术及植保机械[J].农机化译文,1984(3):21-22.
    [6]启新,培增.日本的果园生产机械[J].山西农机,1997(2):40-41.
    [7]崔瑞芝,穆琦编.超轻型飞机、超低量喷雾装置的研究[J].农机情报资料,1984(3):5-7.
    [8]彭军.风送式超低量喷雾装置内流场数值模拟研究[D].湖北:武汉理工大学机电工程学院,2006.
    [9]杨学军,严荷荣,徐赛章,等.植保机械的研究现状及发展趋势[J].农业机械学报,2002,33(6):129-130.
    [10]新疆维吾尔自治区农牧机械管理局.新疆维吾尔自治区农业机械化发展第十一个五年规划(R), 2006.
    [11]黄继汤,马吉明,张永良.理想流体力学[M].北京:中国水利水电出版社,2005.
    [12]钱冀稷,周玉文等译.流体力学及其工程应用[M].北京:机械工业出版社,2006.
    [13]林建忠,阮晓东,陈邦国等.流体力学[M].北京:清华大学出版社,2005.
    [14]余志豪,苗曼倩,蒋全荣等.流体力学[M].北京:气象出版社,2004.
    [15]濮良贵,纪名刚.机械设计[M].北京:高等教育出版社,2007.
    [16]曾正明.机械工程材料手册[M].北京:机械工业出版社,2009.
    [17]唐金松.简明机械设计手册[M].上海:上海科学技术出版社,1992.
    [18]续魁昌.风机手册[M].北京:机械工业出版社,2003.
    [19]刘鸿文.材料力学[M].北京:高等教育出版社,2006.
    [20]机械工程师手册编委会.机械工程师手册[M].北京:机械工业出版社,2007.
    [21]王瑞金,张凯,王刚. Fluent技术基础与应用实例[M].北京:清华大学出版社,2007.
    [22]温正,石良辰,任毅如. Fluent流体计算应用教程[M].北京:清华大学出版社,2009.
    [23]李士军,郝艳华.约束方程的分区网格划分法[J].华侨大学学报:自然科学版,2006(2):170-173.
    [24]余江洪,朱宗柏,肖金生. FLUENT软件的多重网格并行算法及其性能[C].湖北:[出版者不祥],2005.
    [25] Guo Q P, Yakup P. Concurrent Communication and Granularity Assessment for a Trans-puter based Multiprocessor system[J]. Journal of Computer Systems Science & Engineering, 1990, 5(1): 18-20.
    [26] Zongbo Zhu, Guoxun Yan, Chunxiao Liu, Jinsheng Xiao Parallel Multi-grid Algorithm Based on Cluster Computing with Application to Transient Heat Transfer[J]. 2004 International Sym-posiumon Distributed Computing and Applications to Business, Engineering and Science, (D-CABES 2004), 345-349.
    [27]李云艳,胡传荣.试验设计与数据处理[M].北京:化学工业出版社,2005.
    [28]孙培勤,刘大壮.试验设计数据处理与计算机模拟[M].郑州:河南科学技术出版社,2001.
    [29]庄楚强,吴亚森.应用数理统计基础[M].广州:华南理工大学出版社,1992.
    [30] V. V. Fedorov. Theory of optimal Experiments Academic, 1972.
    [31]王东屏,兆文忠,赵立峰.离心通风机内部流场的数值仿真及优化研究[C].大连:[出版者不详],2005.
    [32] Tyack J N and Fenner. R A. Computational fluid dynamics modeling of velocity profiles within a hydrodynamic[J]. Wat. Sci.-Tech, 1999, 39(9): 169-176.
    [33]邱英政,徐宇工,王艳丽.高速列车底部结构的空气动力学模型研究[C].北京:[出版者不详],2005.
    [34]罗固源,梁智权.流体力学[M].重庆:重庆大学出版社,2002.
    [35] Vennard J K and R L Street. Elementary Fluid Mechanics. New York: John Wiley & Sons, 1982.
    [36]朱方生,李大美,李素贞.计算方法[M].湖北:武汉大学出版社,2005.
    [37] Fisher K. A. and Yates, F. Slatistical Tobles for Biological, Aricultural and Medical Research, Oliver and Boyel London, 1957.
    [38]章文波,陈红艳.实用数据统计及SPSS12.0应用[M].北京:北京邮电出版社,2006.
    [39]国家机械工业局.植保机械通用试验方法[R],1999.
    [40]王荣.植保机械学[M].北京:机械工业出版社,1990.
    [41]郭峰,陈建东,郭辉,等. 3WF-8型风送式果园喷雾机性能优化与改进[J].农机化研究,2010(11).
    [42]李红军,何雄奎,周继忠,等.一种小型机动背负式喷杆喷雾机的性能试验[J].中国农业大学学报,2007,12(2):54-57.
    [43]史岩,傅泽田,祁力钧,等.垂直小目标雾滴分布试验[J].农业机械学报,2004,35(4):47-50.
    [44] Whitney J D, Salyani M. Deposition characteristics of two different air carrier sprayers in citrus trees Transactions of the ASAE, 1990, 33(1): 47-50.
    [45] Travis J W, Skroch W A, Sutton T B. Effects of travel speed, application volume and nozzlearrangement on deposition and distribution of pesticide in apple trees. Plant Disease, 1987, 71(7): 606-612.
    [46] Wang L, Zhang N, Slocombe J W, et al. Experimental analysis of spray distribution pattern uniformity for agricultural nozzles[J]. Applied Engineering in Agriculture, 1995, 11(1): 51-55.
    [47]戴奋奋.风送喷雾机风量的选择与计算[J].植物保护,2008,34(6):124-127.
    [48]宋淑然,洪添胜,孙道宗,等.风送式喷雾机变速喷雾雾滴沉积试验[J].农机化研究,2009(1):166-168.
    [49]傅泽田,王俊,祁力钧,等.果园风送式喷雾机气流速度场模拟及试验验证[J].农业工程学报,2009,25(1):69-73.
    [50] Delele M A, Jaeken P, Debaer C, et a1. CFD prototyping of an air-assisted orchard sprayer aimed at drift reduction[J]. Computers and Electronics in Agriculture, 2007(55): 16-27.
    [51]郭峰,杨宛章,韩长杰,等. 3WF-8型果园喷雾机的试验与研究[J].新疆农业大学学报,2009,32(5):81-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700