二甲醚—生物柴油混合燃料喷射及发动机燃烧研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车保有量的不断增加和排放法规的日益严厉,发展清洁能源成为当前能源与环境领域的一个重要课题。二甲醚和生物柴油均为柴油机清洁代用燃料,两种燃料混合后可弥补各自不足。本文针对非增压、增压发动机燃用二甲醚-生物柴油混合燃料开展了系统的研究,涉及喷油、喷雾、燃烧、性能和性能预测等。
     在喷油泵试验台上试验研究了二甲醚-生物柴油混合燃料的喷射过程。研究表明,对共轨燃料系统,与生物柴油相比,纯二甲醚的喷油始点较晚,其他燃料的喷油始点差别不明显。随着燃料中二甲醚比例的增加,喷油终点延后;喷油持续期明显延长,最大喷油速率变化不大。轨压升高,所有燃料的喷油速率曲线上升段变陡,喷油速率峰值增加;各混合燃料的喷油始点、喷油终点差别均变小,喷油速率在喷油持续期的波动变大。同一燃料,喷射脉宽增大,则喷油始点一致,最大喷油速率基本不变,喷油持续期明显增加。启喷压力由17MPa升高为20MPa,喷油始点变晚,最大喷油速率略增加。对泵-管-嘴燃料系统,随着二甲醚比例的增加,喷油始点延后,喷油速率曲线上升段变平缓,最大喷油速率降低,其相位依次延后;喷油持续期增加;高压油管内声速和长管内声速降低。共轨系统与泵-管-嘴系统比,燃料中二甲醚比例对前者喷油始点、最大喷油速率、喷油速率曲线形状的影响要远远小于后者。
     采用高速摄影研究了二甲醚-生物柴油混合燃料的喷雾特性。研究表明,各燃料喷雾贯穿距离随时间增加的规律是先快后慢。随着燃料中二甲醚比例的增加,喷雾贯穿距离减小;喷雾锥角变大。背压升高,各燃料的喷雾贯穿距离减小,喷雾锥角变大;各燃料喷雾贯穿距离的差别变小。轨压升高,各燃料的喷雾贯穿速度、贯穿距离、喷雾锥角变大。脉宽增加,各燃料的喷雾贯穿距离增大,喷雾锥角差别不大。
     非增压发动机燃用二甲醚-生物柴油混合燃料研究表明,随着燃料中二甲醚比例的增加,缸内压力峰值降低且相位延后;预混合燃烧减弱,其放热峰值降低;扩散燃烧放热峰值升高;混合燃料的燃烧始点延后。缸内最高温度和最大压力升高率降低,其相位延后。掺混二甲醚后,混合燃料的燃油消耗率、排气温度、NOx排放和碳烟排放降低,高负荷时碳烟排放降低更显著。中低负荷时各燃料的CO排放均很低,高负荷时燃料中掺混二甲醚,CO排放显著降低。对缸内压力进行四层小波分解,提取压力时频信息,并将之与放热率、缸内压力升高率和压力升高加速度关联。结果表明,放热率峰值、压力升高率峰值、压力升高加速度峰值都在预混合燃烧阶段;缸内压力在各层的子带信号峰值也在此阶段,各层子带信号峰值反应了预混合燃烧在各频域的冲击。各混合燃料燃烧时均为第四层子带信号峰值和小波相对能量最大,不同负荷都如此。随着燃料中二甲醚比例的增加,第四层小波相对能量增加,其他层小波相对能量减少。
     针对二甲醚-生物柴油混合燃料的理化特性,试验研究了喷嘴参数、混合比例等对增压发动机燃烧和性能的影响,试验的混合燃料中二甲醚占质量比例分别为0%、30%、50%、70%和100%。研究发现,采用同一喷嘴时,随着燃料中二甲醚比例的增加,发动机进气压力增加,着火延迟,缸内压力峰值、放热率峰值、最高缸内温度、压力升高率峰值降低,其相位延后。二甲醚掺混比例从30%到100%时,燃油消耗率、NOx排放和碳烟排放下降,HC排放和CO排放先降低,之后变化平缓。6×0.35mm喷嘴与6×0.40mm喷嘴比较,前者的缸内压力峰值、压力升高率峰值和放热率峰值均高于后者,峰值相位提前;随着燃料中二甲醚比例的增加,差别更明显。综合考虑燃油消耗率和NOx排放,燃用低比例二甲醚混合燃料时,宜选用6×0.35mm喷嘴;燃用高比例二甲醚混合燃料时,宜选用6×0.40mm喷嘴。建立了预测混合燃料发动机性能的神经网络,该网络采用Levenberg-Marquardt算法,收敛快速,预测精度高,并试验验证了其泛化能力。
     研究了废气再循环EGR对二甲醚-生物柴油混合燃料增压发动机性能的影响。研究表明,引入冷EGR后,发动机进气压力增加;各燃料的NOx排放均大幅下降;CO排放和HC排放均升高。二甲醚比例不大于50%的混合燃料的碳烟排放随EGR的引入明显升高,二甲醚比例不小于70%的混合燃料的碳烟排放很低,变化不明显。负荷增大,EGR对排放的影响更明显。
Because of the challenge of increased vehicle population and environmental pollution, clean alternative fuels are becoming increasingly important. Both dimethyl ether (DME) and biodiesel are clean alternative fuels. Their problems to separate application can be solved by blending them. The injection process, spray, combustion, engine performance and performance prediction of DME-biodiesel blends are investigated in this dissertation.
     The injection process of DME-biodiesel blends is experimentally studied on a pump test bench. In common rail injection system, compared to biodiesel, the injection of DME starts later, and the injection of other fuel blends start almost at the same time. By increasing DME proportion, fuel injection ends later and injection duration is prolonged significantly, but peak injection rate changes little. With the increase of rail pressure, the early change rate of injection rate with time and peak injection rate increase; the injection start and injection end among blended fuels vary less, but injection rate curve fluctuates stronger. With the increased injection pulse width, the injection start and peak injection rate remain unchanged, but injection duration increases significantly. As nozzle opening pressure increases from 17MPa to 20MPa, the injection starts later and peak injection rate increases. For in-line-pump injection system, with the increase of DME proportion, the injection start later, and the early change rate of injection rate with time and the peak of injection rate decrease with retarded peak phase; furthermore, the injection duration extends and the sound velocity decreases. Compared to common rail injection system, with in-line-pump injection system, DME proportion has more effect on injection timing, peak injection rate and injection rate pattern.
     The spray characteristics of DME-biodiesel blends are studied using high-speed photography. The results show that spray penetration increases rapidly first and then slowly with time. With increased DME proportion, spray penetration decrease, but spray angle increases. As ambient pressure increases, spray penetration decrease, but spray angle increases; spray penetration differs less distinctly among various fuels. With the increase of rail pressure, spray velocity, spray penetration and spray angle increase. With the increase of injection pulse width, spray penetration increase while spray angle changes little.
     An experimental study is conducted on a naturally aspirated diesel engine fueled with DME-biodiesel blends. The results show that, with the increase of DME proportion, the peak in-cylinder pressure decreases with retarded peak pressure phase; the peak premixed combustion decreases, but the peak diffusion combustion increases, and ignition delays; the peak in-cylinder temperature and peak pressure rise rate decrease, and their phases retard. As DME proportion increases, the brake specific fuel consumption (BSFC), exhaust temperature, NOx and smoke emissions decrease, especially with greatly reduced smoke emissions at high loads; CO emissions are very low at low to middle loads, and decreases at high loads. The heat release analysis is associated with in-cylinder pressure four-layer wavelet analysis of blended fuels. The results show that just as the peak heat release rate, pressure rise rate and pressure rise acceleration, so the peaks of subsignals at four layers are located within premixed combustion phase. The peaks of subsignals represent pressure oscillation of premixed combustion. The peak subsignal and wavelet relative energy at fourth level are the largest. With the increase of DME proportion, wavelet relative energy at fourth level increases, but wavelet relative energy at other levels decreases.
     Another experimental study is conducted on a turbocharged diesel engine fueled with DME-biodiesel blends with 0, 30%, 50%, 70% and 100% DME proportion individually. The effects of nozzle parameter and DME proportion on combustion are investigated. The results show that, with the increase of DME proportion, inlet pressure increases, but the ignition delays, the peak in-cylinder pressure and heat release rate, peak in-cylinder temperature and peak pressure rise rate decrease, and their phases retard. By increasing DME proportion from 30% to 100%, BSFC, NOx emissions and smoke emissions decrease, while HC emissions and CO emissions decrease firstly and then change little. Compared to the nozzle of 6×0.40mm, the peak cylinder pressure and peak heat release rate increase with nozzle of 6×0.35mm, and their phases are advanced. As DME proportion increases, their differences become greater. To get low BSFC and NOx emissions, with low DME proportion blended fuels,nozzle of 6×0.35mm should be adopted; and with high DME proportion blended fuels,nozzle of 6×0.40mm adopted. An artificial neural network trained by Levenberg-Marquardt algorithm is developed to predict the performance of the blended fuels. Its accurate prediction is verified through experiment.
     The effects of EGR on emissions and performance are also investigated. The results show that with EGR, inlet pressure increases;for all five blended fuels, NOx emissions decrease drastically, but CO emissions and HC emissions increase; smoke emissions increase for blended fuels containing no more than 50% of DME, but change little for blended fuels containing 70% DME or more due to low baseline levels. With the increased load, the effect of EGR on emissions becomes obvious.
引文
[1] BP世界能源统计2006. 2006.
    [2]杨泽伟.中国能源安全问题:挑战与应对.世界经济与政治,2008年08期:52-60.
    [3]苏万华,赵华,王建昕等著.均质压燃低温燃烧发动机理论与技术[M].北京科学出版社:2010.
    [4]欧洲重型柴油机排放标准. http://www.dieselnet.com/standards/eu/hd.php.
    [5]车用压燃式、气体点燃式发动机与汽车排气污染排放限值及测量方法(中国Ⅲ、Ⅳ、Ⅴ阶段) (GB17691-2005),中国环境科学出版社,2005.
    [6]商用汽车新闻.欧洲出台轻型商用车CO2排放标准. http://www.cn357.com/news_6136.htm
    [7] Koji Kitano, Ichiro Sakata, Richard Clark. Effects of GTL Fuel Properties on DI Diesel Combustion. SAE Paper 2005-01-3763.
    [8] Misuharu Oguma, Shinichi Goto, Mitsuru Konno et al. Experimental study of Direction Injection Diesel Engine Fueled with two Types of Gas to Liquid (GTL). SAE Paper 2002-01-2691.
    [9] Paul Schaberg, Johan Botha, Mark Schnell et al. Emissions Performance of GTL and Diesel Fuel Blends with Optimized Engine Calibrations. SAE Paper 2005-01-2187.
    [10]武涛.燃用天然气合成油发动机燃烧特性与可靠性研究[博士学位论文].上海:上海交通大学,2008.
    [11]胡志远,赵杰,谭丕强等.共轨柴油机燃用天然气合成油的性能与排放特性.内燃机工程,2009年01期:19-23.
    [12]孙万臣,李国良,马一功等.天然气制油/柴油混合燃料对小型柴油机燃烧特性的影响.吉林大学学报(工学版),2010年06期:1507-1511.
    [13]许锋,段树林.煤直接液化燃油在IE150C型柴油机上的试验研究,内燃机学报,1999年02期:104-107.
    [14]黄勇成,周龙保,蒋德明.清洁燃料F-T柴油在柴油机中应用的研究,内燃机工程,2005年05期:18-23.
    [15] Paul F. Schubert, Branch J. Russell, Robert L. Freerks et al. Impact of ultra-clean Fischer-Tropsch diesel fuel on emissions in a light-duty passenger car diesel engine. SAE Paper 2002-01-2725.
    [16] Mike P. May, Keith Vertin, Shouxian Ren et al. Development of truck engine technologies for use with Fischer-Tropsch fuels. SAE Paper 2001-01-3520.
    [17] S.S.Gill, A.Tsolakis, K.D.Dearn et al. Combustion characteristics and emissions of Fischer–Tropsch diesel fuels in IC engines. Progress in Energy and Combustion Science. 2011(37): 503-523.
    [18]覃军,刘海峰,尧命发等.柴油机掺烧不同比例生物柴油的试验研究.燃烧科学与技术,2007年04期:335-340.
    [19]葛蕴珊,信建民,吴思进等.增压柴油机燃用生物柴油的排放特性. 2004年02期:125-129.
    [20] M Canakci. Performance and emission characteristics of biodiesel from soybean oil. Proceedings of Institute of Mechanical Engineering, Part D, Journal of Automobile Engineering, 2005 (219): 915-922.
    [21] M. P. Dorado, E. Ballesteros, J. M. Arnal. Exhaust emissions from a diesel engine fueled with transesterified waste olive. Fuel, 2003 (82): 1311-1315.
    [22] Breda Kegl. Influence of biodiesel on engine combustion and emission characteristics. Applied Energy,2011 (88): 1803-1812.
    [23] Nadir Yilmaz, Byron Morton. Comparative characteristics of compression ignited engines operating on biodiesel produced from waste vegetable oil. Biomass and Bioenergy, 2011(35): 2194-2199.
    [24] A Kowalewicz. Eco-diesel engine fuelled with rapeseed oil methyl ester and ethanol. Part 1: efficiency and emission. Proceedings of Institute of Mechanical Engineering, Part D, Journal of Automobile Engineering, 2005 (219): 715-723.
    [25]吕兴才,马骏骏,吉丽斌等.乙醇/生物柴油双燃料发动机燃烧过程与排放特性的研究.内燃机学报,2008年02期:140-146.
    [26] Xingcai Lu,Junjun Ma,Libin Ji. Simultaneous reduction of NOx emission and smoke opacity of biodiesel-fueled engines by port injection of ethanol. Fuel, 2008 (87): 1289–1296.
    [27] Lei Zhu, C.S. Cheung, W.G. Zhang et al.Combustion, performance and emission characteristics of a DI diesel engine fueled with ethanol–biodiesel blends. Fuel, 2011 (90): 1743-1750.
    [28]楼狄明,石健,赵杰等.共轨柴油机燃用不同配比生物柴油的性能与排放特性.内燃机工程,2009年06期:21-25.
    [29]葛蕴珊,何超,韩秀坤等.柴油机燃用生物柴油的多环芳香烃排放试验研究.内燃机学报,2007年02期:125-129.
    [30]袁银南,张恬,梅德清等.直喷式柴油机燃用生物柴油燃烧特性的研究.内燃机学报,2007年01期:43-46.
    [31]谭满志,郭英男,刘发发等.直喷柴油机燃用大豆油甲酯生物柴油的排放和燃烧特性.吉林大学学报(工学版),2010年05期:1183-1187.
    [32]祁东辉,陈昊,刘津等.柴油机燃用生物柴油的燃烧和排放特性研究.汽车工程,2008年07期:581-584.
    [33] Christopher A. Sharp, Steve A. Howell, Joe Jobe. The Effect of Biodiesel Fuels on Transient Emissions from Modern Diesel Engines, Part I Regulated Emissions and Performance. SAE Paper 2000-01-1967
    [34] Christopher A. Sharp, Steve A. Howell, Joe Jobe. The Effect of Biodiesel Fuels on Transient Emissions from Modern Diesel Engines, Part II Unregulated Emissions and Chemical Characterization. SAE Paper 2000-01-1968
    [35]王刚,朱兵.基于合成气的二甲醚和氢能:中国能源技术的一种战略选择.清华大学学报(自然科学版),2008年06期:1023-1026.
    [36] VI Golovitchev, N Nordin, J Chomiak. Neat Dimethvl Ether: Is It Really Diesel Fuel of Promise? SAE Paper 982537.
    [37] Noboru Miyamoto, Hideyuli Ogawa, Nabi Md Nurun et al. Smokeless, Low NOx, High Thermal Efficiency, and Low Noise Diesel Combustion with Oxygenated Agents as Main Fuel. SAE Paper 980506.
    [38] Zhou Longbao, Wang Hewu, Jiang Deming. Study of Performance and Combustion Characteristics of a DME-fueled Light-duty Direct-injection Diesel Engine. SAE Paper 1999-01-3669.
    [39] M. Alam, O. Fujita, K.Ito, et al. Performance of NOx Catalyst in a DI Diesel Operated with Neat Dimethvl Ether. SAE Paper 1999-01-3599.
    [40] Rolf Egnell. Comparison of Heat Release and NOx Formation in a DI Diesel Engine Running on DMEand Diesel Fuel. SAE Paper 2001-01-0651.
    [41] Ken Friis Hansen, Leo Nielsen, John Bogild Hansen. Demonstration of a DME(Dimethyl Ether) Fuelled City Bus. SAE Paper 2000-01-2005.
    [42] Hu Zhen, Zhang Cuiping, Yang Qingfo. Experimental Investigation on the Dimethyl Ether Fueled ZS195 Diesel Engine. ISAF XIV TECHNICAL PAPERS, Vehicle Technologies Session(3), 2002-VT-16.
    [43] S.C. Sorenson, Svend-Erik Mikkelsen. Performance and Emission of a 0.273 Liter Direct Injection Diesel Engine Fueled with Neat Dimethyl. SAE Paper 950064.
    [44] Thor Fleish, Chris McCarthy et al. A New Clean Diesel Technology: Demonstration of ULEV emissions on a Navistar Diesel Engine Fueled with Dimethyl. SAE Paper 950061.
    [45] Paul Kapus, Herwig ofner. Development of Fuel Injection Equipment and Combustion System for DI Diesel Operated on Dimethyl Ether. SAE Paper 950062.
    [46] John Bogild Hansen, Bodil Voss, Finn Joensen. Large Scale Manufacture of Dimethyl Ether- a New Alternative Diesel fuel from Nature Gas. SAE Paper 950063.
    [47] Mitsuru Konno, Shuichi Kajitani, Zhili Chen, et al. Investigation of the Combustion Process of a DI CI Engine with Dimethyl Ether. SAE Paper2001-01-3504.
    [48] Mitsuharu Oguma, Gisoo Hyun, Shinichi Goto. Atomization Characteristics for Various Ambient Pressure of Dimethyl Ether. SAE Paper 2002-01-1711.
    [49] Mitsuharu Oguma, Shinichi Goto,Tomoko Watanabe. Engine Performance and Emission Characteristics of DME Diesel Engine With Inline Injection Pump Developed for DME. SAE Paper 2004-01-1863.
    [50] Yoshio Sato. Shinya Nozaki, Toshifumi Noda. The Performance of a Diesel Engine for Light Duty Truck Using a Jerk Type In-Line DME Injection System. SAE Paper 2004-01-1862.
    [51] Yoshio Sato, Akira Noda, Takashi Sakamoto et al. Performance and Emission Characteristics of a DI Diesel Engine Operated on Dimethyl Ether Applying EGR with Supercharging. SAE Paper 2000-01-1809.
    [52] James C.McCandless, Shurong Li. Development of a Novel Fuel Injection System (NFIS) for Dimethyl Ether and other Clean Alternative Fuels. SAE Paper 970220.
    [53] James C.McCandless, Ho Teng. Development of a Variable-Displacement, Rail-Pressure Supply Pump for Dimethyl Ether. SAE Paper 2000-01-0687.
    [54] Ho Teng, James C.McCandless. Can Heavy-Duty Diesel Engines Fueled with DME Meet US 2007/2010 Emissions Standard with A Simplified Aftertreatment System? SAE Paper 2006-01-0053.
    [55] Jun Yu, Jookwang Lee, Choongsik Bae. Dimethyl Ether (DME) Spray Characteristics Compared to Diesel in a Common-Rail Fuel Injection System. SAE Paper 2002-01-2898.
    [56] Hyun Kyu Suh, Chang Sik Lee. Experimental and analytical study on the spray characteristics of dimethyl ether (DME) and diesel fuels within a common-rail injection system in a diesel engine. Fuel, 2008 (87): 925–932.
    [57] Myung Yoon Kim, Seung Hyun Yoon, Bong Woo Ryu. Combustion and emission characteristics of DME as an alternative fuel for compression ignition engines with a high pressure injection system. Fuel, 2008 (87): 2779–2786.
    [58] Myung Yoon Kim, Seung Hwan Bang, Chang Sik Lee. Experimental Investigation of Spray andCombustion Characteristics of Dimethyl Ether in a Common-Rail Diesel Engine. Energy & Fuels, 2007(21): 793-800
    [59] Hyung Jun Kim, Su Han Park, Chang Sik Lee. A study on the macroscopic spray behavior and atomization characteristics of biodiesel and dimethyl ether sprays under increased ambient pressure. Fuel Processing Technology, 2010 (91): 354–363.
    [60] Hyung Jun Kim, Hyun Kyu Suh, Su Han Park et al. An Experimental and Numerical Investigation of Atomization Characteristics of Biodiesel, Dimethyl Ether, and Biodiesel-Ethanol Blended Fuel. Energy & Fuels, 2008 (22): 2091–2098.
    [61] Hyung Jun Kim, Su Han Park, Hyun Kyu Suh, et al. Atomization and Evaporation Characteristics of Biodiesel and Dimethyl Ether Compared to Diesel Fuel in a High-Pressure Injection System. Energy & Fuels, 2009(23): 1734–1742.
    [62] Hyung Jun Kim, Hyun Kyu Suh, Chang Sik Lee. Numerical and Experimental Study on the Comparison between Diesel and Dimethyl Ether (DME) Spray Behaviors According to Combustion Chamber Shape. Energy & Fuels, 2008(22): 2851–2860.
    [63] Hyun Kyu Suh, Sung Wook Park, Chang Sik Lee. Atomization Characteristics of Dimethyl Ether Fuel as an Alternative Fuel Injected through a Common-Rail Injection System. Energy & Fuels, 2006(20): 1471-1481.
    [64] Hyun Kyu Suh, Su Han Park, Hyung Jun Kim. Influence of ambient flow conditions on the droplet atomization characteristics of dimethyl ether (DME). Fuel, 2009 (88): 1070-1077.
    [65] J. S. HWANG, J. S. HA, S. Y. NO. Spray characteristics of DME in condition of common rail injection system. International Journal of Automotive Technology, 2003 (3): 119-124.
    [66] Wu Junhua, Huang Zhen, Qiao Xinqi. Study on Combustion and Emissions Characteristics of Turbocharged Engine fuelled with Dimethyl Ether. International Journal of Automotive Technology, 2006, (6): 645-652.
    [67] Junhua Wu, Zhen Huang, Xinqi Qiao. Study on performance and emissions characteristics of a turbocharged engine fulled with Dimethyl Ether. Proceedings of the 7th Cross Straits Symposium on Materials, Energy and Environmental Sciences. December 1-2, 2005, Japan
    [68]张光德,黄震,乔信起等.二甲醚燃料喷射过程的试验研究.内燃机学报,2002年5期:395-398.
    [69]乔信起,张光德,黄震等.柴油机燃用二甲醚喷射与燃烧的试验研究.农业机械学报,2004年1期:30-33.
    [70] GD Zhang,H Liu et al. Study on the injection process of a direct injection diesel engine fuelled with dimethyl ether. Proceedings of the Institution of Mechanical Engineers,Part D: Journal of Automobile Engineering, 2004(218): 1341-1347.
    [71] Junhua Wu, Zhen Huang, Xinqi Qiao. Reduction of NOX Emission from a Turbocharged Engine Fuelled with DME by Means of EGR. The 3rd Asian DME Conference, October, 2006, Korea
    [72]吴君华,黄震,乔信起等.废气再循环对增压二甲醚发动机性能和排放影响的试验研究.内燃机学报,2008年2期:147-152.
    [73]李新令,黄震,王嘉松等.二甲醚发动机超细颗粒排放属性实验研究.科学通报,2007年14期: 1707-1713.
    [74]张俊军.二甲醚发动机燃烧与排放特性及性能优化[博士学位论文].上海:上海交通大学,2009.
    [75] J-J Zhang, Z Huang, J-H Wu. Combustion and Performance of Heavy-Duty Diesel Engines Fueled With Dimethyl Ether. Proceedings of the Institute of Mechanical Engineers, Part D, Journal of Automobile Engineering, 2008, 222(9): 1691-1703.
    [76] Junjun Zhang, Xinqi Qiao, Zhen Huang. Search for the Optimizing Control Method of Compound Charge Compression Ignition (CCCI) Combustion in an Engine Fueled with Dimethyl Ether. Energy & Fuels, 2008 (22): 1581-15881.
    [77] Junjun Zhang, Xinqi Qiao, Zhen Wang et al. An Experimental Investigation of Low Temperature Combustion (LTC) in an Engine Fueled with DME. Energy & Fuels, 2009(23): 170-174.
    [78]张俊军,乔信起,管斌等.柴油机燃用二甲醚复合燃烧优化控制试验研究.内燃机学报,2008年3期:193-199.
    [79]张俊军,乔信起,王真等.内外部EGR控制二甲醚发动机的燃烧与排放.燃烧科学与技术,2009年05期:435-439.
    [80]王贺武,周龙保.二甲醚喷雾特性的研究.西安交通大学学报,2001年9期:918-921.
    [81]王贺武,陈鸿雁,周龙保.直喷柴油机燃用二甲醚的试验研究.内燃机学报,1999(3):241-246.
    [82]王贺武,周龙保,蒋德明.直喷柴油机燃用二甲醚排放特性的研究.内燃机学报,2000年1期:006-010.
    [83]王贺武,周龙保.柴油机燃用二甲醚的燃烧特性.燃烧科学与技术,2000年3期:200-204.
    [84]汪映,董红义,周龙保等.车用柴油机燃用二甲醚的性能研究及行驶试验.西安交通大学学报,2004年第1期:24 -27.
    [85]汪映,周龙保,董红义.车用多缸直喷柴油机燃用二甲醚的燃烧和排放特性研究.内燃机学报,2003年5期:298 -302.
    [86]汪映,周龙保,潘克煜等.车用直喷二甲醚发动机的排放控制试验.农业机械学报,2006年1期:5-7.
    [87]王贺武,周龙保,蒋德明.柴油机燃用二甲醚时采用排气再循环降低NOx排放.西安交通大学学报,2000年7期:9 -11.
    [88]王贺武,郭永媛,周龙保。柴油机燃用二甲醚及采用排气再循环同时降低碳烟和NOx排放的研究.陕西汽车,2000年04期:19-21.
    [89] Wang Ying, Zhou Longbao. Experimental study on exhaust emissions from a multi-cylinder DME engine operating with EGR and oxidation catalyst. Applied Thermal Engineering, 2008(28): 1589-1595.
    [90]尧命发,郑尊清,罗毅等.高温环境下二甲醚(DME)喷雾特性的实验研究.内燃机学报,2002年1期:8-12.
    [91]尧命发,郑尊清,罗毅等.喷油系统参数对二甲醚喷雾燃烧过程影响的实验研究.燃烧科学与技术,2003年4期:339-343.
    [92]张煜盛,田威,郑瑞.二甲醚发动机燃油喷射过程的实验与数值模拟.华中科技大学学报(自然科学版),2005年12期:27-30.
    [93]张煜盛,郎静,莫春兰等.二甲醚发动机非常规污染物排放特性研究.内燃机学报,2008年1期:36-42.
    [94]郎静,周小松,张煜盛等.柴油机燃用二甲醚排放实验研究.华中科技大学学报(自然科学版),2006年9期:78 -80.
    [95]魏明锐,刘斐,文华等.二甲醚喷雾碰壁数值模拟与试验研究.内燃机工程,2006年2期:5-10.
    [96]周光明,张煜盛,张辉亚.二甲醚喷雾瞬态速度场的DPIV研究.内燃机工程,2007年3期:1-5.
    [97]李君,朱昌吉,马光兴等.柴油机燃用二甲醚排放特性的研究.燃烧科学与技术,2003年3期:256-260.
    [98] Li Jun. An Experimental Study on DME Spray Characteristics and Evaporation Processes in a High Pressure Chamber. SAE Paper 2001-01-3635.
    [99]李君.柴油机新技术应用于二甲醚发动机性能试验研究.汽车工程,2003年2期:128-130.
    [100] Teng H, McCandless JC, Schneyer JB. Compression ignition delay (physical + chemical) of dimethyl ether - an alternative fuel for compression ignition engines. SAE Paper 2003-01-0759.
    [101] Teng H, McCandless JC, Schneyer JB. Thermodynamic properties of dimethyl ether-an alternative fuel for compression-ignition engines. SAE Paper 2004-01-0093.
    [102]乔信起,吴君华,张俊军等.增压二甲醚发动机的燃烧和性能. 2007年中国内燃机学会油品与清洁燃料分会第一届学术年会论文,106-115.
    [103]丁河清,吴锦翔,王忠俊.柴油-二甲醚混合燃料对柴油机排放的影响.武汉理工大学学报(交通科学与工程版),2001年第2期:191-194.
    [104] LüLin, Duan Shu lin, Wu Jinxiang. The Effect s of Diesel-DME Blends on Performance and Emissions of DI Diesel Engine. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2002(26): 552-556.
    [105] Xiao Jin, Huang Zhen, Qiao Xinqi. An experimental study on the spray characteristics of diesel- dimethyl ether (DME) blended fuels by phase doppler anemometry. Science in China Series E: Technological Sciences, 2009 (4): 928-936.
    [106]肖进.溶气燃油射流雾化与燃烧机理研究[博士学位论文].上海:上海交通大学,2004.
    [107]李德钢,黄震,乔信起等.进气中加入CO2和压缩比对二甲醚燃料均质压燃燃烧影响的研究.上海交通大学学报,2005年2期:0169-0172.
    [108]李德钢,黄震,乔信起等.二甲醚燃料均质压燃燃烧研究.内燃机学报,2005年3期:193-198.
    [109]吴君华.增压二甲醚发动机燃烧和排放控制试验研究[博士学位论文].上海:上海交通大学,2007.
    [110]张翠平,杨庆佛,胡真. ZS195柴油机燃用二甲醚(DME)一柴油混合燃料的实验研究.内燃机学报,2004.年4期:305-309.
    [111] Shuichi Kajitani, Mitsuharu Oguma, Tomoya Mori. DME Fuel Blends for Low-Emission, Direct- Injection Diesel Engines. SAE Paper 2000-01-2004.
    [112] Wang Ying, Li Genbao, Zhu Wei. Study on the application of DME/diesel blends in a diesel engine. Fuel Processing Technology, 2008(89): 1272-1280.
    [113] Wang Ying, Zhou Longbao, Wang Hewu. Diesel emission improvements by the use of oxygenated DME/diesel blend fuels. Atmospheric Environment, 2006(40): 2313-2320.
    [114]汪映.二甲醚—柴油混合燃料客车生命周期分析.车用发动机,2010年第1期:52-55.
    [115]李跟宝,周龙保.二甲醚/柴油混合燃料在压燃式发动机上的应用.中国公路学报,2008年第6期:109-112.
    [116] Takeshi Okamoto, Toshihiro Nakasato, Mitsuru Konno. Fuel Properties and Engine Performance of Dimethyl Ether-Blended Biodiesel Fuels. SAE paper 2007-01-2016.
    [117] Chapman EM, Boehman AL, Wain K, et al. Impact of DME-diesel fuel blend properties on diesel fuel injection system. DOE, 2004, DEFC26-01NT41115.
    [118] Insu kim, Gisoo Hyun, Shinichi Goto. Spray Characteristics of DME Blended Biodiesel Oils. SAE Paper 2001-01-3636.
    [119] Gisoo Hyun, Mitsuharu Oguma, Shinichi Goto. Spray and Exhaust Emission Characteristics of a Biodiesel Engine Operating with the Blend of Plant Oil and DME. SAE Paper 2002-01-0864
    [120]李玉琦.二甲醚、生物柴油及其混合燃料物性估算和缸内工作过程模拟研究[硕士学位论文].北京:北京交通大学,2008.
    [121]周龙保.内燃机学.北京:机械工业出版社,2005.1
    [122]乔信起,宋永臣,颜淑霞等.直喷式柴油机喷油特性的测试分析.农业机械学报,2004年第3期:37-40.
    [123] Constantine Arcoumanis, Choongsik Bae, Roy Crookes et al. The potential of dimethyl ether (DME) as an alternative fuel for compression-ignition engines: A review. Fuel, 2008 (87): 1014–1030.
    [124] Cenk Sayin, H. Metin Ertunc, Murat Hosoz. Performance and exhaust emissions of a gasoline engine using artificial neural network. Applied Thermal Engineering, 2007 (27): 46–54.
    [125] G. Najafi, B. Ghobadian, T. Tavakoli. Performance and exhaust emissions of a gasoline engine with ethanol blended gasoline fuels using artificial neural network. Applied Energy, 2009 (86): 630–639.
    [126] Mustafa Canakci, Ahmet Necati Ozsezen, Erol Arcaklioglu. Prediction of performance and exhaust emissions of a diesel engine fueled with biodiesel produced from waste frying palm oil. Expert Systems with Applications, 2009 (36): 9268–9280.
    [127] B. Ghobadian, H. Rahimi, A.M. Nikbakht. Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network. Renewable Energy, 2009 (34): 976–982.
    [128] Aly H. Gadallah, Elshenawy A. Elshenawy, Aly M. Elzahaby. Application of neural network for prediction and optimization of emmissions and performance in a hydrogen fuelled direct injection engine equipped with in cylinder water injection. SAE Paper 2009-01-2684.
    [129] M. Kiani Deh Kiani, B. Ghobadian, T. Tavakoli. Application of artificial neural networks for the prediction of performance and exhaust emissions in SI engine using ethanol- gasoline blends. Energy, 2010 (35): 65–69.
    [130] Hidayet Oguz, Ismail Sar?tas, Hakan Emre Baydan. Prediction of diesel engine performance using biofuels with artificial neural network. Expert Systems with Applications, 2010 (37): 6579–6586.
    [131] Necla Kara Togun, Sedat Baysec. Prediction of torque and specific fuel consumption of a gasoline engine by using artificial neural networks. Applied Energy, 2010 (87): 349–355.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700