废旧冰箱中CFC-11的回收研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文阐述了废旧冰箱中的三氯一氟甲烷(CFC-11)来源、危害以及国内外主要的处理方法。综述了活性炭纤维的发展概况以及活性炭纤维吸附法处理有机废气的发展概况、反应机理、影响因素及等温吸附模型。综述了喷淋、分馏在回收废气上的应用。在此基础上,建立CFC-11回收处理模拟实验装置,通过模拟工艺实验,研究CFC-11吸附、脱附、喷淋吸收以及解析分离等回收处理过程。
     本文以粘胶基活性炭纤维为吸附剂,自制了一套集吸附、脱附、浓缩、喷淋吸收以及解析分离为一体的实验装置。
     在吸附试验中,将活性炭纤维的吸附等温线与Freundlich吸附等温方程相拟合,拟合效果较理想。考察了气体流速、气体进口浓度、填充高度等影响吸附过程的因素,并以其为参考对象,进行L9(33)的正交优化。结果表明,在设计实验范围内对活性炭纤维吸附CFC-11的影响的显著性先后顺序为:气体流速﹥气体浓度﹥填充高度。筛选出的本实验装置的最佳操作参数为:室温25℃、活性炭纤维填充密度101.9 kg/m3、填充高度120 mm、CFC-11流速0.10 m/s、进口平均浓度10 mg/L。
     脱附试验结果表明,150℃的脱附温度比90℃脱附得快。在0.05,0.10,0.15 m/s的气体流速范围内,吸附过程的气体流速越大,脱附得越快,但是当出口浓度下降到一定值后,吸附过程中气体流速大的反而脱附变慢。对活性炭纤维再生率试验研究结果表明,再生率随着使用次数的增加而减小,但再生率维持在85%以上。
     喷淋试验结果表明,在15.7,20.0,25.0 L/min的循环喷液量下,吸收效率分别是84%,89%,92%;在进口CFC-11浓度为100.4,142.7,160.1 mg/L下,吸收效率分别为91%,88%,83%。
     分馏试验结果表明,在50,70,90℃温度范围内,温度越高,分馏越完全;溶剂比为4至5.5的范围内,回收率随溶剂比的增加而上升,当溶剂比增大到一定值以后,回收率变化不大。
     回收情况试验结果表明,气体在吸附与脱附过程的回收率达到90%;而在喷淋、分馏回收阶段,回收率为60%左右。整个回收过程的总回收率为35%。
This paper has described the sources, hazards, domestic and international recycling approach of the CFC-11 from refrigerator waste; Summarized the activated charcoal textile fiber development survey as well as the activated charcoal textile fiber adsorption law processes CFC-11 the development survey, the reaction mechanism, the influence factor and the uniform temperature adsorption model. The aiticle also reviewed the spray and distillation in the application of exhaust gas recycling. In this foundation, the CFC-11 recycling plant simulation was established. CFC-11 recycling process, inculing adsorption, desorption, spray absorption and analytical separation were studied by the simulating experiments.
     In this paper, the viscose base activated charcoal textile fiber was taking as the absorbent. Adsorption, desorption, concentration, spray and analytical separation were made as the experimental device.
     In the adsorption experiment, the activated carbon fiber adsorption isotherm and the Freundlich isotherm equation are fitting satisfactoried. To cofirm the factors affecting the adsorption process, such as the gas volume flow rate, gas inlet concentration, fills height and carried on L9(33) orthogonal optimization. The result indicated that in the design experiment scope to the activated charcoal textile fiber adsorption CFC-11 influence successively the order is: gas volume flow rate﹥gas conceration﹥packed height. Screens this test installation best operation parameter is: The room temperature was 25℃, activated carbon fiber packing density was 101.9 kg/m3,fill height was 120 mm, CFC-11 volumetric flow rate was 0.2 m3 ? h-1, the average import concentration was 10 mg ? L-1.
     The results of desorption experiment show that the desorption temperature of 150℃was faster than 90℃desorption. In the gas volume flow rate of 0.05, 0.10, 0.15 m/s, 0.15 m/s was the best volume of desorption. The results of egeneration rate experiment show that the regeneration rate decreased while the using times increased. The recycling rates remained at 85%.
     The results of spray experiment show that while the amount of circulating spray was 15.7, 20.0, 25.0 L/min, absorption efficiency was 84%, 89%, 92%; When the import concentration was 100.4, 142.7, 160.1 mg/L, the absorption efficiency was 91%, 88%, 83%. Absorption efficiency of spray can reach 80%.
     The results of fractionation experiment show that in the distillation temperature of 50、70、90℃, the higher the temperature, the more complete distillation; recovery ratio increases with the increase of the solvent;however,when the solvent ratio increases to a certain value, the recovery rate changed little.
     On the basis of the experiment above, the whole process of gas adsorption, desorption, spray, distillation recovery were studied. The results show that gas adsorption and desorption process is relatively high in the recovery rate, reaches 90%. In the spray, the distillation recovery phase, the recovery rate decreased, only 60%. The total recovery rate of the whole recovery process was 35%.
引文
[1] MCCULLOCHA, Ashfordp, Midgleypm. Historic emissions of fluorot richloromethane (CFC-11) based on a market survey [J]. Atmospheric Environment, 2001, 35(4): 4387~4397.
    [2] Ashfordp, Clodicd, Mccullocha, et al. Emission profi les from the foam and refrigerat ion sectors comparison with atmospheric concentrat ions [J]. International Journal of Refrigerat ion, 2004, 27(8): 701~716.
    [3]景元书,金巍,曲岩等. 1991~2004年东亚温室气体浓度特征及变化趋势[J].环境科学研究, 2007, 20(6) : 67~70
    [4]胡嘉琦,赵新,王玲.活性炭吸附制冷家电发泡剂气体的试验方法[J].日用电器, 2008,1: 37~38.
    [5] Ministry of Information Industry of China. Electronic Industry Statistics Annual[R]. Beijing: Electronic Industry Press, 2003~2006.(in Chinese)
    [6]刘景洋,段宁,杨勇等.废旧冰箱拆解及聚氨酯泡沫放置的一氟三氯甲烷释放量研究[J].环境污染与防治, 2010,32(7):1~4
    [7]王成扬,冯丽萍,何菲.活性炭纤维的表面特性及其对有机蒸气的吸附研究[J].炭素,1999,4:3~7
    [8] Zheng-Hong Huang, Feiyu Kang, Kai-Ming Liang, Jiming Hao. Breakthrough of Methyethylketone and benzene vapors in activated carbon fiber beds. Jonunrnal of Hazardous Materials. 2003, B98: 107~115.
    [9]廖达琛,徐承亮,彭皓.计算流体力学在喷淋塔内流场模拟方面的研究进展及展望[J].能源工程,2007,3:56~57
    [10]王丽丽,李定龙,林海鹏.喷淋塔的流体力学特性与脱硫效率研究[J].工业安全与环保, 2008, 34(9):37~39
    [11]王旭,陈鸿伟.入口位置对喷淋塔流场影响的数值模拟[J].安徽理工大学学报, 2009, 29(3):40~43
    [12]李秋萍,程建伟,邵国兴.喷淋洗涤塔、液柱塔及动力波洗涤器[J].化工装备技术, 2008, 29(3):1~5
    [13]缪明烽,于耘.湿式逆流喷淋脱硫塔中SO2吸收特性的研究[J].环境工程学报, 2010, 4(4):887~892
    [14] Ozone Secretariat. Action on Ozone[R]. Kenya: United Nations Environment Programme, 2000
    [15] Ashforda P, Clodicb D, McCulloche A, et al. Emission profiles from the foam and refrigeration sectors comparison with atmospheric concentrations [J]. International Jouranl of Refrigeration, 2004, 27:701~716
    [16] Schrope M, Successes in fight to save ozone layer could close holes by 2050, Nature, 2000, 408(527)
    [17] Perez A. On the Antarctic origin of low ozone events at the south American continent during the spring of 1993 and 1994, Atmos. Env, 1998, 32(3665)
    [18] Crutzen P. Ozone clouds over the Atlantic, Nature, 1997, 388(625)
    [19] United Nations Environment Programme. Montreal Protocol on Substances That Deplete the Ozone Layer: Task Force on Emissions Discrepancies Report[R]. Dakar: UNEP, 2005
    [20] Zurer P S. Delayed CFC phase out in developing countries raises growing concern [J]. C & EN, 1995, 25(8): 13~14
    [21] Khalil M A K, Rasmussen R A J. The environmental history and probable future of fluorocarbon-11 [J]. Journal of Geophysical Research, 1993, 98(12): 23091~23106.
    [22] Foreign Economic Cooperation Office of the State Environmental Protection Administration.CFC-11 Substitute Technique Technique Manual of Polyurethane Rigid Foam [M]. Beijing:Chemical Industry Press, 2002: 8~10.(in Chinese)
    [23] Md E Kabir, M C Saha. Tensile and fracture behavior of polymer foams [J]. Materials Science and Engineering, 2006, 429: 225~235.
    [24] Dr J Stratford. Estimating CFC Releases from Cutting of Fridges [R]. Scottish: Scottish Environment Protection Agency, 2002: 1~27
    [25]胡嘉琦,赵新,符永高等.黏胶基活性炭纤维对三氯一氟甲烷的吸附性能[J].环境科学研究, 2009, 22(9):1089~1092
    [26]王俏运等. ACF的制备及其在VOCs回收中的应用进展[J].化工新型材料, 2009,37(11):34~37
    [27]余纯丽等.活性炭纤维的该项及其微孔结构[J].环境科学学报. 2008, 28(4):714~719
    [28]李新艳,秦志宏.活性碳纤维的研究进展[J].化工生产与技术. 2011, 18(4):43~45
    [29]张华.活性炭纤维制造和应用的新进展[J].产业用纺织品. 12(5): 19~21
    [30]廷璋.活性炭纤维.高科技纤维与应用[J].1999, 24(4):17~20
    [31]翟会杰,傅敏,丁培道.环境功能材料ACF的性能与应用前景[J].重庆工商大学学报.2003, 20(3):28~31
    [32]王建英,胡永琪,赵瑞红.活性炭纤维的制备及其在环保领域的研究应用[J].河北工业科技. 2004, 21(4): 46~49
    [33]翟会杰,傅敏,丁培道.环境功能材料ACF的性能与应用前景[J].重庆工商大学学报.2003, 20(3):28~31
    [34]袁艳梅,陈长安,张丽等.活性碳纤维改性技术研究进展[J].化工环保.2009, 29(4):331~334.
    [35]刘占莲,潘鼎.进展中的活性炭纤维[J].炭素.2002, (3):14~19
    [36] Sakoda A K, Suzuki M. The adsorption of activated carbon fibers[J]. Activated carbon fiber. 1991, 25(2):219~225
    [37]吴军良,尹华强,刘勇军.活性炭纤维在环境保护中的应用及前景[J].环境污染治理技术与设备. 2001, 2(4): 65~71
    [38]曹雅秀,刘振宇,郑经堂.活性炭纤维及其吸附特性[J].炭素. 1999, 2: 21~23
    [39] Patrick D.S. Organic vapor recovery using activated carbon fiber cloth and electrothermal desorption[A]. Ph.D paper of University of Illinois at Urbana-Champaign.2003
    [40]王建英,胡永琪,赵瑞红.活性炭纤维的制备及其在环保领域的研究应用[J].河北工业科技. 2004, 21(4): 46~49
    [41]腾云超.活性炭纤维及其在环保中的应用[J].森林工程. 2001, 17(4):28~29
    [42]阎怀国,张俊贞,赵惠敏.活性炭纤维的应用[J].城市环境与城市生态. 1998, 11(3): 5~7
    [43]王海波,周才梅,修国华.活性炭纤维在吸附领域的应用[J]. 1996, 1: 27~29
    [44] Faisal I. Khan, Aloke Kr. Ghoshal. Removal of volatile Organic Compounds from polluted air. Journal of loss prevention in the process industries. 2000(13):527~545
    [45] Lu W, DDL Z. In extended abstracts. 24th Biennial conference on carbon.1999:428
    [46]黄强,潘鼎,黄永秋.活性炭纤维在治理水和大气污染中的应用[J].化工新型材料. 2002, 30(8): 32~34
    [47]张健,张永春,宋伟杰.活性炭纤维及其在气体分离中的应用展望[J].低温与特气. 2001, 19(2):6~9
    [48] Hisashi T, Takeshi Y, Masahiko S, et al. Carbon.1999, 37(6):983
    [49]高首山,邓景屹,刘文川.活性炭纤维的化学改性[J].鞍山钢铁学院学报. 2000, 23(6):406~409
    [50]肖长发.活性炭纤维及其应用.高科技纤维与应用[J]. 2001, 26(4): 27~31
    [51]赵广龙,张启军.活性炭纤维的性能及应用[J].聊城师范学报.1999, 12(4): 51~54
    [52]李国文,刘强,樊青娟等.活性炭吸附甲苯动力学研究[J].化学工程. 2000, 28(1):25~26
    [53]陆益民,梁世强.活性炭纤维化学改性的研究现状与展望[J].合成纤维工业. 2004, 27(5):33~35
    [54]汪多仁.活性炭纤维的开发与应用[J].高科技纤维与应用. 2001, 26(3): 21~24
    [55]王建英,胡永琪,赵瑞红.活性炭纤维的制备及其在环保领域的研究应用[J].河北工业科技, 2004, 21(4): 46~49
    [56]贾民选.活性炭纤维的应用与开发.科技情报开发与经济[J]. 2004,14(11):205~206
    [57]赵毅,李守信.有害气体控制工程[M].北京:化学工业出版社,2001:87
    [58]黄正宏,康飞宇,杨骏兵等.活性炭纤维对挥发性有机物的吸附及其等温线的拟合[J].离子交换与吸附.2001, 17(6):487~493
    [59]李国文,刘强,樊青娟等.活性炭吸附甲苯动力学研究[J].化学工程. 2000, 28(1):25~26
    [60]吴忠标,李伟,王莉红[M].城市大气环境概论.化学工业出版社.2003:314~326
    [61]冯孝庭.吸附分离技术[M].北京:化学工业出版社, 2000:32~34
    [62]叶振华.化工吸附分离过程[M].中国石化出版社, 1992:46~51
    [63]李立清,张宝杰等.活性炭吸附丙酮及其脱附规律的实验研究[J].哈尔滨工业大学学报. 2004, 12(36):1641~1645
    [64] Jose A.A. Steam regeneration of actovated carbon adsrbents. Ph.D paper of the University of Texas at Austin.1995
    [65]黄华存,张小平.活性炭纤维吸附低浓度甲苯废气吸附等温方程的研究[J].石油炼制与化工. 2005, 36(7):46~49

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700