柴油喷雾热强化混合过程及其对燃烧与排放影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了满足日益严格的排放法规和燃油经济性要求,并减轻排气后处理器的负担,近年来,开发具有“均质压燃(HCCI),低温燃烧(LTC)”特点的发动机燃烧新技术的研究十分活跃。HCCI被认为是传统压燃和点燃式内燃机最具潜力的替代燃烧方式,并已成为国际内燃机界竞相研究的前沿科学问题。
     然而,常规柴油饱和蒸汽压较低、液体粘度和表面张力较大、喷雾雾化性能较差,致使其直接应用于HCCI发动机尚存在均质混合气制备十分困难的问题。因此,预混合气制备是柴油机实现同时降低NOx和碳烟排放的准均质预混合燃烧方式的主攻关键技术。
     在国家重点基础研究发展计划项目(2007CB210001)的支持下,本文提出了燃油在高压油泵后进行高温预热以在缸内快速形成可燃混合气的技术方案。本文利用先进的光学可视化诊断技术、发动机台架实验和数值模拟计算研究,开展了燃油热强化对直喷式柴油机喷雾雾化、混合气形成和燃烧过程影响的基础研究,深刻揭示了高温燃油促进喷雾雾化,高效、快速制备准均质可燃混合气的作用机理;借助于燃油热强化与不同喷油策略以及燃烧边界条件的优化匹配,实现了直喷式柴油机的高效清洁燃烧。本文的研究成果为实现柴油喷雾强化混合过程以适应现代内燃机均质压燃燃烧模式的需要提供了一条新的技术途径。
     本文的研究内容和所取得的成果主要有以下几个方面:
     就国内外研究机构对HCCI发动机试验与数值模拟研究的现状进行了综述,全面分析了目前推广应用HCCI燃烧方式存在的一些技术瓶颈问题。通过重点分析了解“瞬态”条件下燃烧边界条件与燃料设计协同控制关键技术问题的最新研究进展,认识到在控制HCCI燃烧过程的诸多方法中,燃料理化特性的差异对HCCI预制混合气的制备及其燃烧过程的影响值得加以深入探究。
     针对常规柴油饱和蒸汽压较低、液体粘度和表面张力较大、喷雾雾化性能较差、以及因滞燃期短所导致的柴油均质预混合气制备时间受限等难题,首次开展了柴油热强化以在缸内快速形成可燃混合气的机理探索性研究。根据CFD多维模型与详细化学反应机理耦合计算的需要,建立了燃料热物性参数与燃烧反应机理的数据库。以多维CFD程序KIVA-3V为平台,在其中加入了过热油滴两区蒸发模型、PaSR湍流燃烧模型以及Hyroyasu-Nagle碳烟排放模型,建立了探索柴油热强化改善喷雾雾化混合和燃烧过程机理的数值模拟平台,完成了相关应用程序的调试及模型参数的调整,改进和完善了三维数值计算程序。藉此对早喷条件下不同喷油始点、预喷射策略及喷射燃油温度对缸内混合气充量浓度和温度不均匀性的影响进行了计算研究。研究表明:燃油温度对喷雾的蒸发混合过程有重要的影响,温度越高缸内的浓度及温度分布就越均匀,缸内居于预喷射平均当量比附近的混合气体积就越大,且高温燃油能有效地解决早喷燃油“湿壁”问题。在高温燃油喷射条件下,预喷射次数的变化对缸内混合气形成的影响趋于减弱。
     结合台架实验受试发动机的结构与运转参数的实际,利用激光粒度仪,率先对定容室内柴油热强化温度对其喷雾场微观特性的影响进行了实验观测研究。研究结果表明:随着燃油喷射温度的升高,液滴沿轴向和径向的SMD均减小,且不同位置SMD的差异减小。在实验研究的基础上,就燃油热强化对定容室喷雾的宏观及微观特性的影响进行了数值模拟研究。结果表明:燃油温度对喷雾宏观及微观特性具有重要影响,随着喷射燃油温度的升高,喷雾液相和气相贯穿距缩短,燃油温度愈高则其对液相贯穿距的影响更为显著;喷雾的SMD随燃油温度的升高而减小:喷雾的气相体积随燃油温度的升高而迅速增大。与此同时,燃油温度升高对喷雾体内当量比的分布影响明显,浓混合气所占的比重随着燃油温度的升高而增加,当燃油温度达530k时,气相混合气中燃空当量比大于2的油气质量约占所蒸发油气总质量的70%。实验与计算结果均表明,柴油热强化有利于改善唢雾的雾化、蒸发和混合气形成过程。
     以受试柴油机ZS195为研究对象,构建了柴油热强化改善喷雾雾化混合和燃烧过程的专用实验台架,开发了高压油管燃油加热控制系统。针对燃油热强化后其热物性参数的变化,进行了预热柴油经高压燃油泵柱塞套间隙的泄漏撮测量试验,分析了预热柴油热物性对燃油喷射特性和高压燃油泵泄漏量的影响。实验表明,采用直接诶加热高压油管的方式,温度越高燃油泵的泄漏率越大,转速越低,燃油泵的泄漏量亦越大;但即使在燃油强化温度达513k、发动机转速为1000转/分条件下,燃油泄漏率也仅为1.2%。
     结合燃油热强化技术措施,研究了原机及换装多孔喷嘴配合模拟EGR技术(进气添加二氧化碳)对发动机燃烧和排放特性的影响。研究表明,燃油预热温度对发动机燃烧与排放的影响程度与发动机负荷、喷油特性参数、EGR等燃烧边界条件密切相关。借助于超多孔喷油嘴以及合适的燃油喷射温度、喷油时间、进气添加少量C02等技术措施,能够改善直喷柴油机喷雾混合与燃烧过程。对于实际发动机存在着一个改善燃油经济性的最佳燃油温度范围,在此温度范围内,可兼顾发动机的燃油经济性与低排放性能。
     应用改进的KIVA-3V程序,就ZS195柴油机燃油高温热强化及不同喷射策略实现DI,PCCI-DI和PCCI三种燃烧模式进行了数值模拟研究,探讨了主、预喷射定时,预喷比例及EGR对混合气形成,燃烧和排放的影响。结果表明:对于DI燃烧模式的中等负荷工况,仅通过燃油早喷即可达到同时降低NOx和碳烟排放的目的;而在高负荷工况,NOx排放显著增加,且单纯利用早喷策略,发动机的IMEP降低明显。对于PCCI-DI燃烧模式,预喷射始点越靠后,主喷射始点时刻缸内预喷射燃油的分别越不均匀,且这种不均匀性导致缸内过早出现局部高温反应区,从而导致着火始点提前;预喷射始点为65BTDC,主喷射终点为5~10BTDC时,能在较宽的预喷射范围内同时获得较低的排放和较好的燃油经济性。对于进气添加二氧化碳的PCCI燃烧模式,在预喷射始点为65BTDC时,主喷时刻在较大的范围内变化,发动机都能获得较低的排放和较好的燃油经济性。三种燃烧模式对比可知,单纯采用早喷策略对发动机经济性的负面影响明显;采用PCCI-DI燃烧模式,经济性得到改善,部分排放物大幅减少,但中等负荷时CO排放增加明显,而高负荷时NOx排放明显增加;高负荷下采用PCCI燃烧模式,发动机在碳烟,NOx和CO均大幅下降的同时,其燃油经济性也能得到一定程度的改善。
With severe worldwide energy crisis and stricter exhaust emission law and regulations, as one of the main fuel consumption and environment pollution sources, internal combustion engine is being paid more and more attention. As a new type engine combustion, homogeneous charge compression ignition (HCCI) and low temperature combustion(LTC) technology is being highly regarded as a research focus.
     There are some problems for conventional diesel fuel to achieve a uniform mixture distribution in the cylinder because of its high viscosity and poor fuel vaporization. So the homogenous mixture preparation is the key issue for diesel fuel to achieve HCCI combustion. With the support of National Basic Research Priorities Program administrated by the State Ministry of Science & Technology of China(Project 2007CB210001), this paper develops a technique to enhance diesel spray atomization, evaporation and mixture formation in the combustion chamber by fuel preheated after High-Pressure Fuel Pump. As we know when the fuel is heated to a very high temperature, the fuel boils when it is injected into the combustion chamber. This can significantly speed up burning due to better dispersing of the fuel drops.
     The mechanism of improved mixture formation and combustion process by preheated fuel injection is investigated by advanced optical visualization diagnostic technology, test-bed experiments and multi-dimensional numerical simulations. The new combustion technology can achieve the high efficiency and low exhaust emissions by optimum injection strategy with preheated fuel. This paper gives a novel way to speed up air-fuel mixture formation for HCCI engine. The main contents and achievements of this research are as follows:
     This paper reviews the research of the experiment and numerical simulation about HCCI, and then analyzes the bottleneck problems of application of HCCI. Through deep-going analyses of the latest research progress about the key technological issues of combustion boundary conditions combined with control of fuel design, it is realized that the difference of the fuel's physicochemical properties play an important part in mixture preparation and combustion process.
     To solve the diesel mixture formation problems, the mechanism relevant to strengthen and speed up mixture formation of the conventional diesel fuel by preheated fuel injection is studied. A multi-dimensional numerical model is developed based on KIVA-3 V, which includes two zone evaporation model, PaSR turbulent combustion model, Hiroyasu-Nagle soot emission model. Based on this model, the effects of fuel injection timing, injection strategy and fuel temperature on the fuel-air equivalence ratio and temperature distribution in cylinder are studied. The results show that the pre-injection fuel temperature plays a very important role in fuel spray atomization, evaporation and mixture formation of diesel fuelled direct injection engine. As fuel temperature increases, the more uniform distributions of fuel-air mixture and temperature in the cylinder are achieved, the volume of prepared combustible mixture increases, and the wall impingement of fuel spray is almost disappeared. The influence of pilot injection timing on mixture formation weakens with high temperature injection.
     The effect of temperature on spray microscopic features of injection in constant volume chamber was measured by a Laser Particle Size Analyzer. The results show that the SMD of droplet in the axial and radial direction decrease, and the difference is small with fuel temperature increased. Based on the structural and operating parameters of the tested engine and the experimental conditions, a numerical simulation is developed and applied to the diesel engine. Results of calculation show that fuel temperature plays a very important role in macroscopic and microscopic features of the fuel spray. AS the fuel temperature increases, the penetrations of liquid/vapor phase and the SMD decrease, the volumetric quantity of vapor phase increases quickly. The higher the fuel temperature is, the more significant influence on the equivalence ratio of vapor phase, and the fraction of rich mixture increases. At fuel temperature of 530K, the mass fraction of fuel vapor with fuel-air equivalence ratio larger than 2.0 increases to about 70% of the whole evaporated fuel.
     A Model ZS195 single cylinder direct injection diesel engine is used to test the HCCI combustion. The electric heating and temperature controlling system of high pressure fuel supply pipe is installed to the rear of the high-pressure fuel injection pump which has been retrofitted for HCCI fuel supply system. The fuel leakage of pump with high fuel temperature injection was measured. The results show that leakage rate increases as fuel temperature increases, and the leakage rate decreases as engine speed increases. However, even though the fuel temperature is preheated up to 513K and the engine speed is at 1000 r/min., the fuel leakage rate is only 1.2%.
     Using the preheated fuel injection technology, the EGR influence on engine combustion and emission characteristics is studied with special multi-hole injector. The results show that the combustion and emission characteristics have closely related to the combustion boundary conditions (such as engine load, the fuel injection parameters, EGR, etc.). Through optimizing the special multi-hole injector, the fuel temperature, the injection timing and EGR, the processes of spraying, mixing and combustion of d. i. diesel engine can be improved obviously. There exists an optimum temperature range for preheated fuel temperature and around the optimum fuel temperature the trade-off between fuel economy and lower emission performance can be obtained.
     By making use of the improved KIVA-3V code and considering the preheated fuel with the different inject strategy, the numerical simulation of DI, PCCI-DI, PCCI combustion modes have been carried out. The effects of the main injection timing, the pilot injection timing, the pilot injection proportion and EGR on the mixture formation, combustion and exhaust emissions are studied quantitatively. The results show that at the middle load of DI model, the emissions of NOx and soot can be decreased only by using fuel early injection. But at the high load conditions, the emission of NOx increases obviously. And if only using the early injection, the IMEP of the engine decreases obviously. For the PCCI-DI combustion mode, if the pilot injection timing is retarded, the distribution of fuel manifests heterogeneity and more serious rich mixing zone at the beginning of the main fuel injection. Because of this, some parts of cylinder have the area of overheating. So the ignition timing occurs earlier. When the pilot injection timing is 65BTDC and the main injection timing is 5~10BTDC, the engine can get the best balance of fuel economy and exhaust emissions. For the PCCI mode with the addition of CO2 in the intake air, the engine can work well when the pilot injection timing is 65BTDC and the main injection timing can be changed in a wide range of adjustment. Comparing the three combustion modes, it can be concluded that it is not good for economy only by using the early injection strategy. Regarding to the PCCI-DI combustion mode, the fuel economy can be improved and the part of the emission can significantly reduced. But in the middle load the CO emission increases obviously and in the high load the NOx emission increases obviously. While in the high load and using PCCI combustion mode, the soot, NOx and CO emissions can be significantly reduced and fuel economy improved simultaneously.
引文
[1]史绍熙.汽车发动机燃烧技术的新进展[J].燃烧科学与技术,2001,Vo1.7(1):1-15.
    [2]田春荣.2010年中国石油进出口状况分析[J].同际石油经济,2011,(3):15-25
    [3]解读 《轻型汽车燃料消耗量标示管理规定》http://www.miit.gov.cn/n11293472/n11293832/n11294042/n11481465/13044691.h tml
    [4]http://www.dieselnet.com/standards/us/fe.php
    [5]Schindler K. P., Why Do We Need the Diesel[C], SAE paper 972684,1997
    [6]Arcoumanis C., Mixture Formation and Combustion in the DI Diesel Engine[C], SAE paper 972681,1997
    [7]郝吉明,傅立新,贺克斌等.城市机动车排放污染控制,国际经验分析与中国的研究成果[M].北京:中国环境科学出版社,2000:209-215
    [8]宋丹林,成都市中心城区机动车尾气排放对空气质量的影响研究[D],2010,四川师范大学
    [9]Flynn F. P., Durrett P. R., Hunter L. G, et al. Diesel Combustion:an Integrated View Combining Laser Diagnostics, Chemical Kinetics, and Empirical Validation[C]. SAE Paper 1999-01-0509,1999.
    [10]Dickey D W, Ryan Ⅲ T W. NOx Control in Heavy-Duty Diesel Engines-What is the Limit?[D], SAE 980174,1998
    [11]Akihama K, Takatori Y, Inagaki K, Mechanism of the smokeless rich Diesel combustion by reducing temperature[D], SAE paper 2001-01-0655,2001
    [12]Kamimoto T, and Bae M. High Combustion Temperature for the Reduction of Particulate in Diesel Engines[D], SAE paper 880423,1988
    [13]Kitamura T, Ito T, Senda J and Fujimoto H, Mechanism of smokeless diesel combust ion with oxygenated fuels based on the dependence of the equivalence ratio and temperature on soot particle formation, International Journal of Engine Research[J],2002, Vol.3(4):223-247
    [14]Fuquan(Frank) Zhao, Thomas W A, Dennis N A, et al. Homogenous Charge Compression Ignition(HCCI) Engine:Key Research and Development Issues[J]. Society of Automotive Engineers, Inc.,2003.147-158
    [15]A Report to the U.S. Congress:"Homogenous Charge Compression Ignition (HCCI) Technology". U.S. Department of Energy, Energy Efficiency and Renewable Energy Office of Transportation Technologies,2001
    [16]Stanglmaier R H, Roberts C E. Homogenous Charge Compression Ignition (HCCI): benefits, compromises, and future engine applications[C]. SAE Paper 1999-01-3682,1999
    [17]Onishi S., Jo S. H., Shoda K., et al. Active Thermal Atmosphere Combustion (ATAC) Engine Using a Spectroscopic Observation[C]. SAE paper 790501,1979.
    [18]Najt P. M., Foster D. E. Compression-Ignited Homogeneous Charge Combustion[C]. SAE Paper 830264,1983.
    [19]Thring R. H. Homogeneous Charge Compression Ignition (HCCI) Engines[C]. SAE Paper 892068,1989.
    [20]Zhao F, Asmus T W, Assanis D N, et al. Homogenous Charge Compression Ignition (HCCI) Engine:Key Research and Development Issues[J], Society of Automotive Engineers,2002
    [21]IiiT.W.R.,Callahan T.J.,Homogeneous Charge Compression Ignition of Diesel Fuel[C], SAE Paper NO.961160,1996
    [22]Gray A.W.,Ryan T. W.,Homogeneous Charge Compression Ignition (HCCI) of Diesel Fuel[C],SAE Paper NO.971676,1997
    [23]Suzuki H, Koike N and Odaka M,Combustion control method of homogeneous charge diesel engines[C],SAE Paper 980509
    [24]Odaka M,Suzuki H,Koike N,et al.Search for optimizing control method of homogeneous charge diesel combustion [C],SAE Paper 1999-01-0184
    [25]Rizzoni G.,Guezennec Y.,Mohler S. M.,A Mixed-mode HCCI/DI Engine Based on A Novel Diesel Fuel Atomizer[C],In 8th Diesel Engine-Efficiency and Emissions Research (DEER) Conference,San Diego,2002
    [26]Mohler S.M.,Diesel HCCI with External Mixture Preparation[C], In 10th Diesel Engine-Efficiency and Emissions Research (DEER) Conference, Coronado,2004
    [27]Guezennec Y., Control-Oriented Modeling for HCCI Combustion and Multi-Cylinder HCCI Experimental Activities[C],In 11th Diesel Engine-Efficiency and Emissions Research (DEER) Conference, Chicago,2005
    [28]Takeda Y., Keiichi N., Keiichi N., Emission Characteristics of Premixed Lean Diesel Combustion with Extremely Early Staged Fuel Injection[C], SAE Paper NO. 961163,1996
    [29]Nakagome K., Shimazaki N., Niimura K.,etc., Combustion and emission characteristics of premixed lean diesel combustion engine[C], SAE Paper NO.970898,1997
    [30]Hashizume T., Miyamoto T., Akagawa H.,etc., Combustion and emission characteristics of multiple-stage diesel combustion[C],SAE Paper NO.980505,1998
    [31]Nishijima Y, Asaumi Y, Aoyagi Y, Premixed Lean Diesel Combustion (Predic) Using Impingement Spray System[C], SAE Paper 2001-01-1892,2001
    [32]Iwabuchi Y., Kawai K., Shoji T.,etc., Trial of New Concept Diesel Combustion System-Premixed Compression-Ignited Combustion[C], SAE Paper 1999-01-0185,1999
    [33]Lechner G. A., Jacobs T. J., Chryssakis C. A.,etc., Evaluation of a Narrow Spray Cone Angle,Advanced Injection Timing Strategy to Achieve Partially Premixed Compression Ignition Combustion in a Diesel Engine[C],SAE Paper 2005-01-0167,2005
    [34]Yanagihara H., Ignition timing control at Toyota 'UNIBUS' combustion system[C], In Proceedings of the IFP International Congress on a New Generation of Engine Combustion Processes for the Future,2001
    [35]Walter B and Gatellier B, Development of the high power NADITM concept using dual mode diesel combustion to achieve zero NOx and particulate emissions [C],S AE Paper 2002-01-1744
    [36]裴毅强,苏万华,林铁坚,一种基于稀扩散燃烧的BUMP燃烧室及其对柴油机碳烟和NOx排放影响的实验研究[J],内燃机学报,2002,20(5),381-386
    [37]赵昌普,苏万华,汪洋等,"BUMP燃烧室”内混合气形成的多维数值研究[J],内燃机学报,2003,21(6),389-394
    [38]赵昌普,苏万华,汪洋等,"Bump燃烧室”内新概念稀扩散燃烧混合气形成机理的研究[J],燃烧科学与技术,2004,10(4),327-335
    [39]杨德胜,高希彦,柴油机TR燃烧系统的设计与试验研究[J],燃烧科学与技术,2005,11(1),82-86
    [40]杨德胜,高希彦,张松涛等,柴汕机TR燃烧系统实现低温预混合燃烧的研究[J1,内燃机学报,2005,23(4),313-321
    [41]李理光,黄叶舟,龚允怡,高压喷雾碰壁的粒度特性研究[J],内燃机学报,1996年,第2期,119-126
    [42]Yokota H, Kudo Y, Nakajima H, et al. A new concept for low emission diesel combustion [C],SAE Paper 970891
    [43]Hasegawa R and Yanagihara H, HCCI combustion in DI diesel engine [C], SAE Paper 2003-01-0745
    [44]Kook S., Bae C., Combustion Control Using Two-Stage Diesel Fuel Injection in a Single-Cylinder PCCI Engine[C],SAE Paper 2004-01-0938,2004
    [45]Sun Y., Reitz R. D., Modeling Diesel Engine NOx and soot Reduction with Optimized Two-Stage Combustion[C],SAE Paper 2006-01-0027,2006
    [46]苏万华,林铁坚,张晓宇等,MULINBUMP-HCCI复合燃烧放热特征及其对。排放和热效率的影响[J],内燃机学报,2004,22(3),193-202
    [47]张晓宇,苏万华,林铁坚等,MULINBUMP HCCI燃烧控制特性的试验和数值模拟[J],燃烧科学与技术,2004,10(5),413-417
    [48]林铁坚,苏万华,裴毅强,柴油机HCCI燃烧过程中自燃着火和燃烧速率控 制的研究[J],自然科学进展,2003,13(5),518-522
    [49]Su W., Lin T., Pei Y., A Compound Technology for HCCI Combustion in a DI Diesel Engine Based on the Multi-Pulse Injection and the BUMP Combustion Chamber[C], SAE Paper 2003-01-0741,2003
    [50]Su W., Wang H., Liu B., Injection Mode Modulation for HCCI Diesel Combustion[C],SAE Paper 2005-01-0117,2005
    [51]王辉,苏万华,刘斌等,调制多脉冲喷油策略的实现及对HCCI燃烧过程影响的研究[J],内燃机学报,2005,23(5),385-391
    [52]Pottker S., Eckert P., Delebinski T.,etc, Investigations of HCCI Combustion Using Multi-Stage Direct-Injection with Synthetic Fuels, SAE Paper 2004-01-2946,2004
    [53]Christensen M., Johansson B., Amnjus P.,etc., Supercharged homogeneous charge compression ignition[C],In, Proceedings of the 1998 SAE International Congress&Exposition,Feb 23-26,1998, Detroit, MI,USA,1998
    [54]Mase Y, Kawashima J and Sato T, Nissan's new multivalve DI diesel engine series [C],SAE Paper 981039
    [55]Kimura S, Aoki O, Ogawa H, et al. New combustion concept for ultra-clean and high-efficiency small DI diesel engines [C],SAE Paper 1999-01-3681
    [56]Kimura S, Aoki O, Kitahara Y, et al. Ultra-clean combustion technology combining a low-temperature and premixed combustion concept for meeting future emission standards [C], SAE Paper 2001-01-0200
    [57]Sjoberg, M., Edling, L-O., Eliassen, T., Magnusson, L. and Angstrom, H-E., GDI HCCI:Effects of Injection Timing and Air Swirl on Fuel Stratification Combustion and Emissions Formation, SAE Paper 2002-01-0106,2002.
    [58]Dec, J. E. and Sjoberg, M., "A Parametric Study of HCCI Combustion-the Sources of Emissions at Low Loads and the Effects of GDI Fuel Injection", SAE Paper 2003-01-0752,2003.
    [59]Aroonsrisopon, T., Werner, P., Waldman, J. O., Sohm, V., Foster, D. E., Morikawa, T. and Iida, M., "Expanding the HCCI operation with the Charge Stratification", SAE Paper 2004-01-1756,2004.
    [60]Dec. J E, Wontae H, Sj berg M. An Investigation of Thermal Stratification in HCCI engines Using Chemiluminescence Imaging. SAE Paper 2006-01-1518,2006
    [61]Sjoberg M, Dec J E. An Investigation of the Relationship Between Measured Intake Temperature, BDC Temperature, and Combustion Phasing for Premixed and DI HCCI Engines. SAE paper 2004-01-1900,2004
    [62]Kumano, K. and Iida, N., "Analysis of the Effect of Charge Inhomogeneity on HCCI Combustion by Chemiluminescence Measurement", SAE Paper 2004-01-1902,2004.
    [63]Dec. J E. Understanding HCCI charge stratification using optical, conventional, and computational diagnostics. SAE HCCI Symposium, Lund, Sweden, September, 2005
    [64]Sjoberg M, Dec. J E. Smoothing HCCI Heat-Release Rates Using Partial Fuel Stratification with Two-Stage Ignition Fuels. SAE Paper 2006-01-0629,2006
    [65]苏万华,林铁坚,张晓宇等,MULINBUMP-HCCI复合燃烧放热特征及其对排放和放热率的影响,内燃机学报,2004,22(3):193-200
    [66]Su W H, Lin T J, Pei Y Q. A Compound Technology for HCCI Combustion in a DI Diesel Engine Based on the Multi-pulse Injection and the BUMP Combustion Chamber, SAE Paper 2003-01-0741,2003
    [67]Su W H, Zhang X Y, Lin T J, et al. Study of Pulse Spray, Heat Release, Emissions and Efficiencies in A Compound Diesel HCCI Combustion Engine, Proceedings of ASME-ICE ASME Internal Combustion Engine Division 2004 Fall Technical Conference, ICEF2004-927,2004
    [68]Su W H, Zhang X Y, Lin T J, et al. Effects of Heat Release Mode on Emissions and Efficiencies of a Compound Diesel Homogeneous Charge Compressionlgnition Combustion Engine. Journal of Engineering for Gas Turbines and Power. APRIL 2006, Vol.128:446~454
    [69]Dec, J. E. Advanced compression-ignition engines-understanding the in-cylinder processes. Proc. Combst. Inst.,2009,32,2727-2742.
    [70]Yao, M., Zheng, Z., and Liu, H. Progress and recent trends in homogeneous charge compression ignition (HCCI) engines. Prog. Energ. Combst. Sci.,2009,35, 398-437.
    [71]Jacobs, T. J.,& Assanis, D. N. (2007). The attainment of premixed compression ignition low-temperature combustion in a compression ignition direct injection engine. Proc. Combustion Institute,31,2913-2920.
    [72]Kimura, S., Aoki, O., Kithara, K.,& Aiyoshizawa, E. (2001). Ultra-clean combustion technology combining a low-temperature and premixed combustion concept for meeting future emissions standards. Society of Automotive Engineers, Technical Paper 2001-01-0200.
    [73]Kimura, S., Ogawa, H., Matsui, Y,& Enomoto, Y (2002). An experimental analysis of low-temperature and premixed combustion for simultaneous reduction of NOx and particulate emissions in direct injection diesel engines. Int. J. Engine Research,3 (4),249-259.
    [74]Knafl, A., Jacobs, T. J., Bohac, S. V., et al. The load limits of low temperature premixed compression ignition diesel combustion. ISCE 2006, The 2nd International Symposium on "Clean and High-Efficiency Combustion in Engines".
    [75]Jacobs T. J., Bohac S. V., Assanis D. N., et al. Lean and rich premixed compression ignition combustion in a light-duty diesel engine[C]. Society of Automotive Engineers, SAE Paper 2005-01-0166.
    [76]Inagaki, K., Fuyuto, T., Nishikawa, K., et al. Dual-Fuel PCI Combustion Controlled by In-Cylinder Stratification of Ignitability[C],SAE Paper 2006-01-0028,2006.
    [77]Minato, A., Tanaka, T. and Nishimura, T., Investigation of Premixed Lean Diesel Combsution with Ultra High Pressure Injection[C], SAE Paper 2005-01-0914, 2005.
    [78]Kato T., Tsujimura K., Shintani M., et al. Spray characteristics and combustion improvement of D. I. diesel engine with high pressure fuel injection[C], SAE Paper No.890265,1989.
    [79]Kakegawa T., Suzuki T., Tsujimura K., et al. A study on combustion of high pressure fuel injection for direct injection diesel engine[C], SAE Paper 880422, 1988.
    [80]Minami T., Yamaguchi I., Shintani M., et al. Analysis of fuel spray characteristics and combustion phenomena under high pressure fuel Injections[C]. SAE Paper No. 900438,1990.
    [81]Yamaguchi I., Nakahira R., Komori M. An image analysis of high speed combustion photographs for D. I. diesel engine with high Pressure fuel injection[C]. SAE Paper 901577,1990.
    [82]Nishida M., Nakahira T., Komori M., et al. Observation of High Pressure Fuel Spray with Laser Light Sheet Method. SAE Paper 920459,1992.
    [83]Lida, N., Nishimura, H., Kotsuji, T., et al. Effects of High-Pressure Fuel Injection and a Micro-Hole Nozzle on Combustion in a Rapid Compression Machine[C]. SAE Paper 970893,1997.
    [84]Pagan J. Study of particle size distributions emitted by a diesel engine[C].SAE paper 1999-01-1141,1999.
    [85]Sluder C. S., Wagner R.M., Storey J.M., et al. Implications of particulate and precursor compounds formed during high efficiency clean combustion in a diesel engine. SAE Paper 2005-01-3844,2005.
    [86]Nakajima T., Amami K., Kawai S., et al. Research on Technology for Reduction of Fine Particles and hazardous Air Pollutants from engine exhaust gas emissions[C]. Tsukuba No.401 Laboratory and Yokohama No.408 Laboratory. Report 2000
    [87]Bertola A., Schubiger R., Kasper A., et al. Characterization of Diesel Particulate emissions in Heavy-Duty DI diesel engine with common rail fuel injection: Influence of injection parameters and fuel composition. SAE Paper 2001-01-3573, 2001.
    [88]George Anitescu. Preparation,injection, and combustion of supercritical fuels[C]. 15th DEER Conference,Aug.3-6,2009,Dearborn, Michigan.
    [89]Amanda Lea-Langton; Hu Li; Gordon E. Andrews. The Influence of Fuel Pre-heating on Combustion and Emissions with 100% Rapeseed Oil for a DI Diesel Engine[C].SAE paper 2009-01-0486, April 2009.
    [90]Kumar, M. Senthil; Kerihuel, A.; Bellettre, J.; Tazerout, M. Experimental investigations on the use of preheated animal fat as fuel in a compression ignition engine[J]. Renewable Energy, July 2005, v 30, n 9, p 1443-1456.
    [91]Karabektas, Murat; Ergen, Gokhan; Hosoz, Murat. The effects of preheated cottonseed oil methyl ester on the performance and exhaust emissions of a diesel engine[J]. Applied Thermal Engineering, December 2008, v 28, n 17-18, p 2136-2143.
    [92]Bhupendra S C, Naveen Kumar, Yong Du Jun, et al. Performance and emission study of preheated Jatropha oil on medium capacity diesel engine[J]. Energy, 35(2010),2484-2492.
    [93]Wolfgang Ipp, Volker Wagner, Hanno Kramer,et al. Spray Formation of High Pressure Swirl Gasoline Injectors Investigated by Two-Dimensional Mie and LIEF Techniques[C].SAE1999-01-0498,2005.
    [94]L. Araneo, A. Coghe. Effects of Fuel Temperature and Ambient Pressure on a GDI Swirled Injector Spray[C]. SAE 2000-01-1901,2000
    [95]Su Han Park, Hyung Jun Kim, Hyun Kyu Suh, et al. Experimental and numerical analysis of spray-atomization characteristics of biodiesel fuel in various fuel and ambient temperatures conditions[J]. Int.J.Heat Fluid Flow,30(2009),960-970.
    [96]Su Han Park, Hyung Jun Kim, Chang Sik Lee. Macroscopic spray characteristics and breakup performance of dimethyl ether (DME) fuel at high fuel temperatures and ambient conditions[J].Fuel,89(2010) 3001-3011.
    [97]Adachi M., Tananka D., Hojyo y., et al. Measurement of Vapor Concentration in Flash Boiling Spray by infrared extinction/scattering technique[J]. Jsae Review, 1996(17):231-137.
    [98]Adachi M., G V. G. M., Tanaka D., et al. Characterization of Fuel Vapor Concentration Inside a Flash Boiling Spray [J]. SAE Paper 970871,1997.
    [99]A.VanDerWege B. The Effect of Fuel Volatility and Operating Conditions on Spray from Pressure Swirl Fuel Injector[D]. MIT PHD Thesis,1999.
    [100]段树林,冯林,许锋等.柴油闪急沸腾喷雾的试验研究[J].大连铁道学院学报,Vo1.18,No.1,Mar.,1997:57-60.
    [101]段树林,冯林,高希彦等.闪急沸腾喷雾场粒度分布特性的研究[J].内燃机工程.Vo1.19,1998(2):27-31.
    [102]乔信起,刘建江,黄震等.闪急沸腾喷雾速度场的LDA研究[J].燃烧科学与技术,Vo1.7,2001(4):303-308.
    [103]乔信起,张光德, 王嘉松等.稳态闪急沸腾喷雾速度分布的试验研究[J].汽车 工程,2003,25(2):108-110
    [104]van Romunde Z, Aleiferis PG, Cracknell RF, Walmsley HL. Effect of fuel properties on spray development from a multi-hole DISI engine injector[C]. SAE Trans J Engine 2007;116(3):1313-31.
    [105]Serras-Pereira J, Aleiferis PG, Richardson D, Wallace S. Mixture formation and combustion variability in a spray-guided DISI engine[J]. SAE Trans J Engine 2007;116(3):1332-56.
    [106]Serras-Pereira J, Aleiferis PG, Richardson D, Wallace S. Characteristics of ethanol, butanol, iso-octane and gasoline sprays and combustion from a multihole injector in a DISI engine[J]. SAE Int J Fuels Lubricant 2008;1:893-909
    [107]van Romunde Z, Aleiferis PG. Effect of operating conditions and fuel volatility on development and variability of sprays from gasoline direct-injection multihole injectors[J]. Atomiz Spray 2009; 19:207-34.
    [108]J. Serras-Pereira a, Z. van Romunde a, P.G. Aleiferis a,et al. Cavitation, primary break-up and flash boiling of gasoline, iso-octane and n-pentane with a real-size optical direct-injection nozzle[J]. Fuel 89 (2010) 2592-2607
    [109]Jinping She, Yusheng Zhang. Experimental Study on Improvement of Diesel Combustion and Emissions Using Flash Boiling Injection[C]. SAE 2010-01-0341.
    [110]张煜盛,张培榕,范鸿宾.燃油热强化在涡流室柴油机上的应用研究及其机理探讨[J].小型内燃机,1993,22(6):25-29
    [111]Seoksu Moon, Jaejoon Choi, Essam Abo-Serie. The Effects of Injector Temperature on Spray and Combustion Characteristics in a Single Cylinder DISI Engine[C], SAE 2005-01-0101
    [112]Kawano D., Ishii H.,Suzuki H., et al. Numerical Study on Flash-Boiling Spray of Multicomponent Fuel[J]. Transfer-Asian Research,2006,35(5):369-85.
    [113]Youngchul Ra, Rolf D. Reitz. A vaporization model for discrete multi-component fuel sprays[J]. International Journal of Multiphase Flow,35 (2009) 101-117.
    [114]Oza R. D. and Sinnamon J. F.,.An Experimental and Analytical Study of Flash-Boiling Fuel Injection[C]. SAE Paper 830590, (1983).
    [115]Senda J., Yamaguchi M., Wakashiro T.et al. Spray characteristics of pintle type injector under lowpressure field. In Proceedings of the fifth International Conference on Liquid atomization and spray systems, Gaithersburg,1991.
    [116]Senda J., Nishikori T, Tsukamoto T.et al. Atomization of spray under low-pressure field from pintle type gasoline injector[C]. SAE paper 920382,1992.
    [117]Senda J., Hojyo Y, and Fujimoto H. Modeling of atomization process in flash boiling spray[C]. SAE paper 941925,1994.
    [118]Senda J., Yamaguchi M., Tsukamoto T. etal. Characteristics of spray injection from gasoline injector[J]. JSME Int. J., Series B,1994,37(4),931-936.
    [119]Zuo, B., Gomes, A. M. and Rutland, C. J.,.Modeling Superheated Fuel Spray and Vaporization[J] International Journal of EngineResearch, Vol.1, No.4, pp.321-336, (2000).
    [120]Senda J.,Hashimoto K., Ifuku Y. etal. CO2 mixed fuel combustion system for reduction of NOx and soot emission in diesel engine[C]. SAE paper 970319,1997.
    [121]Senda J., Ikeda M., Yamamoto M., et al. Low emission diesel combustion system by use of reformulated fuel with liquefied CO2 and n-tridecane[C]. SAE paper 1999-01-1136,1999.
    [122]Senda J., Kawano D., Hotta I.,et al. Fuel design concept for low emission in engine system[C]. SAE paper 2000-01-1258,2000.
    1123] Kawano D., Senda J., Kawakami K., etal. Fuel design concept for low emission in engine system-2nd report:analysis of combustion characteristics for the mixed fuels[C]. SAEpaper 2001-01-0202,2001.
    [124]Kawano D., Senda J., Kawakami K.,et al. Fuel design concept for low emission in engine system-3rd report:analysis of spray characteristics of mixed fuels[C]. SAE paper 2002-01-0220,2002.
    [125]Kawano D., Senda J., Wada Y., et al. Fuel design concept for low emission in engine system-4th report:effect of spray characteristics of mixed fuel on exhaust concentrations in diesel engine[C]. SAE paper 2003-01-1038,2003.
    [126]Kee R J, Rupley F M, Meeks E. CHEMKIN-Ⅲ:A fortran chemical kinetic package for analysis of gas phase chemical and plasma kinetics. Sandia National Laboratory Report CA 94551-0969,1996
    [127]Andrew E Lutz, Robert J Kee, James A Miller. SENKIN:A fortran program for predicting homogenous gas chemical kinetics with sensitivity analysis. Sandia National Laboratory Report CA 87-8248,1987
    [128]Lund C M. HCT---a general computer program for calculating time-dependent phenomena involvin one-dimensional hydrodynamics, transport and detailed chemical kinetis. Lawrence Livermore Laboratory Report, UCRL-52504,1978
    [129]Easley W L, Agarwal A, Lavoie G A. Modeling of HCCI combustion and emissions using detailed chemistry[C]. SAE 2001-01-1029,2001
    [130]Aceves S., Flowers D., Westbrook C. et al. A Multi-Zone Model for Prediction of HCCI Combustion and Emissions[C]. SAE 2000-01-0327,2000,
    [131]Amano T., Morimoto S., and Kawabata Y. Modeling of the Effect of Air/Fuel Ratio and Temperature Distribution on HCCI Engines[C]. SAE 2001-01-1024,2001
    [132]Babajimopoulos A., Assanis D., and Fivcland S. An Approach for Modeling the Effects of Gas Exchange Processes on IICCI Combustion and Its Application in Evaluating Variable Valve Timing Control Strategies[C]. SAE 2002-01-2829,2002
    [133]Kong S., Marriott C, Reitz R., et al. Modeling and Experiments of HCCI Engine Combustion Using Detailed Chemical Kinetics with Multidimensional CFD[C]. SAE Technical Paper 2001-01-1026,2001
    [134]Kong S C, Reitz R D. Modeling HCCI engine combustion using detailed chemical kinetics with consideration of turbulent mixing effects[J]. Journal of Engine Gas Turbines Power,2002,124:702-709
    [135]Kong S C, Reitz R D, Christensen M, et al. Modeling the effects of Geometry-Generated Turbulence on HCCI engine combustion[C]. SAE 2003-01-1088,2003
    [136]Kong S C, Reitz R D. Numerical study of premixed HCCI engine combustion and its sensitivity to computational mesh and model uncertainties [J]. Combution theory and modeling,2003,7:417-433
    [137]Curran H J, Gaffuri P, Pitz W J, et al. A comprehensive modeling study of n-heptane oxidation [J]. Combustion and Flame,1998,114:149~177
    [138]Curran H J, Gaffuri P, Pitz W J, Westbrook C K. A comprehensive modeling study of iso-octane oxidation[J]. Combustion and Flame 2002; 129:253-280
    [139]Li H, Miller D L, Cernansky N P. Development of reduced kinetic model for prediction of preignition reactivity and autoignition of primary reference fuels[C]. SAE Paper 960498,1996
    [140]Griffiths J F, Hughes K J, Schreiber M, et al. A unified approach to the reduced kinetic modeling of alkane combustion[J]. combustion and flame,1994,99: 533~540
    [141]Held T J, Marchese A J and Dryer F L. A semi-empirical reaction mechanism for n-heptane oxidation and pyrolysis[J]. Combustion Science and Technology,1997, 123:107-146
    [142]Golovitchev V L. http://www.tfd.chalmers.se/-valeri/MECH.html.
    [143]Zheng J, Yang W, Miller D L, et al. A skeletal chemical kinetic model for the HCCI combustion process[C]. SAE Paper 2002-01-0423,2002
    [144]Su W H, Huang H Z. Development and calibration of a reduced chemical kinetic model of n-heptane for HCCI engine combustion Fuel[J].2005,84,1029-1040.
    [145]Amr Ali, Giulio Cazzoli, Song-Charng Kong, et al. Improvement in computational efficiency for HCCI engine modeling by using reduced mechanisms and parallel computing[C].13th International Multidimensional Engine Modeling User's Group Meeting,2003
    [146]Pope S B. Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation[J]. Combustion Theory Model,1997,1(1):41-63
    [147]Veljkovic I, Plassmann P E and Haworth D C. A scientific on-line database for efficient function approximation[M]. Lecture Notes in Computer Science (LNCS2667), Part I, Springer Verlag,2003,643~653
    [148]Embouazza M, Haworth D C, Darabiha N. Implementation of detailed chemical mechanisms into multidimensional CFD using in situ adaptive tabulation: application to HCCI engines[C]. SAE Paper 2002-01-2773,2002
    [149]贾明,解茂昭,ISAT在HCCI发动机多维详细反应动力学计算中的应用及其改进[J],内燃机学报,2006,24(1):9-14
    [150]Haworth D C, Wang L, Kung E, et al. Detailed chemical kinetics in multidimensional CFD using storage/retrieval algorithms[C].13th International multidimensional engine modeling user's group meeting,2003
    [151]Yakhot V, Orszag S A. Renormalization Group Analysis of Turbulence[J]. I. Basic Theory J.Sci. Comput.,1986,1:1-15.
    [152]Han Z, Reitz R D. Turbulence modeling of internal combustion engine using RNG k-ε model[J]. Combustion Science and Technology,1995,106(46):267-295
    [153]Ra Y C and Reitz R D. A Model for Droplet Vaporization for Use in Gasoline and HCCI Engine Applications[J]. Journal of Engineering for Gas Turbines and Power, ASME,2004,126(4):422-428.
    [154]Adachi M, McDonell V G, Tanaka D, et al. Characterization of Fuel Vapor Concentration Inside a Flash Boiling Spray[C]. SAE 970871,1997.
    [155]Golovitchev V.I.,Nordin,N.,Jarnicki,R.,and Chomiak,J.,2000,"3-D Diesel Spray Simulations Using a New Detailed Chemical Turbulent Combustion Model[C], SAE Paper 2000-01-1891
    [156]Feng Tao, Golovitchev V.I., Jerzy Chomiak. Self-Ignition and Early Combustion Process of n-Heptane Sprays Under Diluted Air Conditions:Numerical Studies Based on Detailed Chemistry [C]. SAE 2000-01-2931.
    [157]Hiroyasu H and Nishida K. Simplified three dimensional modeling of mixture formation and combustion in a di diesel engine[C]. SAE Paper 890269,1989
    [158]Nagle J, and Strickland-Constable, R F. Oxidation of carbon between 1000-2000° C[C]. In:Procedure of the Fifth Carbon Conference, vol.1, Pergammon Press, 1962
    [159]L.Zigan, I.Schmitz, M.Wensing, et al. Effect of fuel properties on primary breakup and spray formation studied at a gasoline 3-hole nozzle[C]. ILASS-Europe,2010.
    [160]初纶孔.柴油机供油与雾化[M]:大连理工大学出版社.1989,18-21
    [161]Kojiro Yamaoka, Atsushi Saito, Nobuyuke Abe:Analysis of bypass control fuel injection systems for small diesel engines by digital computer[C]. SAE730664
    [162]Matsuoka S., Yokota K., Kamimoto T., et al. A study of fuel injection systems in diesel engines[C], SAE760551.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700