烟气脱硫石膏中杂质离子对其结构与性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烟气脱硫石膏是火电厂采用湿法烟气脱硫技术的副产物。近年来,随着我国以湿法烟气脱硫为主流技术的大力实施推广,烟气脱硫石膏的排放量与日俱增。然由于烟气脱硫石膏中可溶性杂质对其性能的不利影响,烟气脱硫石膏在诸多建材领域的资源化利用受阻。鉴于此,本文首先就烟气脱硫石膏的物化特性及所含杂质的影响展开了研究。在此基础上,通过实验室模拟烟气脱硫过程制备了未掺杂及掺不同量杂质的合成石膏,研究了不同杂质对模拟合成石膏的结构、热脱水动力学及水化硬化性能等方面的影响,探讨了本文研究结果对烟气脱硫石膏实际应用的指导作用。
     烟气脱硫石膏所含可溶性杂质主要包括钠离子、镁离子、氯离子等。其中,部分钠离子存在于烟气脱硫石膏的液相包含物中,部分钠离子和镁离子进入了烟气脱硫石膏晶体中;大部分氯离子存在于烟气脱硫石膏的液相包含物中。烟气脱硫石膏主要呈短柱状,存在表面光滑致密型和表面不平整型两种形貌。烟气脱硫石膏的两步脱水反应均遵循Avrami-Erofeev方程。较高含量的钠离子和氯离子共同作用缩短了烟气脱硫石膏水化放热的加速期,加快了半水石膏的溶解速率,导致其凝结时间大幅缩短,抗压强度降低。0.24%~0.67%含量的镁离子对烟气脱硫石膏的凝结时间无明显影响,1.1%含量的镁离子延长烟气脱硫石膏的凝结时间。
     采用XRD和ESEM等测试手段研究了钠离子、镁离子和氯离子对模拟合成石膏结构及形貌的影响。结果表明,三种杂质基本未对模拟合成石膏的晶胞参数产生影响。未掺杂模拟合成石膏有两种不同的形貌特征:即表面光滑致密型和表面由许多不同长径比的小石膏微晶单元相互搭接构成型。钠离子、镁离子使模拟合成石膏形貌以表面光滑致密型为主;而氯离子使模拟合成石膏主要以表面突起小微晶组成型为主。与未掺杂模拟合成石膏相比,氯离子使这些小微晶单元由无序搭接变成有序排列。部分钠离子存在于模拟合成石膏的液相包含物中;部分钠离子和大量镁离子可能会通过偶极离子反应稳定存在于模拟合成石膏晶体内水分子的孔隙位置上;氯离子主要存在于液相包含物中。
     通过热分析法研究了钠离子、镁离子和氯离子对模拟合成石膏热脱水动力学的影响。结果表明,三种杂质均使模拟合成石膏的第一第二脱水反应活化能降低。其中,氯离子的影响效果最为显著。活化能的降低宏观上表现为掺杂石膏脱水温度的下降。三种杂质离子降低模拟合成石膏活化能的原因:包含在液相包含物或石膏晶体水分子中的杂质将随温度的升高逐步脱离液相或水分子位置,进而吸附于石膏晶体表面上能量最高部位,这会增大石膏发生变形和扭曲的程度,增强石膏的结构活性,宏观上表现为活化能降低。
     采用电导率仪、等温微量热仪及ESEM等测试手段研究了钠离子、镁离子和氯离子对模拟合成石膏水化硬化性能的影响。结果表明,随钠离子掺量的增大,模拟合成石膏的初终凝结时间逐渐缩短,抗压强度逐步降低。钠离子主要通过加速半水石膏的溶解过程促进水化。抗压强度降低的原因:钠离子使其水化产物形貌由未掺杂的交叉搭接度较高的针棒状,变为交叉搭接度较差的燕尾双生状和不规则片层状。0.5%掺量的镁离子对模拟合成石膏的初凝时间影响甚小,对缩短终凝时间的影响程度稍大;0.9%掺量的镁离子会延长其初终凝时间。镁离子对其抗压强度影响甚微。掺镁模拟合成石膏的水化产物仍以相互交叉搭接度较好的针棒状为主。掺有0.9%镁模拟合成石膏的水化产物表面存在诸多小点,考虑为镁离子在晶体表面的吸附,这些吸附的镁离子可能延缓了半水石膏的水化。0.5%掺量的氯离子通过促进半水石膏的溶解大幅缩短合成石膏的初终凝时间;降低合成石膏的抗压强度。与未掺杂模拟合成石膏相比,掺氯0.5%模拟合成石膏的水化产物主要以结晶接触点较少的短柱状和片层状为主。
Flue gas desulfurization (FGD) gypsum is a by-product, which is produced bywet gas desulphurization in coal-fired power stations. In recent years, with promotionand implement of wet gas desulphurization technology, large quantity of FGDgypsum has been produced. However, owing to impurities existed in FGD gypsum(such as, sodium, magnesium and chloride), which can be detrimental to thegypsum products, the effective utilization of FGD gypsum hasn’t been carried out. Inview of these problems, the physicochemical characteristics and influence ofimpurities on properties of FGD gypsum were studied. Pure gypsum and gypsumcontaining different impurities were prepared by simulating FGD process atlaboratory. The effect of impurities on structure, thermal dehydration kinetics andhydration and hardening performance of synthetic gypsum were investigated. Theimpact of results on application of FGD gypsum was also briefly discussed
     The soluble ions mainly monitored are sodium (Na+), magnesium (Mg2+) andchloride (Cl-) in FGD gypsum. Some sodium ions exist in the gypsum lattice and theother resides in fluid inclusions. Most magnesium ions may exist in the gypsum lattice.Most chloride ions reside in fluid inclusions. FGD gypsum exhibits smooth surfaceand coarse surface. The dehydration reaction of FGD gypsum occurs in two steps,which follow Avrami-Erofeev equation. Interaction of sodium and chloride isbelieved to promote the hemidyate to dihydrate, shorten the setting time and reducecompressive strength. Magnesium ion content from0.24wt%to0.67wt%has no effecton the setting time. In the presence of1.1wt%magnesium ions, the setting time ofgypsum plaster has been retarded.
     Effect of impurities (sodium, magnesium and chloride) on the structure andmorphology of synthetic gypsum was studied by XRD and SEM. The results showthat impurities have no effect on the lattice parameter of synthetic gypsum. Puresynthetic gypsum exhibits two different morphological features: compact, smoothsurface and coarse surface made of small gypsum crystal units. Synthetic Gypsumcontaining sodium and magnesium ions exhibits smooth and compact surface.Synthetic gypsum containing chloride shows coarse surface, and chloride ions couldmodified small gypsum crystal units from disordered to certain arrangement. Chlorideexists mainly in the fluid inclusions. Some sodium ions exist in the fluid inclusions. Some sodium and most magnesium ions may reside in interstitial positions amongstructural water molecules by dipole-ion interaction with water.
     Effect of impurities (sodium, magnesium and chloride) on thermal dehydrationkinetics of synthetic gypsum was studied by TG-DSC. The results show that theactivation energy of gypsum containing impurities is lower than that of pure gypsum.The activation energy of gypsum containing chloride ions is lower than that of sodiumand magnesium ions. Lower activation energy is responsible for lower dehydrationtemperature. It can be noted that with dehydration temperature increasing, impuritiesexisted in fluid inclusions or interstitial positions among structural water are released,and these impurities are adsorbed at crystal surface of the highest energy. It leads tothe deformation and distortion of gypsum lattice. Consequently synthetic gypsumcontaining impurities exhibits lower activation energy.
     Effect of impurities (sodium, magnesium and chloride) on the hydration andhardening performance of synthetic gypsum was studied by conductivity, ICC andSEM. The results show that with an increase of sodium ions concentration, the settingtime is retarded and the compressive strength is reduced, but there is a suddendecrease in sodium ions up to0.5wt%. It is believed that sodium ions acceleratehydration by increasing rate of hemihydrate dissolution. In the presence of sodiumions, gypsum plaster which normally crystallizes into long interlocking needle shapedcrystals has been modified to lath and twin shaped crystals of variable sizes. Thesetwin and lamellar-like crystals are related to poor interlocking structure. Magnesiumions up to0.5wt%have no effect on the initial setting time, and reduce the finalsetting time. In the presence of0.9wt%magnesium ions, the setting time of gypsumplaster has been retarded.There is many pots at the surfaces of gypsum. It is inferedthat magnesium ions are adsorbed at the crystal surfaces of growing gypsum, whichresults in retardation of hemihydrate hydration. In the presence of magnesium ions,the hyration products exhibit interlocking structures. In the presence of0.5wt%chloride, the setting time is retarded, and the compressive strength is reducedconsiderably. The formation of poor lath and tabular shaped crystals are responsiblefor fall in strength.
引文
[1]中国电力新闻网.脱硫副产物可再利用,2012年2月.
    [2] FERENC K, JOZSEF M. Basic properties of flue-gas desulfurization gypsum [J]. ActaMontanistica Slovaca,2003(8):16-19.
    [3] MOLNAR J, DOVRTEL G. Basic parameters of gypsum from flue-gas desulfurizationequipment [J]. BKL Banyaszat,2000,134:474-479.
    [4]毛树标.烟气脱硫石膏综合利用分析[D].浙江大学,2005:4-6.
    [5]彭志辉,季建新等.烟气脱硫石膏及其建材资源化研究[J].重庆环境科学,2000,22(6):26-28.
    [6]童士唐,沈士德等.从湿法烟气脱硫残渣制取α型半水石膏的研究[J].武汉科技大学学报(自然科学版),1996(1):51-57.
    [7]林芳,彭家惠等.脱硫石膏粉煤灰胶结材水化硬化机理及耐水性研究[J].硅酸盐学报,1995,23(2):219-223.
    [8]吴晓琴,吴忠标.烟气脱硫石膏资源化利用现状及展望[J].重庆环境科学,2003,25(11):192-195.
    [9]王肇嘉,段鹏选等.烟气脱硫石膏资源化利用技术发展综述[A],第三届国际建筑干混砂浆生产应用技术研讨会论文集[C].上海:2008,34-36.
    [10]王建强.纸面石膏板护面纸与石膏芯材粘结性能的探讨[J].新型建筑材料,2000(11):3-4.
    [11]冯菊莲.石膏纸面与纸面石膏板技术性能关系探讨[J].新型建筑材料,2003(9):9-14.
    [12] LEIVA C, GARCIA ARENAS C., et al. Use of FGD gypsum in fire resistant panels [J].Waste management,2010,30(6):1123-1129.
    [13] THOMAS G. Thermal properties of gypsum plasterboard at high temperatures [J]. Fire andmaterials,2002,26(1):37-45.
    [14] HENKELS P.J., GAYNOR J.C. Characterizing synthetic gypsum for wallboard manufacture[J]. Preprints of papers, American chemical society, Division of fuel chemistry,1996,41(2):569-574.
    [15] WEINTEMILLAS-VERDAGUER. S. Chemical aspects of the effect of impurities in crystalgrowth [J]. Progress in crystal growth and character of materials,1996,32(1-3):75-109.
    [16] SANGWAL K. Effect of impurities on the processes of crystal growth [J]. Journal of crystalgrowth,1993,128(1-4):1236-1244.
    [17] KUBOTA. N., YOKOTA M., et al. The combined influence of supersaturation and impurityconcentration on crystal growth [J]. Journal of crystal growth,2000,212(3-4):480-488.
    [18] SANGWAL K, PALCZYNSKA T. On the supersaturation and impurity concentrationdependence of segregation coefficient in crystals grown from solutions [J]. Journal ofcrystal growth,2000,212(3-4):522-531.
    [19] WITKAMP G. J. Growth of gypsum:Ⅰ. kinetics [J]. Journal of crystal growth,1990,102(1-2):281-289.
    [20] FENG H. L., WILLIAM J, M., et al. Minor and trace element analysis on gypsum: anexperimental study [J]. Chemical geology,1997,142(1-2):1-10.
    [21] KUSHNIR J. The coprecipitation of strontium, magnesium, sodium, potassium and chlorideions with gypsum. An experimental study [J]. Geochimica et cosmochimica acta,1980,44(10):1471-1482.
    [22] CATERINA R., MARINELLA F., et al. Curvature of gypsum crystals induced by growth inthe presence of impurities [J]. Mineralogical magazine,1989,53:479-482.
    [23] STANLEY E. E. The growth of gypsum, an investigation of the factors which affect the sizeand growth rates of the habit faces of gypsum [J]. Journal of crystal growth,1973,18(3):217-224.
    [24] HAMDONA S K., AL HADAS U A. Crystallization of calcium sulfate dihydrate in thepresence of some metal ions [J]. Journal of crystal growth,2007,299(1):146-151.
    [25] HAMDONA S K., NESSIM, et al. Spontaneous precipitation of calcium sulfate dihydrate inthe presence of some metal ions [J]. Desalination,1993,94(1):69-80.
    [26] KATSUTOSHI T., KUWAHARA A., et al. Influence of cations and concentrations on themorphology of gypsum crystals [J]. Rep. Fac. Sci., kagoshima university,1998,31:57-65.
    [27]彭家惠,万体智等.磷石膏中杂质组成、形态、分布及其对性能的影响[J].中国建材科技,2006(6):31-35.
    [28]彭家惠.磷石膏中可溶性磷形态、分布及其对性能影响机制的研究[J].硅酸盐学报,2000,28(4):309-313.
    [29]杨敏,钱觉时等.杂质对磷石膏应用性能的影响[J].材料导报,2007,21(6):104-106.
    [30]李军,王建华等. Al3+对二水硫酸钙结晶动力学影响的研究[J].成都科技大学学报,1996,90(2):53-59.
    [31] RASHAD M.M., MAHMOUD M.H.H., et al. Crystallization of calcium sulfate dihydrateunder simulated conditions of phosphoric acid production in the presence of aluminum andmagnesium ions [J]. Journal of crystal growth,2004,267(1-2):372-379.
    [32] KURGER A. The effect of extraneous soluble ions in igneous rock phosphate oncrystallography of gypsum dehydrate and thus phosphoric acid production [J]. IFA technicalconference,1998,28.
    [33] PERVIZ S., SIBEL T.S., et al. Effect of trace metals on reactive crystallization of gypsum [J].Crystal Research and crystal technology,2007,42(10):961-970.
    [34] MARTYNOWICZ E. T. M.J., WITKAMP G.J., et al. The effect of aluminium fluoride on theformation of calcium sulfate hydrates [J]. Hydrometallurgy,1996,41(2-3):171-186.
    [35]潘利祥.燃煤电厂脱硫石膏品质影响因素及其对石膏制品的影响.第二届中国脱硫技术及脱硫石膏、脱硫灰渣处理与利用大会,2008年.
    [36] IANNACONE M. M., CASTLE J.W., et al. Characterization of flue gas desulfurizationparticulates in equalization basins [J]. Fuel,2009,88(9):1580-1587.
    [37]吴卫东.影响湿法烟气脱硫石膏的因素探讨[J].湖州师范学院学报,2009,31(2):279-281.
    [38]周梦文.烟气脱硫石膏在建筑石膏制品中的理化性质研究.中国硅酸盐学会2003年学术年会新型建筑材料论文集,683-686.
    [39] XIANG G., WANG H., et al. Effects of magnesium and ferric ions on crystallization ofcalcium sulfate dehydrate under the simulated conditions of wet flue-gas desulfurization [J].Chemical research in Chinese universities,2008,24(6):688-693
    [40] KYUNG JUN C., KYUNG SEUN Y., et al. Characteristics of gypsum crystal growth overcalcium-based slurry in desulfuriation reactions [J]. Materials research bulletin,1997,32(2):197-204.
    [41] NOGUCHI M., IDEMURA H. In proceedings of110thaime annual meeting, ed.T.D. Chatwinand N.Kikumoto, The metallurgical socie of aime,1981:143.
    [42]陈雯浩,许积智.石膏脱水相及其水化的研究[J].硅酸盐学报,1983,11(4):414-420.
    [43]杨淑珍,牟善彬等.硬石膏的高温相变和结构研究[J].矿物学报,1998,18(1):73-78.
    [44] TAYLOR H.F.W. Cement chemistry. Academic press, London,1990,233.
    [45] YUE WENHAI, XIANG CAIWANG. A study on the basic dynamical theory of thermaldecomposition for gypsum dehydration [J]. Journal of wuhan university of techmology,1985,(4):10-14.
    [46] YUAN XIMING, JIA XIAOJING, et al. An experimental study of the thermal properties ofgypsum [J]. Journal of mineralogy and petrology.1995,(2):15-18.
    [47]李国顺,张来存.石膏的脱水及其有关的动力学[J].盐矿测试,1985(4):279-282.
    [48]酒少武,陈延信.磷石膏脱水反应动力学研究[J].应用化工,2011,40(3):381-386.
    [49] ABDEL A.A.K. Kinetics of gypsum dehydration [J]. Thermochimica acta,1982,55(2):201-208.
    [50] STRYDOM C.A., HUDSON-LAMB D.L., et al. The thermal dehydration of syntheticgypsum [J]. Thermochimica acta,1995,269-270(20):631-638.
    [51] TADASHI A., NOBUYUKI F. Controlled-rate thermal analysis kinetic study in thermaldehydration of calcium sulfate dihydrate [J]. Journal of analytical and applied pyrolysis,1997,39(2):129-143.
    [52]余红发,裴锐等.石膏脱水动力学机理及不同脱水相的性能[J].沈阳建筑工程学院学报,1998,14(4):388-382.
    [53] HUDSON-LAMB D.L., STRYDOM C.A., et al. The thermal dehydration of natural gypsumand pure calcium sulphate dehydrate [J]. Thermochimica acta,1996,282-283(10):483-492.
    [54] SIPPLE E. M., BRACCONI P., et al. Microstructural modifications resulting from thedehydration of gypsum [J]. Solid state ionics,2001,141-142:447-454.
    [55]杨慧先,丁永刚.杂质对二水石膏热性能影响的研究[J].武汉工业大学学报,1991,13(3):19-25.
    [56]权刘权,罗治敏等.脱硫石膏与磷石膏的热性能[J].材料导报,2007(21):266-269.
    [57]姜伟,范立瑛等.煅烧温度对脱硫石膏性能影响[J].山东建材,2008(2):46-50.
    [58] VALIMBE P.S., MALHOTRA V.M., et al. Structural characteristics and thermal stability ofFGD scrubber sludge [J]. Journal of American chemical society,1997,42(4):1123-1127.
    [59]李立,金晶等.湿法烟气脱硫石膏热稳定性研究[J].上海理工大学学报,2009,31(3):286-289.
    [60]徐铮.脱硫石膏品质控制技术及其资源化研究[D].华北电力大学,硕士学位论文,2007,12.
    [61] īFFET Y.E., SABRIYE P. Kinetic study of the thermal dehydration of borogypsum [J].Journal of hazardous materials,2004,116(1-2):111-117.
    [62] SINGH N.B., MIDDENDORF B. Calcium sulphate hemihydrate hydration leading togypsum crystallization [J]. Progress in crystal growth and characterization of materials,2007,53(1):57-77.
    [63]向才旺.建筑石膏及其制品[M].北京:中国建材工业出版社,1998,97.
    [64]杨得山译.石膏物理-化学生产-应用[M].北京:中国建筑工业出版社,1987,158.
    [65] CHRISTOFEERSON J, CHRISTIFFERSONMR. The kinetics of dissolution of calciumsulphate dihydate in water [J]. Journal of crystal growth,1976,35(1):79-88.
    [66] BIRK B., MICHAEL F.H.J. Gypsum growth in the presence of growth inhibitors: a scanningforce microscopy study [J]. Chemical geology,1996,132(1-4):227-236.
    [67] MAHMOUD M.H.H., RASHAD M.M., et al. Crystal modification of calcium sulfatedihydrate in the presence of some surface-active agents [J]. Journal of colloid and interfacescience,2004,270(1):99-105.
    [68] GRATZ A.J., HILLNER P.E. Poisoning of calcite growth viewed in the atomic forcemicroscope (AFM)[J]. Journal of crystal growth,1993,129(3-4):789-793.
    [69] HAND R.J. The kinetics of hydration of calcium sulphate hemihydrate: a critical comparisonof the models in the literature [J]. Cement and concrete research,1994,24(5):885-895.
    [70]牟国栋.半水石膏水化过程中的物相变化研究[J].硅酸盐学报,2002,30(4):532-536.
    [71] CRAIG D.A. Atomistic modelling of the hydration of CaSO4[J]. Journal of solid statechemistry,2003,174(1):141-151.
    [72] SINGH N,B., MIDDENDORF B. Calcium sulphate hemihydrate hydration leading togypsum crystallization[J]. Progress in crystal growth and characterization of materials,2007,53(1):57-77.
    [73]谢若南译.建筑工程材料,1982(2):43.
    [74]刘伟华.无机外加剂对α半水石膏性能的影响及其作用机理研究[D].河北理工大学,硕士学位论文,2005,3.
    [75] Wu Meiqing. A study on the factor influencing structure and properites of α-gypsumsemihydrate [A]. In: ISCC, ed. Proceedings of the International Symposium on Cement andConcrete [C]. Brasil: International Academic Publisher,1993:234-238.
    [76] ODLER I. Relationships bewteen pore structure and strength of set gypsum pastes Part Ⅱ:Influence of chemical admixtures [J]. ZKG,1999(10):266-268.
    [77] LEWRY A.J., WILLIAMSON J. The setting of gypsum plaster part ⅠThe hydration ofcalcium sulphate hemihydrate [J]. Journal of materials science,1994(29):5279-5284.
    [78] CRISTELL S., STAFFAN H. Dissolution of CaSO4·1/2H2O and precipitation ofCaSO4·2H2O: A kinetic study by synchrotron X-ray powder diffraction [J]. Cement andconcrete research,2001,31(4):641-646.
    [79] SARA S., JOHN W.M. Effect of trace impurities on calcium sulphate precipitation [J].Journal of chemical technology and biotechnology,1982,32(4):525-531.
    [80] OLMEZ H., YILMAZ V T. Infrared study on the refinement of phosphogypsum for cements[J]. Cement and concrete research,1988,18(3):449-454.
    [81] SINGH M. Role of phosphogypsum impurities on strength and microstructure of seleniteplaster [J]. Construction and building materials,2005,19(6):480-486.
    [82] EMILE T.M.J.M., GEERT-JAN W., et al. The effect of aluminium fluoride on the formationof calcium sulfate hydrates [J]. Hydrometallurgy,1996,41(2-3):171-186.
    [83]胡祖,高胜利等.热分析动力学[M].第2版,北京:科学出版社,2008:57-159.
    [84]杨剑.湿法烟气脱硫氧化过程动力学研究[D].重庆大学,博士学位论文,2008.11,28-49.
    [85] TEERAWAT S., ADISORN A. Simulation and optimization of coal-fired power plants [J].Energy procedia,2009,1(1):3851-3858.
    [86] KALLINIKOS L.E., FARSARI E.I., et al. Simulation of the operation of an industrial wetflue gas desulfurization system [J]. Fuel processing technology,2010,91(12):1794-1802.
    [87]何萍.喷淋塔和鼓泡塔式湿法脱硫的工艺比较[J].江西电力,2004,30(5):1-3.
    [88]胡殿儒.常规湿法与鼓泡脱硫技术的比较研究[D].华北电力大学,硕士学位论文,2008,12,25-28.
    [89] FABRIZIO S., MICHELE D.A., et al. Modeling flue gas desulfurization by spray-dryabsorption [J]. Separation and purification technology,2004,34(1-3):143-153.
    [90] BRAVO R.V., CAMACHO R.F., et al. Desulphurization of SO2-N2mixtures by limestoneslurries [J]. Chemical engineering science,2002,57(11):2047-2058.
    [91] GUTIéRREZ O.F.J. A simple realistic modeling of full-scale wet limestone FGD units [J].Chemical engineering journal,2010,165(2):426-439.
    [92] Yuanjing Zheng, S ren K., et al. Experimental investigation of a pilot-scale jet bubblingreactor for wet flue gas desulphurization [J]. Chemical engineering science,2003,58(20):4695-4703.
    [93] FOLLNER S., WOLTER A. On the real structure of gypsum crystals [J].Crystal research andtechnology,2002,37(2):207-218.
    [94] COLE W.F., LANCUCKI C.J. A refinement of the crystal structure of gypsum CaSO4.2H2O[J]. Acta crystallographica,1974, B30:921-929.
    [95]陈荣秀.多钙钾石膏晶体结构的精确修正[J].岩石矿物学杂志,1989,8(3):278-284.
    [96] TESTA G., LUGLI S. Gypsum-anhydrite transformations in Messinian evaporates of centralTuscany [J]. Sedimentary geology,2000,130(3-4):249-268.
    [97] GHAZAL A., VLADIMIROS G.P. Mechanism and kinetics of gypsum-anhydritetransformation in aqueous electrolyte solutions [J]. Hydrometallurgy,2011,108(1-2):122-129.
    [98] SEBASTIAN S, HESSE C., et al. Quantitative determination of anhydrite Ⅲ fromdehydrated gypsum by XRD [J]. Cement and concrete research,2009,39(10):936-941.
    [99] HELEN E.F., GEOFFREY A.L., et al. Gypsum-anhydrite transformation in hot acidicmanganese sulfate solution. A comparative kinetic study employing several analyticalmethods [J]. Hydrometallurgy,2004,75(1-4):91-98.
    [100] CHRISTENSEN A.N., OLESEN M., et al. Formation and transformation of five differentphases in the CaSO4-H2O system: crystal structure of the subhydrate β-CaSO4·0.5H2Oand soluble anhydrite CaSO4[J]. Chemistry of materials,2008,20(6):2124-2132.
    [101] KRALJ. J., BRECEVIC D. Transformation of hydrous calcium suphate into calciumsulphate dihydrate in aqueous solutions [J]. Journal of crystal growth,2002,240(1-2):203-211.
    [102]杨柳春.常压盐溶液中脱硫石膏制备α-半水石膏的结晶过程研究[D].浙江大学,博士学位论文,2009.10,53-57.
    [103]吴晓琴,孔艳萍. K-Ca-Mg-Cl-H2O体系中硫酸钙结晶介稳区的研究[J].环境工程学报,2011,5(6):1431-1434.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700