冷喷涂铜合金涂层制备工艺及其防护性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冷喷涂技术是一种新兴的表面工程技术,其利用气流加速粒子使之以固态高速撞击基体表面形成涂层。在喷涂过程中,由于其喷涂温度低、无相变及氧化现象,形成的涂层致密,孔隙率低等优点而被广泛关注。
     本论文的主要研究内容是利用X射线衍射技术( XRD )、扫描电镜及EDS能谱分析、显微硬度、结合强度、耐磨性及耐腐蚀性试验等手段对利用冷喷涂工艺制备的冷喷涂铜涂层、冷喷涂Cu-20wt%Al_2O_3复合涂层、冷喷涂Cu-20wt%SiC复合涂层和冷喷涂Cu-50wt%SiC复合涂层四种涂层物理及电化学性能进行研究。此外,本文还研究了热处理对四种冷喷涂涂层微观组织结构、显微硬度、耐磨性的影响。
     研究结果显示:冷喷涂制得的铜涂层与基体结合致密、分界面不明显,孔隙率较低;冷喷涂过程中铜粉末颗粒未发生明显的氧化现象;涂层显微硬度较高;厚度对冷喷涂铜涂层的结合强度及摩擦性能影响较小。经动电位极化曲线和电化学阻抗谱测试表明,随着浸泡时间的延长,冷喷涂铜涂层腐蚀电流密度很小,极化电阻较大,涂层的耐蚀性能较好。
     经退火热处理后,冷喷涂铜涂层性能发生了明显的变化:在一定热处理温度范围内(500℃以下),随热处理温度的升高,冷喷涂涂层结合强度大大增加,由喷涂态的6MPa提高到45MPa左右,但显微硬度却成明显的下降趋势:由未处理前132.94Hv0.2降低至41.8Hv0.2(HT500℃)。300℃热处理温度下,冷喷涂涂层主要以去应力退火为主,涂层宏观结构变化不明显,涂层显微硬度明显下降,涂层结合强度增大;500℃热处理温度下,涂层发生了再结晶现象,涂层显微硬度继续呈下降的趋势,但涂层结合强度达到最大值44.6MPa;当退火温度达到700℃时,涂层的显微硬度降至最低值,涂层结合强度有所下降。
     为了增加冷喷涂铜的显微硬度,提高涂层的耐磨性加入不同比例的Al2O3、SiC硬质颗粒。本文成功制备的三种复合涂层结构致密,硬质粉末均衡地分布在涂层中,在喷涂过程中硬质粉末未发生明显的分离;涂层的显微硬度都明显得到提高;三种冷喷涂态复合涂层在摩擦过程中均出现了硬质粉末脱离的现象,在摩擦过程中,硬质粉末的脱离使摩擦进入三体系摩擦系统,涂层主要以磨粒磨损为主。
     三种复合涂层经不同温度退火热处理后,涂层结构发生明显的变化。与冷喷涂铜涂层一样,在300℃退火温度下,复合涂层均表现出了以去应力退火为主的结构变化,并且显微硬度呈一定程度的下降;在500℃退火温度下,涂层中出现了再结晶现象,涂层颗粒增大,涂层结合更加致密,涂层硬度下降明显;700℃退火温度下,涂层再结晶现象明显,涂层颗粒进一步增大,涂层显微硬度降低。
     在耐磨性试验中,三种退火态复合涂层的磨损机制各不相同: Cu-20wt%Al_2O_3复合涂层,在喷涂态和低退火温度(300℃和500℃)时,涂层硬度较高,在磨损过程中,涂层的磨损以Al_2O_3颗粒的磨粒磨损为主;当退火温度达到700℃时,涂层显微硬度明显下降,涂层出现剥离、脱落现象,涂层的磨损机制主要为磨粒磨损和粘着磨损。Cu-20wt%SiC复合涂层喷涂态和300℃热处理温度下,磨痕处明显有沟槽状犁削划痕存在,涂层的磨损主要为磨粒磨损;当退火温度升高(500℃和700℃)时,涂层硬度降低,涂层在摩擦副的作用下出现脱落,涂层的磨损机制以磨粒磨损和疲劳磨损为主。随着SiC含量的升高,Cu-50wt%SiC复合涂层在300℃、500℃和700℃时,涂层均出现了明显的剥离、脱落现象,均表现出了明显的颗粒的磨损和疲劳磨损,涂层耐磨性能明显降低。
Cold gas dynamic spraying (CGDS) process is a new surface engineering technology. In the spraying process, the coating is deposited through plastic deformation of metallic spray particles in a completely solid state with high velocity impact. It has attracted serious concern for its advantages: low spraying temperature, absence of phase transition and oxidation, low porosity level, dense microstructure, good adherence to the substrate, and so on.
     In this paper, the characters of cold-sprayed copper coating, cold-sprayed Cu-20wt%Al_2O_3 composite coating, cold-sprayed Cu-20wt%SiC composite coating, and cold-sprayed Cu-50wt%SiC composite coating were studied through XRD analysis, SEM, micro-hardness, combination test, wear resistance test and anticorrosion experiment. Furthermore, the effect of vacuum heat treatment on the microstructure, micro-hardness and wear-resistance of the four kinds of coatings are investigated.
     Studies showed: as-deposited coatings presented the dense microstructure, low porosity; little or no oxidation phenomenon. Thickness of the coatings has no obvious effect on the combination strength and tribological property. By potentiodynamic polarization curves tests and EIS tests, the cold-sprayed copper coating showed good corrosion resistance and the corrosion rate of coatings retained a low level with immersion time.
     After heat treatment, the cold-sprayed copper coatings present a far different property from that of the as-sprayed coatings. In a certain range of heat treatment temperature (500℃or less), the bonding strength of the coatings significantly increased with the heat treatment temperatures increasing: from the cold-sprayed 6MPa to about 45MPa after heat treatment, but the micro-hardness decreased
     obviously: from 132.94Hv0.2 cold-sprayed to 41.8Hv0.2(HT500℃). At annealing temperature of 300℃, stress relief annealing plays an important role in the cold-sprayed copper coating, and there is no evident macrostructure change. At this annealing temperature, the micro-hardness decreased evidently, and the combination strength increased. Apparent recrystallization can be seen clearly at 500℃, and the combination strength reaches the maximum 44.6MPa. The micro-hardness decreased with the growth of the annealing temperature.
     The mental/ceramic coatings were successfully prepared by CGDS. In the composite coatings, the structure is denser, the Al_2O_3 and SiC reinforce particles balancing spread in the coating, and the micro-hardness of the composite coatings increased evidently. For the as-sprayed composite coatings, such factors as ploughing and abrasive wear could determine the sliding process.
     After heat treatment, the composite coatings present far different properties from that of the as-sprayed composite coatings. At annealing temperature of 300℃, stress relief annealing takes an important role in the cold-sprayed composite coatings, and the micro-hardness decreased evidently. Apparent recrystallization and grain growth occurred at 500℃. When the annealing temperature was 700℃, the recrystallization was evident, and the micro-hardness reach the minimum.
     In the wear-resistance tests, the tribological mechanisms of the three kinds of composite coatings are different. For the cold-sprayed Cu-20wt%Al2O3 composite coating, the abrasive wear takes an important role in the sliding process to the as-sprayed composite coating and the low temperature (300℃and 500℃) annealed composite coatings. At the annealing temperature of 700℃, such factors as abrasive wear and adhesion wear play a dominant role. In the wear resistance tests of as-sprayed Cu-20wt%SiC composite coating and HT300℃Cu-20wt%SiC composite coating, the abrasive wear is the dominant wear type. At the annealing temperature of 500℃and 700℃, the abrasive wear and adhesion wear play an important role in the sliding process. With the content of the reinforce particle of SiC increasing, such factors as abrasive wear and fatigue wear play a dominant place in the as-sprayed composite coating and all the annealed composite coatings.
引文
[1]徐滨士.绿色再制造工程及其关键修复技术.再生资源与循环经济,2009,2(11): 5~11
    [2]白理明.深井泵柱塞修复工艺的讨论.西南石油学院学报, 1996,18(4): 81~85
    [3]胡光明,阚伟民.应用电刷镀技术修复汽轮发电机转子轴颈磨损.广东电力,2003,16(1):65~67
    [4]赵玮霖,罗静,杨惠,孙智富,杨明波.汽车模具的电刷镀和喷焊快速修复.模具工业,2007,33(2):64~66
    [5]郭必新,杜小伟.1Cr18Ni9Ti不锈钢件的刷镀工艺方法研究.机电产品开发与创新,2006,19(2):152~153
    [6]吕伯林.耐磨复合镀层的研究进展.电镀与精饰,2007,29(1): 27~31
    [7] Benea L, Bonora P, Borello A, et al. Wear corrosion properties of nano-structured SiC-nickel composite coatings obtained by electroplating. Materials Science and Engineering: A, 2002,249 (10-11): 995~1003
    [8] Jiang X, Liu W J, Dong S Y, et al. High temperature tribology behaviors of brush plated Ni-W-Co-SiC composite coating. Surface and Coatings Technology, 2005,194 (1): 10~15
    [9] Wu G, Li N, Zhou D R, et al. Electrodeposited (Co-Ni)-Al2O3 composite coatings. Surface and Coatings Technology, 2004,176 (1-2): 157~164
    [10]刘柯,赵东宁.陶瓷相增强铁基耐磨堆焊层组织与性能的研究.表面技术,2009,38(5): 55~57
    [11]吴涛,朱流,郦剑,王幼文.热喷涂技术现状与发展.国外技术热处理, 2005,26(4): 2~6
    [12]王汉功.超音速电弧喷涂技术,北京:国防工业出版社, 2000
    [13]鲍泽斌.冷喷涂纯铜工艺优化设计及其性能研究:[硕士学位论文].辽宁:辽宁工程技术大学, 2004
    [14]何思立,戴庆辉,李运初.热喷涂表面修复技术在螺杆式压缩机零部件方面的应用.纯碱工业.2006.2:46~48
    [15]万宇杰,熊顺元,童幸生.陶瓷涂层密封旋塞阀的研制.润滑与密封,2006, 178(6): 154~156
    [16]童幸生.陶瓷涂覆技术在阀门中的应用.现代制造工程,2007,4: 66~70
    [17]吴子健,吴朝军,曾克里,王全胜.热喷涂技术与应用.北京:机械工业出版社,2005.10
    [18] Alkhimov A.P., Kosarev V.F. et al. Method of Applying Coating. Russian Patent: 1618778, 1990
    [19] Alkhimov A.P., Kosarev V.F., and Papyrin A N. A method of cold gas dynamic deposition. Dokl Akad Nauk SSSR, 1990,315 (5): 1062~10065
    [20]关丁乐,严彪,龙玲,杨沙.冷气动力喷涂技术制备涂层的研究进展.材料导报,2008,22(5):100~103
    [21]李文亚,李长久.冷喷涂特性.中国表面工程, 2002, 15(1): 12~16
    [22] Karthikeyan J, Kay C M, Lindeman J, et al. Cold spray processing of titanium powder. Proc. of 1st ITSC’2000, 2000, 255~262.
    [23] Shukla V, Elliott G S, Kear B H. Nanopowder deposition by supersonic rectangular Jet impingement. Journal of Thermal Spray Technology, 2000, 9(3): 394~398.
    [24]李文亚,李长久,王豫跃,等.冷喷涂Cu粒子参量对其碰撞变形行为的影响.金属学报,2005,41(3): 282~286.
    [25] M. Grujicic, C. L. Zhao, W.S. DeRosset, D. Helfritch. Adiabatic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process. Mater. Des. 25 (2004) 681~688.
    [26] Kreye H, Stoltenhoff T. Cold spraying a study of process and coating characteristics. Proc. of 1st ITSC’2000, 2000: 419~422.
    [27] Vlcek J,Huber H,Voggenreiter H,et al. Kinetic powder compaction applying the cold spray process a study on parameters. Proc. of ITSC’2001, 2001: 417~422.
    [28] Gilmore D L, Dykhuizen R C, Neiser R A, et al. Particle velocity and deposition efficiency in the cold spray process. Journal of Thermal Spray Technology, 1999, 8 (4): 576~582.
    [29] C.J. Li, W.Y. Li, Y.Y. Wang, G.. J. Yang. H. Fukanuma. A theoretical model for prediction of deposition efficiency in cold spraying. Thin Solid Films, 2005, 489: 79~85.
    [30] T. Stoltenhoff, H. Kreye, H.J. Richter.An Analysis of the Cold Spray Process and Its Coatings. Journal of Thermal Spray Technology, 2002, 11(4)542~550
    [31] T.H. Van Steenkiste,J.R. Smith,R.E. Teets. Aluminum coatings via kinetic spray with relatively large powder. Surf. Coat. Technol. 154(2002)237~252.
    [32]王静.冷喷涂金属/陶瓷涂层制备工艺及涂层性能研究:[硕士学位论文].青岛:中国海洋大学, 2008
    [33] Jodoin B. Cold Spray Nozzle Mach Number Limitation. Journal of Thermal Spray Technology, 2002, 11(4): 496~507
    [34]胡雪磊.冷喷涂金属/陶瓷热障涂层沉积特性和防护机理研究:[硕士学位论文].青岛:中国海洋大学,2010
    [35]孙涛.材料表面改性粉末超音速冷喷涂实验研究:[硕士学位论文].大连:大连理工大学, 2002
    [36] T. Stoltenhoff, J. Voyer, H. Kreye. Cold Spraying-State of the art and applicability. Thermal Spray, 2002: 366~374
    [37]苏贤涌,周香林,崔华,张济山.冷喷涂技术的研究进展.表面技术, 2007,36(5): 71~74
    [38]吴杰,金花子,吴敏杰,李铁藩,熊天英.冷气动力喷涂技术研究进展.材料导报, 2003,17(1): 59~62
    [39] S. Marx, A. Paul, A. Kohler, and G. Huttl. Cold Spraying: Innovative Layers for New Applications. Journal of Thermal Spray Technology, 2006, 15(2):177~183
    [40] Victor K. Champagne. The Repair of Magnesium Rotorcraft Components by Cold Spray. Journal of Failure Analysis and Prevention, 2008,8: 164~175
    [41] P. F. Leyman, V. K. Champagne. Cold Spray Process Development for the Reclamation of the Apache Helicopter Mast Support. U. S. Army Research Laboratory: 2009
    [42] J. C. Lee, H. J. Kang, W. S. Chu, S. H. Ahn. Repair of Damaged Mold Surface by Cold-Spray Method. Manufacturing Technology, 2007, 56(1): 577~580
    [43] Hyuk-Jin Kang, Woo-Gyun Jung, Won-Sik Chu. Repair of Mold by Cold Spray Deposition and Mechanical Machining. Journal of the Korean Society of Precision Engineering, 21(2005)
    [44]王洪涛,杨冠军,李长久,鲍崇高.冷喷涂FeAl金属间化合物涂层的高温磨损性能研究.中国材料进展, 2009,28(2): 61~64
    [45]徐海波.铜阳极活性区溶解机制的电化学研究.中国腐蚀与防护学报,1999,19(1):27~32
    [46] Wen-Ya Li, Chang-Jiu Li, and Hanlin Liao. Effect of Annealing Treatment on the Microstructure and Properties of Cold-Sprayed Cu Coating. Journal of Thermal Spray Technology, 2006, 15(2): 206~211
    [47] Wen-Ya Li, Chang-Jiu Li, Hanlin Liao, Christian Coddet. Effect of heat treatment on themicrostructure and microhardness of the cold-sprayed tin brone coating. Applied Surface Science, 253(2007): 5967~5971
    [48] K. Spencer, M.-X. Zhang. The use of kinetic metallization to form intermetallic reinforced composite coatings by post-spray heat treatment. Surface & Coatings Technology, 203(2009): 3019~3025
    [49] K. Spencer and M.-X. Zhang. Heat treatment of cold wpray coatings to form protective intermetallic layers. Scripta Materialia, 61(2009): 44~47
    [50] P. Sudharshan Phani, V. Vishnukanthan, G. Sundararajan. Effect of heat treatment on properties of cold sprayed nanocrystalline copper alumina coatings. Acta Materialia, 2007,55: 4741~4751
    [51]张田宇.冷气动力喷涂铜涂层制备及组织性能研究.上海:上海交通大学,2008.
    [52] A.Shkodkin, A.Kashirin,O.Klyuev, and T.Buzdygar. Metal Particle Deposition Stimulation by Surface Abrasive Treatment in Gas Dynamic Spraying. Therm. Spray Technol. 2006, 15(3): 382~386
    [53] Eric Irissou, Jean-Gabriel Legoux, Bernard Arsenault, and Christian Moreau. Investigation of Al-Al2O3 Cold Spray Coating Formation and Properties. Journal of Thermal Spray Technology. 2007,16(5-6): 661~668
    [54] Heli Koivuluoto and Petri Vuoristo. Effect of Powder Type and Composition on Structure and Mechanical Properties of Cu + Al2O3 Coatings Prepared by using Low-Pressure Cold Spray Process. Journal of Thermal Spray Technology. 2010,19(5): 1081~1092
    [55] K. Spencer, D. M. Fabijanic, M.-X. Zhang. The use of Al-Al2O3 cold spray coatings to improve the surface properties of magnesium alloys. Surface & Coatings Technology, 204(2009): 336~344
    [56] Xueping Guo, Ga Zhang, Wenya Li, Yang Gao, Hanlin Liao, Christian Coddet. Investigation of the microstructure and tribological behavior of cold-sprayed tin-bronze-based composite coatings. Applied Surface Science. 2009, 255: 3822~3828
    [57] A.K. Sinha. Physical Metallurgy Handbook. McGraw-Hill, New York, 2003.
    [58] Ha Yong Lee, Young Ho Yu, Young Cheol Lee, and etc. Cold Spray of SiC and Al2O3 With Soft Metal Incorporation: A Technical Contribution. Journal of Thermal Spray Technology, 2004, 13(2): 184~189
    [59] E. Sansoucy, P. Marcoux, L. Ajdelsztajn, B. Jodoin. Properties of SiC-reinforced aluminum alloy produced by the cold gas dynamic spraying process. Surface & Coatings Technology, 202(2008): 3988~3996
    [60]赵振南,林莉,李喜孟,李光.等离子喷涂陶瓷层的摩擦磨损性能及机理.材料保护, 2010.43(7): 50~52

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700