冷喷涂金属/陶瓷热障涂层沉积特性和防护机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航空、航海技术的快速发展,对发动机、内燃机材料强度的要求也不断提高。热障涂层凭借良好的隔热效果、耐磨、耐腐蚀及热冲击性能,在高温工作环境中得到了广泛的应用。
     冷喷涂技术利用低温、预热高压气流携带粉末颗粒以超高速撞击基体。制备的涂层孔隙率低、结合强度高、显微硬度高、不易发生化学反应及相变。在一定程度上弥补了传统热喷涂技术的缺陷,为改善热障涂层耐高温耐腐蚀性能开辟了新的道路。
     本论文的主要目的是利用X射线衍射技术(XRD)、扫描电镜及EDS能谱分析、显微硬度、结合强度、抗热震性及耐腐蚀性试验等手段对冷喷涂技术成功制备的NiCoCrAlY/ZrO2复合涂层的物理及电化学性能进行研究。同时也对磨损及人工破损后的NiCoCrAlY/ZrO2复合涂层进行物理和腐蚀电化学性能进行测试,探讨磨损和破损问题对涂层性能的影响。
     研究结果显示,XRD分析未发现氧化相峰;涂层与基体结合致密分界面不明显,孔隙率低(2.6%左右);显微硬度较高(NiCoCrAlY/ZrO2涂层:HV400-600; NiCoCrAlY单层:HV 400-500);冷喷涂涂层内部、涂层与基体结合力都很高,NiCoCrAlY/ZrO2涂层与钢基体结合强度超过40.4 Mpa, NiCoCrAlY涂层与钢基体之间的结合强度达到37.5 Mpa。涂层总体性能良好,但还是差于氦气做载气制备的试样(孔隙率1.2%左右,显微硬度HV 600-800)
     涂层在海水中浸泡两小时后,阳极极化曲线就出现钝化区,随着浸泡时间的延长复合涂层钝化区变得明显,单层钝化区则变得不明显。冷喷涂涂层腐蚀电流密度很小,极化电阻较大,涂层的耐蚀性能较好。
     海水浸泡过程中涂层阻抗谱先呈现单个时间常数,容抗弧半径先增大后逐渐稳定。有氧化锆存在的涂层,海水浸泡一定时期,其阻抗谱时间常数由一个转为两个,103天后变为三个。涂层致密性极好,浸泡137天,涂层表面并未发现Fe的腐蚀产物。
     在900℃的热震性试验过程中,冷喷涂CoNiCrAlY/ZrO2涂层经过7次热震试验后在涂层表面出现了龟裂纹,NiCoCrAlY涂层经过4试验后在涂层表面出现了龟裂纹,单层表面出现的龟裂纹比双层更为细密。
     人工破损的冷喷涂NiCoCrAlY/ZrO2涂层在海水浸泡过程中的电化学阻抗谱测试结果显示:涂层浸泡两小时后,阻抗谱便出现了两个时间常数。随浸泡时间延长,第二个时间常数变的明显,基体的腐蚀加剧。
With the rapid development of aviation and navigation, the demands for the materials with high performance for gas turbine and the internal combustion engine are increasing. Due to the high temperature-and corrosion-resistance, the thermal barrier coatings (TBCs) are extensively used for the protection of aircraft blades and industrial gas turbines.
     In the cold gas dynamic spraying (CGDS) process, solid particles are accelerated in a supersonic inert gas flow and directed towards the object to be coated. The main coating characteristics are:low porosity level; absence of oxidation; good adherence to the substrate; high microhardness; absence of chemical reaction and microstructural changes. The cold spraying technology, which makes up the deficiencies of the tradition thermal spraying, improves the performances of the TBCs.
     In this paper, the characters of the NiCoCrAlY/ZrO2 coating were studied through XRD, SEM, micro-hardness test, combination test, thermal shock resistance test and anticorrosion experiment. In order to discuss the relationship between the abrasion, defection and the properties of the coating, the performances of the defected NiCoCrAlY/ZrO2 coatings were also investigated.
     The results showed:little or no microstructural changes occurred in the CGDS deposition process; as-deposited coatings presented the dense microstructure, high hardness and high tensile strength (the NiCoCrAlY/ZrO2 coating:HV 400-600, 40.4 Mpa; the NiCoCrAlY coating:HV 400-500,37.5 Mpa). The performances of the as-deposited coatings were good, but not better than those of the coatings which were deposited when He was as process gas (porosity level:about 1.2%, microhardness:HV 600-800).
     At the beginning of anodic polarization, the coatings reflected a passive trend, which implied the formation of a passive film. After about 1 day's immersion in seawater, it was evident that no clear passive trend behavior was presented in NiCoCrAlY coating, while the NiCoCrAlY/ZrO2 coating still exhibited a passive trend. The lower corrosion current and the higher polarized resistance proved the excellent anticorrosion performance.
     The EIS spectrums were consisted of one semicircle, whose radius enlarged continuously before stabilization. For the CoNiCrAlY/ZrO2 coating, the time constants increased to two after 38 day's immersion, and then to three after 103 day's immersion. There were no productions of iron corrosion from beginning to end.
     The thermal shock resistance tests showed that cracks appeared after seven times tests for the CoNiCrAlY/ZrO2 coating, while four times tests for the CoNiCrAlY coating. Besides, the cracks on the CoNiCrAlY coating were finer than that on CoNiCrAlY/ZrO2 coating.
     After about 1 day's immersion, the EIS spectrums were consisted of two inconspicuous time constants for the defected NiCoCrAlY/ZrO2 coating. With the immersion time increasing, two time constants appeared distinctly and the corrosion of the substrate was serious.
引文
[1]李金桂,赵闺彦.腐蚀和腐蚀控制手册.北京:国防工业出版社,1988.4-217
    [2]Simons C T et al, Tanslated by Zhao Jie et al(赵杰等译)Superalloys (高温合金)Dalian:Dalian Institute of Technology Press,1992:164
    [3]刘培生.铝化物高温防护涂层的现状.稀有金属材料与工程.2003,32(9):681-685
    [4]姚明明,缑英俊,何业东.高温防护涂层研究进展.中国粉体技术,2005,3:32-43
    [5]李铁藩编.金属高温氧化和热腐蚀.化学工业出版社,2004:270-274.
    [6]Goward G W. Progress in coatings for gas turbine airfoils. Surface and Coatings Technology.1998,108-109 (1-3):73-79
    [7]Meier S M and Gupta D K. The Evolution of Thermal Barrier Coatings in Gas Turbine Engine Applications. Journal of Engineering for Turbines and Power, Transactions of the ASME,1994,116(1):250-257
    [8]Stecura S. Effects of Compositional Changes on the Performance of a Thermal Barrier Coating System. NASA TM-78976,1978
    [9]Ruckle D L. Evaluation of plasma-sprayed ceramic coatings for turbine engine components. Thin Solid Films.1979,64 (2):327-328
    [10]王静.冷喷涂金属/陶瓷涂层制备工艺及涂层性能研究.中国海洋大学硕士学位论文.青岛:中国海洋大学,2008
    [11]范希梅,林洁琼,杜贤昌.陶瓷热障涂层的研究现状.2003,24(1):65-67
    [12]徐惠彬,宫声凯,周春根,等.电子束物理气相沉积热障涂层抗氧化行为的研究.航空制造工程,1995,12:182-231
    [13]项民,张琦,骆军华.盐雾腐蚀对NiCoCrAlY涂层性能的影响.2004,30(10):017-1020
    [14]王冰,宫骏,黄美东,等.合金元素在MCrAlY涂层中的行为.材料保护,2001,34(4):1-3
    [15]杨永强.钇在MCrAlY激光熔覆层中的存在形式及作用.华南理工大学学报,1998,26(9):65-68
    [16]Brindley W J, Miller R A. Thermal barrier coating life and isothermal oxidation of low pressure plasma sprayed bond coat alloys. Surf. Coat. Technol.,1991,44:4462-4571
    [17]唐达培,高庆.梯度热障涂层的设计和性能与失效研究.宇航材料工艺,2006年第5期:12-15
    [18]Scott R G. Phase relationships in the zirconia-yittria system. J Mater Sci,1975,10 (9): 527-535
    [19]Rhys-Jones T N. Coatings for blade and vane applications in gas turbines. corrosion science.1989,29(6):623-646
    [20]胡传顺,王福会,吴维山文.热障涂层研究进展.腐蚀科学与防护技术,2000,12(3):160-163
    [21]管恒荣,李美姮,孙晓峰,等.高温合金热障涂层的氧化和失效研究.金属学报,2002,38(11),1133-1140
    [22]Robert L Jones. Thermal Barrier Coating Workshop. NASA-CP-3312, Oct.1995
    [23]Nagelberg A S. Destabilization of Yttria-Stabilized Zirconia Induced by Molten Sodium Vanadate-Sodium Sulfate Melts. J Electrochemical Society,1985,132 (10),2502-2507
    [24]Kvemes I, Forseth S. Corrosion mechanisms of ceramic coatings in diesel engines. Materiasl Science and Engineering 1987,88,61-67
    [25]牟仁德,何利民,陆峰,陶春虎.热障涂层制备技术研究进展.机械工程材料,2007,31(5):1-4
    [26]关春龙,李土,赫晓东.电子束物理气相沉积技术及其应用现状.航空制造技术,2003,11:35-37
    [27]范瑞麟,纪艳玲.磁控溅射沉积MCrAlY涂层技术研究.真空科学与技术,1994,14(1):21-26
    [28]赫晓东,关春龙,李土,孙哗EB-PVD制备的Ni-Cr-AI—Y高温合金箔力学性能.中国有色金属学报,2004,14(1):255-258
    [29]毕晓昉,郭洪波,宫声凯,徐惠彬.电子束物理气相沉积热障涂层抗高温腐蚀性能的研究.中国腐蚀与防护学报,2002,22(2):84-87
    [30]Arthur J F, Sangvavann H, Andrew J S. Multilayered layered thermal barrier coatings by CVD. AFRL-SR-BL-TR 99—0088.
    [31]Tabbetha A. Dobbins等,用HVOF喷涂Y203稳定的Zr02热障涂层.国外机车车辆 工艺,2004,11:6-14
    [32]Chang-Jiu Li, Wen-Ya Li. Effect of sprayed powder particle size on the oxidation behavior of MCrAlY materials during high velocity oxygen-fuel deposition. Surface and Coatings Technology 2002,162:31-41
    [33]李文亚,李长久.冷喷涂特性.中国表面工程,2002,15(1):12-16
    [34]熊天英.国内外冷喷涂领域的最新进展.热加工,2003(9):10-12
    [35]Alkimov A P, Kosarev V F, Papyrin A N. A method of cold gas dynamic deposition. Dokl. Akad. Nauk SSSR,1990,315 (5):1062-1065.
    [36]Gilmore D L, Dykhuizen R C, Neiser R A, et al. Particle velocity and deposition efficiency in the cold spray process. Journal of Thermal Spray Technology,1999,8(4): 576-582.
    [37]王佳杰,王吉孝,张颖,左文轩.冷喷涂Cu涂层过程中粒子速度的影响因素分析.焊接,2005,12,22-25
    [38]赵民,陈卓君.高速冷喷涂技术及发展.机械工程师,2006,12:19-21
    [39]Karthikeyan J, Kay C M, Lindeman J, et al. Cold spray processing of titanium powder. Proc. of 1st ITSC'2000,2000,255-262.
    [40]Kreye H, Stoltenhoff T. Cold spraying a study of process and coating characteristics. Proc. of 1st ITSC'2000,2000,419-422.
    [41]Shukla V, Elliott G S, Kear B H. Nanopowder deposition by supersonic rectangular Jet impingement. Journal of Thermal Spray Technology,2000,9(3):394-398.
    [42]鲍泽斌.冷喷涂纯铜涂层工艺优化设计及其性能研究:[辽宁工程技术大学硕士学位论文].辽宁:辽宁工程技术大学,2004
    [43]Papyrin A N, et al., Experimental Study of Interaction of Supersonic Gas Jet with a Substrate under Cold Spray Process. In:Berndt C C, Khor K A and Lugscheider E F, Editors. Thermal Spray 2001. USA:New Surfaces for a New Millennium, ASM International,2001,423-431
    [44]Jodoin B. Cold Spray Nozzle Mach Number Limitation. Journal of Thermal Spray Technology,2002,11(4):496-507
    [45]梁秀兵,徐滨士.先进的冷喷涂技术.中国设备工程,2001,19-21
    [46]吴杰,金花子,吴敏捷,熊天英.冷气动力喷涂技术研究进展.材料导报,2003, 1(17):59-62
    [47]Vleck J, Huber H, Voggenreiter H, Fischer A, Lugscheider E, Hallen H, Pache G. In: Berndt C C, Khor KA, Lugscheider E F, Eds. Kinetic Powder Coppaction Applying the Cold Spray Process-A Study on Parameters. Thermal Spray 2001. USA:New Surfaces for a New Millennium, ASM International, Materials Park, OH,2001.417-422
    [48]李文亚,李长久,王洪涛,等.关于冷喷涂粒子临界速度.上海:第十一次全国焊接会议,2005:287-289
    [49]侯根良,王汉功,袁晓静,苏勋家.基于超音速火焰喷涂技术的冷喷涂技术实现与流场分析.材料科学与工程学报,2005,23(12):160-162
    [50]Stoltenhoff T, Voyer J and Kreye H, Cold Spraying-State of the Art and Applicability. Thermal Spray(2002):366-374
    [51]Alexandre S, Laguionie T, Baccaud B. Realization of an Internal Cold Spray Coating of Stainless Steel in an Aluminum Cylinder. Thermal Spray 2007:1-6
    [52]王晓放,黄钟岳,王德真,杨凤珍,孙涛.新型材料改性方法—常温超音速冷喷涂制备功能涂层.机械工程材料,2002,26(5):30-33
    [53]李文亚,李长久,王豫跃,等.冷喷涂Cu粒子参量对其碰撞变形行为的影响.金属学报,2005,41(3):282-286.
    [54]Crossland B. Explosive Welding of Metals and Its Application. Oxford, Claredon Press: 1982
    [55]Dykhuizen R C. et al. Impact of High Velocity Cold Spray Particles. Journal of Thermal Spray Technology,1998, Volume 8(4):561
    [56]Fukanuma H. et al. A Study of A adhesive Strength of Cold Spray Coatings. ITSC 2004 Conference Proceedings, May2004, Osaka, Japan
    [57]江礼,袁晓静,王汉功,查柏林,侯根良.低温超音速火焰喷涂铜涂层断裂特性的研究.材料保护,2007,40(12)
    [58]Fukanuma H, Ohno N, Toda/JPN. A study of adhesive strength of cold spray coatings. Proceeding of ITSC 2004',2004.230-236.
    [59]Grtner F, Borchers C, Stoltenhoff T, et al. Numerical and Microstructural Investigations of the Bonding Mechanisms in Cold Spraying. Proceeding of ITSC 2003',2003.40-43.
    [60]王晓放,黄钟岳,王德真,等.冷喷涂材料改性气粉射流流动计算与分析.大连理 工大学学报,2000,40(5):562-565
    [61]Zhang Q, Li C J, Li C X, Yang G J, Lui S C. Study of oxidation behavior of cold sprayed nanostructured NiCrAlY bond coatings. Surface & Coatings Technology,2008,202: 3378-3384
    [62]Richer P, Zuniga A, Yandouzi M, Jodoin B. CoNiCrAlY microstructural changes induced during Cold Gas Dynamic Spraying. Surface & Coatings Technology,2008,203: 364-371
    [63]Ichikawa Y, Sakaguchi K, Ogawa K, Shoji T, et al. Deposition Mechanisms of Cold Gas Dynamic Sprayed MCrAlY Coatings. Thermal Spray 2007:Globle Coating Solutions, 2007.54-59
    [64]Raletz F, Ezo'o G, Brenot P, Longwy F, and Vardelle M, Limoges F. On the influence of the substrate hardness on cold-sprayed nickel coating. Thermal Spray 2005:1244-1248
    [65]Raletz F, Ezo'o G, et al. Characterization of cold-sprayed nickel-base coatings. Thermal Spray 2004. Osaka; Japan:Advances in Technology and Application,2004.323-328
    [66]Karthikeyan J. Development of Oxidation Resistant Coatings on GRCop-84 Substrates by Cold Spray Process. NASA/CR-2007-214706
    [67]Papyrin A N, Kosarev V F, Klinkov S V, et al. On the Interaction of High Speed Particles with a Substrate under the Cold Spray. ITSC-2002, Essen, Germany, March,2002: 380-384.
    [68]高虹,赵良举,曾丹苓,等.冷喷涂Au纳米粒子在金属表面沉积过程的分子动力学模拟.金属学报,2006,42(]1):1158-1164.
    [69]曹楚南.腐蚀电化学原理.化学工业出版神.2004年:261-262
    [70]吴辉煌.应用电化学基础.厦门大学出版社.2006年
    [71]沈金文,吕广庶,马壮,王全胜.在热震试验中热障涂层的裂纹形成和扩展.新材料新工艺,2002,4:39-41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700