冷喷涂工艺中气固两相射流的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冷喷涂工艺中,喷管内外的气体轴向速度和颗粒速度对喷涂效果影响很大,研究喷涂参数对气固两相速度的影响具有重要意义。虽然很多学者对冷喷涂气固两相流进行数值模拟研究,但大多没有考虑基板的影响,针对冷喷涂工艺参数优化的研究较少。
     本文采用数值模拟方法对冷喷涂过程中气固两相流流场进行研究。首先建立整个冷喷涂射流区域的物理模型,并且对计算区域进行网格划分以及边界条件的定义;然后采用二维数学模型,进行湍流的数值模拟计算,研究不同载气、喷涂压强、喷涂温度和喷涂距离对流场加速的影响规律;最后建立离散相模型,对气固两相流流场进行数值模拟,分别采用Ti、Cu、Au粉末作为喷涂材料,每种材料选用不同颗粒直径,研究不同喷涂材料以及同种材料不同颗粒直径的加速规律。
     研究结果表明:氦气的加速特性优于氮气和空气;随着喷涂温度和喷涂压强的提高,气体轴向速度和颗粒速度也随之提高;不同喷涂距离对喷管内流场没有影响;提高喷涂温度可以明显改善喷涂效果;密度小的小直径颗粒和密度较大的大直径颗粒不容易被加速到较高的速度,应根据材料的密度和颗粒直径选择合适的喷涂参数。模拟结果和前人的实验成果一致,本研究可为冷喷涂工艺参数优化和喷涂实验提供指导。
The gas axis velocity and particle velocity in and out of the nozzle have great influence on the coating effect in the process of cold spray, It is very important to study the effect of different spray Parameters on gas axial velocity and particle velocity. Although many scholars research gas-particle two phase by numerical simulation,but mostly without considering the influence of the substrate, research of parameter optimization for cold spraying is also less.
     We obtained the influence of different spray parameters on gas and particle velocity by studied the gas-solid two phase flow in cold spray using numerical simulation. First establish physical model of jet region and dividing the grid and define boundary conditions,Then a two-dimensional mathematical model is presentedand used to study the flow. Research the effect of different carrier gas ,pressure, temperature and spraying distance on gas velocity .Finally discrete phase model is establish to numerical simulation the two phase flow, seperately accelerate Ti, Cu and Au power,Every material select different diameters,get the accelerate characteristics of different materials and the same material with different particle diameter.
     Simulation results show that the acceleration of helium is better than nitrogen and air.With the spray temperature and pressure increased, the gas axial velocity and particle velocity also increase.Differernt spray distance have no effect on the flow in the nozzle. Improve spraying temperature can significantly improve spraying effect.Smaller particles with low density can not obtain a high-speed because their inertia are small, so the particle speed and direction easily changed with the vortex flow before the substrate. larger particles with high density also not easy to be accelerated to a higher speed, because their inertia too big, these are bad for spraying. material particles should be in an appropriate range,and we should select appropriate coating parameters according to material density and particle diameter. It will offers reference for cold spray experiment and optimize the spray parameters.
引文
[1]傅积和,孙玉林.焊接数据资料手册[M].北京:机械工业出版, 1994: 818-838.
    [2]徐滨士,朱绍华,等.表面工程新技术[M].北京:国防工业出版社, 2002.
    [3]徐滨士,刘世参.中国材料工程大典[M].北京:化学工业出版社, 2006.
    [4] Fank Lauricella, Scot Jaynes.Helium Recovery: Design Considerations for Cold Spray system.[J]. ITSC 2003, Orlando, FL, ASM International, 2003.
    [5] Wang Xiaofang, Huang Zhongyue, et al. A new modification method of materials-experimental investigation of fuction coat deposited by supersonic cold spraying at normal temperature[J]. Mater Mechan Eng, 2002, 26(5): 30.
    [6] Papyrin A. Cold spray technology[J]. Advanced Materials andprocesses, 2001, 159(9): 49-50
    [7]李文亚,李长久.冷喷涂特性[J].中国表面工程, 2002, 15(1): 11-16.
    [8] Dykhuizen R C, Smith M F. Gas dynamic principles of cold spray[J]. Joumal of Thermal Spray Technology, 1998, 7(2): 205-212.
    [9]吴杰,金花子,吴敏杰,等.冷气动力喷涂技术研究进展[J].材料导报, 2003, 17(1): 59-62
    [10]章华兵,魏仑,等.冷气动力喷涂涂层结合机理及其工艺研究进展[J].材料导报, 2007, 21(4): 80-83.
    [11] Gilmore D L, Dykhuizen R C, Neiser R A. Particle velocity and deposition efficiency in cold spray process[J]. Joumal of Thermal Spray Technology , 1999, 8(4): 576-582.
    [12]熊天英,吴杰,金花子,等.一种新喷涂技术—冷气动力喷涂[J].腐蚀科学与防护技术, 2001.13(5): 267-269.
    [13] Kreye H, Stoltenhoff T, Berndt C C, Eds. ASM International,Material park, OH 2000. 419.
    [14] Karthikeyan J, Kay A, Lindeman J, et al. Berndt C C, Ed. ASM International, Material Park, OH 2000. 255-262.
    [15] Bhagat R B, Amateau M F, Papyrin A N,et al. Berndt C C,Ed.ASM Internat ional, Material Park, OH 1997. 361.
    [16] Gilmore D L, Dykhuizen R C, Neiser R A, et al. J Thermal Spray Technology, 1999, 8(4): 576-559.
    [17] Alkimov A P, Ktinkov S V, Kosarev V F. Thermophysics and Aeromechanics, 2000,7(2):221.
    [18] D.L.GiImore, Richard A. Neiser, et al. Analysis of the Critical Velocity for Deposition in Cold Spray Process. MSR Fall Meeting. November 29 1999.
    [19] Assadi H, Gartner F, Stoltenhoff T, et al. Bonding mechanism in cold gas sparying[J].Surf Coat Technol, 2003, 51: 379-394.
    [20] Grujicic M, Saylor J R, Beasley D E, et al. computational analysis of The interfacial bonding between feed-powder particles and the substrate in the cold-gas dynamic spray process[J]. Appl Surf Sci, 2003, 219. 211-227.
    [21] Van Steenkiste T H, Smith J R, Teets R E. Aluminum coatings viakinetic spray with relatively lage power particles[J]. Surf Coat Technol, 2002, 154: 237-252.
    [22]王佳杰,王吉孝,张颖等.冷喷涂Cu涂层过程中粒子速度的影响因素分析[J].焊接, 2005(12): 22-24.
    [23] Dykhuizen R C. Optimizing the cold spray process[A]. International Thermal Spray Conference and Exhibition [C]. Orlandua ASM, 2003. 122-127.
    [24] Alkhimov A P, Kosarew V F, Papyrin A N. New materials and technologies[A]. Theory and practice of Materials Hardening in Extremal processes[C]. Nauka Novosibirsk, 1992. 146-168.
    [25] Ajdelsztajn L, Jodoin B, Kim G E, et al. Cold spray deposition of nanocrystalline aluminum alloys[J]. Metall. Mater. Trans. A, 2005, 36: 657-666.
    [26] Van Steenkiste T H, Smith J R, Teets R E, et al. Kinetic spray coatings[J].Surf.Coat.Technol, 1999, 1(11): 62-71.
    [27] Changjiu Li, HanLin Liao, G. Douchy, et a1. Optimal design of a cold spray nozzle bynumerical analysis of partical velocity and experimental validation with316L stainless steel powder[J]. Materials and Deaign, 2006, 256: 708-713.
    [28]王晓放,黄钟岳等.新型材料改性方法—常温超音速冷喷涂制备功能涂层[J].机械工程材料, 2002, 26(5).
    [29]李文亚,李长久.冷喷涂Cu粒子参量对其碰撞变形行为的影响[J].金属学报. 2005, 3: 282-286.
    [30] Li W Y, Zhang C, Wang H T, et al . Significant influences of metalreactivity and oxid films at particle surfaces on coating micorstructure in cold spray [J]. Appl Surf Sci, 2007, 253: 3357-3365.
    [31]侯根良,王汉功等.冷喷涂技术制备纳米涂层[J].兵器材料科学与工程. 2003, 26(2):49-51.
    [32]熊天英.国内外冷喷涂领域的最新进展[J].机械工人, 2003, (9): 10-12.
    [33]周禹,李文亚.冷喷涂技术最新进展及应用[J],航空制造技术, 2009(8): 68-69.
    [34] Hidemasa Takana, Kazuhiro Ogawa, Tetsuo Shoji. Computational simulation of cold spray process assisted by electrostatic force. Powder Technology 2008(185): 116-123.
    [35] Gartner F, Stoltenhoff T, Schmidt T, et al. The cold spray process and its potential for industrial applications [J]. Journal of Thermal Spray technology, 2006, 15(2): 223-232.
    [36]鞠霞,谭新星,王新华.冷喷涂超音速自由射流流场分析[J].焊接, 2008, 26(2): 20-22.
    [37] Y. Sakakibara, J. lwamoto. Numerical Study of Oscillation Mechchanism in Underexpanded Jet Impinging on Plate. Journal of Fluids Engineering, 1998, 12: 477-481.
    [38] T. H. Van Steenkiste. An Investigation of Particle Trajectories in Two Phase Flow Systems[J]. Fluid Mech, 1972, 55(2):193-208.
    [39] Jen tien-chien, Li Longjian, et al. Numerical investigations on cold gas dynamic spay process with nano-and microsize particles[J]. intermational Journal of Heat and Mass Transfer, 2005, 48: 4384-4396.
    [40]张文涛,张雷.羟基磷灰石粉体喷涂气固两相流数值模拟[J].中国科技论文在线线, 2009, 4(8): 582-586.
    [41]王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社, 2004, 200-253.
    [42]韩占忠,王敬,兰小平. FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社, 2004, 1-308.
    [43]周毓麟.一维非定常流体力学[M].北京:科学出版社, 1990, 11-15.
    [44]王新月,杨青真.热力学与气体动力学基础[M].西安:西北工业大学出版社, 2004.
    [45]翟章华,刘伟,等.高超音速动力学[M].长沙:国防科技大学出版社,2001.
    [46] Courant R, Friedrichs K O. Supersonic flow and shock waves. New York: springer-verlag, 1976.
    [47] A.Brant Multi-level adaptive computations in fluid dynamics , AIAAJ.V.8(10)(1980): 116-1172.
    [48] John D. Anderson, J R. Computational Fluid Dynamics-The Basics with Applications[M].北京:清华大学出版社, 2002.
    [49]吴江航,韩庆书.计算流体力学的理论方法及应用[M].北京科学出版社, 1988.
    [50] Fluent技术基础及应用实例[M].北京:清华大学出版社, 2007.
    [51] Shalaby H, Pacher K, Woziak K, Woziak G. Comparative Study of the Continuous Phase Flows in a Cyclone Separator Using Different Turbulence Models.International Journal for Numerical Methods in Fluids, 2005, 48(11): 1175-1197.
    [52]岑可法,樊建人.工程气固两相流理论及其计算[M].杭州:浙江大学出版社, 1990.
    [53]周力行.湍流气粒两相流动和燃烧的理论和数值模拟[M].北京:科学出版社, 1994.
    [54]刘大有.二相流动力学[M].北京:高等教育出版社, 2002.
    [55]岑可法,樊建人.燃烧流体力学[M].北京:水利电力出版社, 1991.
    [56]王明波,王瑞和.不同离散格式在湍流旋流流动数值模拟中的应用[J]. 2008, 18(5): 600-603.
    [57] B.E.Launder, D.B.Spalding, Lectures in Mathematical Models of Turbulence[M]. Academic Press, London, 1972.
    [58]朱红钧,林元华等. FLUENT流体分析及仿真实用教程[M].北京:人民邮电出版社, 2010.
    [59]毕金成.超音速冷气动力喷涂过程中的气固两相流动[D].重庆:重庆大学, 2004.
    [60]张继春,李兴虎等.壁面函数对进气管CFD计算结果的影响[J].农业机械学报, 2008, 39(7): 48-50.
    [61]傅德薰等.流体力学数值模拟[M].北京:国防工业出版社, 1993.
    [62] Alkhimov A P, Klinkov S V, Kosarev V F. Experimental study of deformation and attachment of a microparticles with an obstacle upon high-rate impact[J]. J Appl Mech Tech Phys, 2000, 41: 245-250.
    [63]刘儒勋,王志峰.运动界面追踪数值模拟方法[M].合肥:中国科学技术大学出版社, 2001.
    [64]张力.旋转气固多相流分离的数值分析及实验研究[D].重庆大学博士学位论文, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700