玉米冠层对喷灌水量再分配的田间试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喷灌作为一种先进的灌水技术,与传统的地面灌溉相比,具有节约用水、增加作物产量、提高作物品质、调节田间小气候、适应性强以及便于自动化控制等优点。基于上述优点,喷灌得以在世界范围内迅速发展和推广。然而,与地面灌溉相比,喷灌过程中存在冠层截留和蒸发飘移损失,导致喷灌水的损失和水量的重新分配。为了了解作物冠层对喷灌水量再分配的影响和水量在地面的分布状况,本文以喷灌夏玉米田间试验为基础,基于水量平衡原理,对喷灌水经玉米冠层后的分配状况和喷灌水在地表的分布规律进行了初步探讨,得出以下结果:
     1.一次喷灌灌水过程中,由于玉米冠层的影响,喷灌水量在地表的分布既具有同一性,也有差异性。对于同一生育期,同一种植密度条件下的玉米而言,在同一喷灌强度内各测点处的茎秆下流水量和棵间穿透水量都表现出很高的同一性。由于玉米冠层的影响,各部分喷灌水量之间又存在明显的差异性:茎秆下流水量、棵间穿透水量和冠层截留量之间存在明显差异性,棵间水量内部之间也存在明显差异性。
     2.试验基于水量平衡原理,对喷灌过程中的各部分水量进行了测定,得出了玉米不同生育期的水量分布及冠层截留量。中等种植密度条件下,玉米各生育期茎秆下流水量占冠层上部水量的比例在37.2%~47.0%之间变化,棵间穿透水量的变化范围为43.8%~59.3%。玉米拔节期到灌浆期,冠层截留量分别为0.8mm、1.8mm、2.7mm和2.9mm,到玉米灌浆成熟期,冠层截留量又下降到2.6mm。当行距从60cm增大到70cm时,平均茎秆下流水量占冠层上部水量的比例降低4%,平均棵间穿透水量占冠层上部水量的比例升高5%,最大冠层截留量减小1个百分点。当行距不变,株距由30cm减为25cm时,平均茎秆下流水量占冠层上部水量的比例增加2%,平均棵间穿透水量占冠层上部水量的比例减小3%,最大冠层截留量增大1个百分点。
     3.正常种植密度条件下,玉米灌浆期有43.8%的灌水量经玉米茎秆下流到根区,47%的灌水量以棵间穿透水量的形式非均匀分布于玉米周围地表。在玉米茎秆周围不同距离、不同方位处,棵间穿透水量的分布也不相同。在距离玉米茎秆7cm,15cm,25cm和32.5cm处,地表接收的水量占总灌水量的比例分别为18.9%、43.5%、66.9%和84.5%。在叶方位向,行向和垂直叶方位向三个方位,棵间穿透水量占灌水量的比例分别为49.8%、17.4%和68.5%。单株玉米植株周围地表处的喷灌均匀系数和分布均匀系数的均值分别为32.9%和24.3%,喷灌有效均匀系数接近40%,喷灌水在地表分布的均匀性较差。
As a advanced irrigation technique, sprinkler irrigation water has several advantages than traditional ground irrigation such as saving water, enhance crop production, improve crop quality, adjust microclimate, strong adaptability and convenient for automation control. Sprinkler irrigation has been developed and spread in the worldwide for these advantages. However, compared with surface irrigation, the water was intercepted by canopy, evaporation and excursion and causes the water loss and distribution during sprinkler irrigation. In order to find out the effect of maize canopy on sprinkler irrigation distribution and water condition of land surface, the paper discussed the distribution regulation of crop canopy and sprinkler water in the land surface on the basis of water balance principle. The results as below:
     1. Because of the influence of maize canopy, the sprinkler water distribution in land surface has its identity and difference during an independent irrigation. On the one hand, the stemflow and throughfall water shows high identity under the same growth stage, same plant density and same sprinkler irrigation intensity. On the other hand, the water distribution shows strong difference both in different parts water and in throughfall penetrate water for the influence of corn canopy.
     2. According to the water balance principle, water in different parts was measured, and summer maize water distribution and canopy interception during the growing stages were made out. In the moderate plant density, the maize stemflow accounted for 37.2%~47.0% of water applied above canopy, and the throughfall is 43.8%~59.3%. The canopy interception water is 0.8mm、1.8mm、2.7mm and 2.9mm from maize jointing stage to maize filling stage. The canopy interception water decreases to 2.6mm in the maize filling and ripening stage. While the row spacing decrease from 60 cm to 70 cm, the average stemflow decrease 4% account for water applied above canopy, and the average throughfall increase 5% account for water applied above canopy; the maximal canopy interception water decrease 1%. While the row spacing not change and the plant spacing decrease from 30 cm to 25 cm, the average stem flow increase 2% account for water applied above canopy; the average throughfall decrease 3% account for water applied above canopy; the maximal canopy interception water increase 1%.
     3. In the normal planting intensity, 43.8% water irrigated passed through stem and flowed to root zone during maize filling stage; and 47% water as throughfall distribute around the ground surface unevenly. The throghfall water distribution is different in different distance to maize stem and different orientation. The water supplied to land surface accounted for 18.9%、43.5%、66.9%和84.5% of total irrigation water in the distance of 7 cm,15 cm,25 cm and 32.5 cm to maize stem. The throughfall water account for 49.8%, 17.4% and 68.5% of total irrigation water in the leaf orientation,row orientation and vertical row orientation. The sprinkler irrigation uniformity coefficient and distribution uniformity coefficients is 32.9% and 24.3%; and the sprinkler irrigation effective uniformity coefficient is close to 40% in the land surface around each maize plant. Sprinkler water distribution uniformity in land surface is poor.
引文
[1]中华人民共和国水利部.2006年全国水利发展统计公报.北京:中国水利水电出版社,2007,7
    [2]胡毓骐.中国农业科学院代表团访问以色列考察报告[J].灌溉排水,1995,14(1):52-59
    [3]仵峰,宰松梅,李王成.喷灌发展与土地经营模式的思考[J].节水灌溉,2003,(2):16-18
    [4]中国水利年鉴编委会.中国水利年鉴.北京:中国水利水电出版社,2005
    [5] Silva L G, Larry G. Modeling Evaporation and Microclimate Changes in Sprinkler Irrigation:I Model Formation and Calibration. Transaction of ASAE, 1988, 31(5):1481-1486
    [6] Silva L G, Larry G. Modeling Evaporation and Microclimate Changes in Sprinkler Irrigation:II Model Assessment and Application. Transaction of ASAE, 1988, 31(5):1487-1493
    [7] Thompson A L. A Sprinkler Water Droplet Evaporation and Plant Canopy Model:I Model Development. Transaction of ASAE, 1993, 36(3):735-741
    [8] Thompson A L. A Sprinkler Water Droplet Evaporation and Plant Canopy Model:II Model Application. Transaction of ASAE, 1993, 36(3):741-750
    [9]刘海军,龚时宏.喷灌水滴的蒸发研究[J].节水灌溉,2000,2:16-19
    [10] Lamm F R, Manges H L. Partitioning of sprinkler irrigation water by a corn canopy[J]. Trans ASAE, 2000, 43(3):909-918
    [11]王迪,李久生,饶敏杰.玉米冠层对喷灌水量再分配影响的田间试验研究[J].农业工程学报,2006,22(7):43-47
    [12] Kiesselbach T A. Transpiration as a factor in crop production. Univ. Of Nebr. Agric. Exp. Sm. Res. Bul, 1916, 6
    [13] Haynes J L. Ground rainfall under vegetative canopy of crops. Agron. J. 1940, 32:176-184
    [14] Glover J, Gwynne M D. Light rainfall and plant survival in east Africa. L Maize. J. Ecol, 1962, 50: 111-118
    [15] Apostol I, Paltineanu I C. Possibilities of using the neutron method for water application efficiency studies in sprinkler and furrow irrigation. In :Proc. Symp. Isotope and Radiation Techniques in Soil Physics and Irrigation Studies, Vienna, 1974, 477-506
    [16] Quinn N W, Laflen J M. Characteristics of raindrop throughfall under corn canopy[J]. Trans ASAE, 1983, 26(5):1445-1450
    [17] Steiner J L, Kanemasu E T, Clark R N. Spray losses and partitioning of water under a center pivot sprinkler system[J]. Trans ASAE, 1983,26(4):1128-1134
    [18] Armstrong C L, Mitchell J K. A comparison of rainfall distribution under different plant canopies. ASAE Paper 87-2509, St.Joseph, Mich,1987
    [19] Van Wesenbeeck I J, Kachanoski R G. Spatial and temporal distribution of soil water in the tilled layer under a corn[J]. Soil Sci Soc Am J, 1988, 52(2):363-368
    [20] Van Elecwijck I J. Stemflow on maize: A stemflow equation and the influence of rainfallintensity on stemflow amount. SoilTech, 1989, (2):41-48
    [21] Warner G S, Young R A. Prefeerntial flow beneath corn rows. ASAE Paper No.89 -2568, St.Joseph, Mich, 1989
    [22] Parking T B, Codling E E. Rainfall distributions under a corn canopy: implications for managing agrochemicals. A gronomy J, 1990, 82: 1166-1169
    [23] Bui E N, Box J E. Stemflow, rain throughfall and erosion under canopies of corn and sorghum. J.Soil.Sci.Soc.Am, 1992, 56:242-247
    [24] Paltineanu I C, Stair J L. Prefeerntial water flow through corn canopy and soil water dynamics across rows. Soil Sci.Soc.A m.J, 2000,64:44-54
    [25] DeBoer D W, Stange K A, Beck D L. Sprinkler and corn canopy effects on water application characteristics. Jounral of Irrigation and Drainage Engineering, ASCE, 2001, 127 (5):272-276
    [26] Crockford R H, Richardson D P. Partitioning of rainfall in a eucalypt forest and pine plantation in Southeastern Australia:ⅢDetermination of the canopy storage capacity of a dry sclerophyll eucalypt forest. Hydrological Processes,1990,4 :157-167
    [27] Liu S. Estimation of rainfall storage capacity in the canopies of cypress wetlands and slash pine uplands in North-Central Florida. Journal of Hydrology,1998,207:32-41
    [28] Dunkerley D L, Booth T L. Plant canopy interception of rainfall and its significance in a banded landscape. A rid western New South Wales Australia, Water Resources Research, 1999, 35 (5): 1581-1586
    [29] Calder I R, Wright I R .Gamma ray attenuation studies of interception from sitka spruce:some evidence for an additional transport mechanism. Water Resources Research,1986, 22(3): 409-417
    [30] Bouten W, Schaap M Q, Aerts J , Vermetten A W M. Monitoring and modeling canopy water storage amounts in support of atmospheric deposition studies. Journal of Hydrology,1996,181:305-321
    [31]Leyton L ,Reynolds E C R, Thompson F B. Rainfall interception in forest and moorland.In: Int .Symp. Forest Hydrology. Pegamon Press, Oxford,1965,163-178
    [32] Wang Q G, Kang Y H, Liu H J, Liu S P. A method for measurement of canopy interception under sprinkler irrigation. Journal of Irrigation and Drainage Engineering, ASCE, 2004,132:185-187
    [33] Kang Y H, Wang Q G, Liu H J. Winter wheat canopy interception with its influence factors under sprinkler irrigation. Agricultural Water Management, 2005,74:189-199
    [34]王迪,李久生,饶敏杰.喷灌冬小麦冠层截留试验研究[J].中国农业科学,2006,39(9):1859-1864.
    [35] Klaassen W, Bosveld Fred, Water E. Water storage and evaporation as constituents of rainfall interception. Journal of Hydrology, 1998,212-213:36-50
    [36] Shuttleworth W J. Evaporation models in the global water budget[J]. Ibid. 1983,(8):147-171
    [37]欧阳惠.中亚热带树冠截留非线性、非平衡动力学模型及其稳定性的研究[J].农业系统科学与综合研究,1998,14(1):42-44
    [38]仪垂祥.植被截留降水量公式的建立[J].土壤侵蚀与水土保持学报,1996,2(2):47-79
    [39]何东进,洪伟.植被截留降水量公式的改进[J].农业系统科学与综合研究,1999,15(3):200-202
    [40]李王成.喷灌条件下玉米冠层对喷灌水量分布影响的研究[D].中国农业科学院硕士研究生学位论文,2001,47-49
    [41] Seginer L. Net losses in sprinkler irrigation. Agricultural Meteorology,1967,( 4):281-291
    [42] Smajstrla A G, Hanson R S. Evaporation effects on sprinkler irrigation efficiencies. Proc. Soil&Corp Sci.Soc. Florida, 1980,39:28-33
    [43] Paltineanu I C. Experiments in establishing water application efficiency on irrigated field crops. Ph.D.thesis, Agronomic Institute Library, Bucharest, Romania,1975
    [44] Ayars J E, Hutmacher R B, schoneman R A et al.Influence of cotton canopy on sprinkler irrigation[J]. Transactions of the ASAE,1991,34(3):890-896
    [45]李久生,饶敏杰.喷灌均匀系数对土壤水分空间分布及冬小麦产量影响的试验研究[J].水利学报,2000,(1):9-14
    [46]杜尧东,王建,刘作新,等.春小麦田喷灌的水量分布及小气候效应[J].应用生态学报,2001,12(3):398-400
    [47]王庆改,康跃虎,刘海军.冬小麦冠层截留及其消散过程[J].干旱地区农业研究,2005,23(1):3-8
    [48]王迪.喷灌作物冠层截留水量及其消耗机制[D].中国水利水电科学研究院学位论文,2006
    [49] DeVries D A, Birch W J. The modification of climate near the ground by irrigation for pastures on the Riverine Plain. Aust.J. Agr.Res. 1961,12(2): 260-262
    [50] Robison F E. Arid microclimate modification with sprinklers. Agric.Engin, 1970,51:465
    [51] Kohl R A, Wright J L. Air temperature and vapor pressure changes caused by sprinkler irrigation[J]. Agron J, 1974, 66:85-87.
    [52] Westerman P W, Barfield B J, Loewer O J, et al. Evaporative cooling of a partially-wet and transpiring leafⅠ:Computer model and its evaluation using wind tunnel experiments[J]. Trans ASAE, 1976, 76:2-11
    [53]陈志银.桑园喷灌的农业气象效应分析[J].杭州大学学报(自然科学版),1996,23(1):92-98.
    [54]陈鹭巡.龙眼喷灌增产机理及喷灌制度探讨[J].节水灌溉,2002, 3: 4-6
    [55]刘海军,康跃虎,刘士平.喷灌对冬小麦生长环境的调节及其对水分利用效率影响的研究[J].农业工程学报,2003,19(6):46-50
    [56] Kraus J H. Application efficiency of sprinkler irrigation and its effects on microclimate[J]. Transactions of the ASAE, 1966, 9:642-645.
    [57] Wiersma J L. Influence of low rates of water application by sprinklers on the microclimate. Completion Report for Project No. A- 006-SDAK,1970
    [58] Larsson S. Influence of intercepted water on transpiration and evaportion of salix. Agricultural Meteorology, 1981, 23:331-338
    [59] Norman J M, Campbell G. Application of a plant-environment model to problems in irrigation. Advances in Irrigation, Academic Press, New York,1983,(2): 155-188
    [60] Tolk J, Howell T A, Steiner J L, Krieg D R. Role of transpiration suppression by evaporationof intercepted water in improving irrigation efficiency. Irrigation Science,1995, 16:89-95
    [61]杨晓光,陈阜,宫飞,等.喷灌条件下冬小麦生理特性及生态环境特点的试验研究[J].农业工程学报,2000,16(3):35-37
    [62]宫飞,陈阜,杨晓光,等.喷灌对冬小麦水分利用的影响[J].中国农业大学学报,2001 , 6(5):30-34
    [63] Thompson A L, Martine D L, Norman J M, et al. Testing of a water loss distribution model for moving sprinkler system[J]. Trans ASAE, 1997, 40:81-88
    [64] Burgy R H, Pomeroy C R. Interception losses in grassy vegetation. Transactions of American Geophysical Union, 1958,39 (6):1095-1100
    [65] McNaughton K G. Net interception losses during sprinkler irrigation. gricultural Meteorology, 1981,24: 11-27
    [66] Rakhmanov V V. A er the precipitations intercepted by the tree crowns a loss to the forest. Botanicheski ii Zhurnal, 1958, 43: 1630-1633
    [67] McMillan W D, Burgy R H. Interception loss from grass. Journal of Geophysical Research , 1960,65 (8):2389-2394
    [68] Goodell B C. A reappraisal of precipitation interception by plants and attendant water loss. Jounral of Soil and Water Conservation, 1963, 231-234
    [69]王迪,李久生,饶敏杰.基于能量平衡的喷灌作物冠层净截留损失估算[J].农业工程学报,2007,23(8):27-32
    [70]李久生,饶敏杰.冬小麦冠层对喷灌水量分布的影响[J].灌溉排水,1999, (增刊):106-111
    [71]李久生,饶敏杰.喷灌均匀系数对土壤水分空间分布及冬小麦产量影响的试验研究[J].水利学报,2000,(1):9 -14
    [72]李王成,黄修桥,龚时宏,等.玉米冠层对喷灌水量空间分布的影响[J].农业工程学报,2003 ,19(3):59-62
    [73]赵竞成,任晓力.喷灌工程技术[M].北京:中国水利水电出版社,1999
    [74] GBT 50085-2007,喷灌工程技术规范[S]
    [75] Hart W E. Overhead irrigation pattern parameters. Agric Engrg, 1961,42(7): 354-355
    [76] Hart W E. Reynolds W N. Analytical design of sprinkler systems. Trans of the ASAE, 1965, 8(1):83-85
    [77] Seniwongse C, et al. Skewness and kurtosis influence on uniformity coefficient and application to sprinkler irrigation design. Trans of the ASAE, 1972, 15(3):266-272
    [78] Criddle W D, Davis, Sterling, et al. Methods for evaluating irrigation system [M]. USDA Soil Conservation Service Handbook No. 82,1956
    [79]李久生,雷志栋,杨诗秀.喷灌条件下土壤水分空间分布特性研究[J].水科学进展,1998,9(1):7-14
    [80]李久生,饶敏杰.喷灌水量分布均匀性评价指标的试验研究[J].农业工程学报,1999,15(4):25-30
    [81]刘海军,康跃虎,王庆改.作物冠层对喷灌水分分布影响的研究进展[J].干旱地区农业研究,2007,25(2):137-142

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700