地下滴灌管网水力特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高效节水的地下滴灌技术,日益受到国内外的重视,但有关地下滴灌管道、管网的理论还不完善,系统的设计和运行管理多参照地表滴灌进行。本文针对地下滴灌条件下管道和管网的水力特性,采用试验和数学模型相结合的方法,系统地分析了地下滴灌条件下薄壁滴灌带受压变形后的水力特性变化以及对水力设计的影响,研究地下滴灌条件下各种形式管网之间的水力关系,为地下滴灌系统的设计及运行管理提供理论依据。
     通过对薄壁滴灌带压缩试验和对树状、环状管网的水力特性的研究,得到以下结论:
     1、地下滴灌条件下薄壁滴灌带的压缩
     对于埋藏于地下的薄壁滴灌带,土壤压实会造成滴灌带横截面变形。同种压力下,滴灌带压缩程度越大,滴头平均流量减少的越多;同种压缩度(压缩量/未压缩滴灌带直径)下,滴灌带入口压力越大,滴头流量减少的越多。压缩度在50%以下的轻度变形时,对入口流量影响较小。滴灌带横截面的变形影响毛管的水力设计长度,预先估计滴灌带压缩程度,修正系数α和流量指数m的值,根据水力计算适当减小毛管设计长度,另外根据滴头平均流量的减少适当延长灌溉时间。
     2、管网中支管压力分布
     试验中三种管网(树状管网、单冲洗管管网、双冲洗管管网)中支管压力分布均相同,随首部压力增大而增大,压力曲线呈指数分布;采用补偿式滴头的管网压力分布略有不同,其中树状管网中支管压力达到一定数值后不再随首部压力增大而增大,而是稳定在一定数值范围内,而两种环状管网中支管压力没有体现出压力稳定情况;所有管网中支管入口压力-流量关系均可用多项式表示。
     3、树状管网和环状管网毛管水力性能的关系
     非补偿式管网中,相同首部压力下各毛管入口压力环状管网要略高于树状管网;三种管网毛管入口流量变化趋势一致,差异较小,变幅约为7%;环状管网滴头流量均匀性好于树状管网,在工作压力为低压时尤为明显。补偿式管网中,相同首部压力下各毛管入口压力环状管网明显低于树状管网;三种管网毛管入口流量变化趋势近似于压力变化,环状管网均低于树状管网,随着首部压力升高,三种管网流量相近,树状管网体现出压力补偿的作用,在测试压力范围内,环状管网压力补偿作用不明显。可见,在相同首部压力下,环状管网压力补偿作用滞后于树状管网;对毛管入口流量变化率分析,管网中毛管入口流量均匀性环状管网好于树状管网。
     4、地下滴灌管网优化
     根据地下滴灌环状管网的水力特性,建立地下滴灌管网优化计算模型,采用节点水压法对模型进行计算。与实测结果对比,模型有效可行。运用模型,对地下滴灌条件下环状管网的优化设计进行模拟计算,修正毛管设计长度,可供参考。
Subsurface drip irrigation (SDI).which has more effective in water-saving, has been paid more attention by researchers all over the world. But the study on the hydraulic of pipe networks in SDI is still faultiness. Field experiments and mathematical model combined to analyze hydraulic effects of compression deformation of subsurface drip-tapes. And the hydraulic relations among kinds of pipeline networks were studied in this paper. The experimental and analytical results indicated:
    1. Hydraulic considerations for compressed subsurface drip-tape
    Reduction in average emitter flow rate corresponds to the degree of drip-tape deformation, resulting from soil compaction, and to the inlet flow rate. The effects of less 50% compression on inlet flow are less critical. The recommended maximum lateral length should be reduced based on corrected coefficient a, in ,and times of irrigation lengthened, according to the degree of anticipated compression of the drip-tape.
    2. Pressure distributing in the submain
    Pressure distributing in the submain of such three pipe networks, branched networks, single flushline looped networks and double flushline looped networks are the same. Increase in pressure in the submain corresponds to the increase in the main. The pressure curve is exponential. In the pipe networks which used compensated emitters, as pressure increasing in the main, the pressure in the branched networks tends to a jarless range. Whereas the pressure in the other two looped networks differ from it. The equation relations between inlet flow and pressure in the submain of all the pipe networks are multinomial.
    3. Hydraulic relations between the looped networks and the branched networks
    In the pipe networks which used noncompensated emitters, the inlet pressure in capillaries in the looped networks are higher than those in the branched networks. The inlet flow in capillaries in the three pipe networks are approximately identical, the diversifications of flux are in 7%. About uniformity, emitter's discharge in the looped networks are better than those in the branched networks. And it is obviously under the low work pressure. In the pipe networks which used compensated emitters, the inlet pressure in capillaries in the looped networks are lower than those in the branched networks. The inlet flow distributing in capillaries in the three pipe networks are similar to the pressure. In the tested pressures, the branched networks showed the pressure compensate function, whereas the function of the looped networks is lagged behind the branched. The uniformity on the capillaries inlet flow, the looped networks are better than the branched.
    4. The optimal design of pipe networks in SDI
    Based on above experiments, a method of the numerical simulation for optimal designing pipe networks in SDI is presented. And it is solved with node hydraulic pressure procedure. Results showed that it is viable and feasible. With the model combing corrected coefficient a, m,the optimal design of looped networks in SDI was simulated, and to provide a reference for designing and running a SDI system.
引文
1.程先军.许迪,张昊,地下滴灌技术发展及应用现状综述.节水灌溉,1999,4:13~15
    2.冯素珍,低水头滴灌系统的研究.内蒙古农业大学学报,1999,20(4):31~35
    3.龚时宏.灌溉管网压力动态调节理论及应用研究:【博士学位论文】.陕西;西北农林科技大学,1997
    4.龚时宏,丘陵区管网压力分布特征数值模拟的研究.灌溉排水,1996,2:30~36
    5.灌溉管网的设计和最优化,粮农组织灌溉和排水文集44.北京,中国农业科技出版社,1992.
    6.黄修桥,高峰,王宪杰,节水灌溉与21世纪水资源的持续利用.灌溉排水,1999,20(3):1~5
    7.黄兴法,李光永,地下滴灌技术的研究现状与发展.农业工程学报,2002,18(2):176~179
    8.康跃虎,微灌系统水力学解析和设计.陕西科学技术山版社,1999,4
    9.李光永,世界微灌发展态势.北京:第8次微灌会议,2001,1
    10.刘德有等,复杂给水管网恒定流计算新方法—特征线法.中国给水排水,10(3):19~24
    11.吕谋超等,地表、地下滴灌土壤水分室内试验研究.灌溉排水,1996,(1)
    12.马孝义,康绍忠等,果树地下滴灌技术田间试验研究.西北农业大学学报,2000,28(1):57~60
    13.钱正英,张光斗,中国可持续发展水资源战略研究综合报告及各专题报告【M】.北京:中国水利水电出版社,2001
    14.全国灌溉发展“十五”计划及2010年规划【R】.北京,中华人民共和国水利部,2000
    15.石玉林.卢良恕.中国农业需水与节水农业高效农业建设【M】.北京:中国水利水电出版社.2001
    16.石继,张丰周,魏永曜,图论法用于供水管网水力计算的研究.水利学报,1999,2
    17.水力学【M】.西南交通大学水力学教研室,北京:高等教育出版社,1991
    18.唐朝春,多水源多控制点环状管网技术经济计算分析.华东交通大学学报,2001.9(18):93~95
    19.王金如,等比降法和平均水头法及其在微灌水力设计中的应用研究.河北省水利科学研究所,1997,2
    20.王金如,微灌支管系统水力设计方法的商榷与建议.喷灌技术,1994,2
    21.王金如,均匀坡下微灌支管系统允许压力偏差分配比例的数值解法.喷灌技术,1995,2
    22.王伟,李光永,段中锁,低水头滴灌系统研究.节水灌溉,2000,3:36~39
    23.王新坤,程冬玲,林性粹,枚举法与动态规划法结合优化田间管网.干旱地区农业研究,
    
    ZUUI,19(2):61~66
    24.王新坤,程冬玲,林性粹,单井滴灌干管管网的优化设计.农业工程学报,2001,17(3):41~44
    25.魏秀菊,微灌田间管网优化设计:【硕士学位论文】.北京;中国农业科学院,1990
    26.仵峰,地下滴灌条件下灌水器水力特性研究:【硕士学位论文】.北京;中国农业科学院,2002
    27.“十五”国家重大科技专项可行性论证报告:现代节水农业技术体系及新产品研究与开发【R】.中华人民共和国科学技术部,北京,2002
    28.许仕荣,邱振华,给水管网的计算理论与电算应用.湖南大学出版社,1997
    29.严熙世,赵洪宾,给水管网理论和计算.中国建筑工业出版社,1986
    30.杨开林,管网恒定流动和瞬变流动数值模型的研究.水利水电工程青年学术论文集,中国科学技术出版社,1992,11:127~134
    31.张丰周,图论及广义简约梯度法在给水管网优化设计中的应用【学术论文】.武汉:武汉水利电力大学,1998
    32.张国祥等,对运城地区地下滴灌工程建设中若干技术问题的参考意见.微灌信息,1995(3)
    33.张国祥,微灌水力设计计算方法研究.1989
    34.张昊,许迪,程先军,王桂芬,几种地下滴灌(渗灌)灌水器性能的室内外试验研究.灌溉排水,1999(3)
    35.张新平,林性粹,正交表优化管网布置的原理.上海农学院学报,1993,12(1):20~24
    36.赵竞成,王彦军。井灌区管网优化计算模型的改进.水利学报,1999,3
    37.赵运德,用广义简约梯度法求管网经济管径.水利学报,1999,6
    38.周荣敏,雷延峰,不同灌溉工作制度下的灌溉管网优化设计研究.西北水资源与水工程,2002,13(2):1~5
    39.傅琳,董文楚,郑耀泉等,微灌工程技术指南.水利水电出版社,1987
    40. Bralts, V. F., S. F. Kelly, W. H. Shayya, and L. J. Segerlind, Finite element analysis of microirrigation hydraulics using a virtual emitter system. Transactions of the ASAE 1993, 36(3): 717~725
    41. David J. Hills, Yuping Gu. Hydraullic considerations for compressed subsurface drip-tape. ASAE, 1989, 32 (4): 1197~1201
    42. Freddie R. Lamm, Danny H. Rogers, William E. Spurgeon, Design and management consideration for subsurface drip irrigation systems, http://www. oznet. ksu. edu/sdi/
    43. Gellespie, V. A., Phillips, A. L., and Wu, I. P. Drip irrigation design equations. Journals of irrigation drainage div. ASCE 1979, 105(3): 247~257
    44. Haghighi, K., V. F. Bralts and L. J. Segerlind. Finite element formulation of tee and bend components in hydraulic pipe network analysis. Transactions of the ASAE 1988, 31(6): 1750~1758
    
    
    45. Hall, B. J. Row crop drip irrigaion development with drip tape. ICID Bulletin, 1985, 34(2):56~57
    46. Hathoot, H. M., A. I. Al-Amoud, and F. S. Mohammad. Analysis and design of trickle-irrigation laterals. Journal of Irrigation and Drainage Engineering, ASCE 1993, 119(5): 7564767
    47. Hathoot, H. M., Al-Amoud, A. I., and Mohammad, F. S. Analysis of a pipe with uniform lateral flow. Alexandria Engrg. J., Alexandria, Egypt, 1991. 30(1), C49-C54
    48. Howell, T. A. andE. A. Hiler. Trickle irrigation lateral design. Transactions of the ASAE, 1974. 17(5): 902~908
    49. Howell, T. A., and E. A. Hiler. Design trickle irrigation laterals for uniformity. Journal of the irrigation and drainage division. ASCE 1974. 100(IR4): 442~453
    50. Y. Kang, S. Nishiyama Analysis of microirrigation systems using a lateral discharge equation. Transactions of the ASAE, 1996, 39 (3): 921~929
    51. Karmeli, D. Classification and flow regime analysis of drippers. Journal of agricultural engineering research 1977. 22:165~173
    52. Keller, J. and R. D. Karmeli. Trickle irrigation design parameters. Transactions of the ASAE 1974. 17(4): 678~684
    53.[美]J. Keller, D. Karmeli 著.罗远培译,滴灌设计.水利出版社,1980
    54. Ken Solomon and Jack Keller, F. Trickle irrigation uniformity and efficiency. Journal of the Irrigation and drainage division. 1978(IR3): 293~307
    55. Khatri, K. C., Wu, I. P., Gitlin, H. M., and Phillips, A. L. Hydraulics of microtube emitters. Journals of irrigation drainage div. ASCE 1979. 105(2): 163~173
    56. Luis Juana; Alberto Losada etc. Analytical relationships for designing rectangular drip irrigation units. ASCE, 2004, 1, 47~59
    57. Mitchell, W. h. and H. D. Tilmon, Underground trickle irrigation:The best system for small farms. Crops Soils, 1982. 34:9~13
    58. Mohtar, R. H., V. F. Bralts and W. H. Shayya. A finite element model for the analysis and optimization of pipe networks. Transactions of the ASAE 1991. 34(2): 393~01
    59. Myers, L. E. and Bucks D. A. Uniform irrigation with low-pressure trickle systems. Journal of the Irrigation and Drainage Division, Proc. of the ASCE 1972. 98(IR3): 341~346
    60. Numan Mizyed, E. Gordon Kruse. Emitter discharge evaluation of subsurface trickle irrigation systems. Transactions of the ASAE 1989. 32(4): 1223~1228
    61. Phene, C. J. and Beale, o. w., High-frequency irrigation for water nutrient management in humid regions. Soil Scl. Am. J, 1976. 40 (3): 430~436
    62. A. F. Povoa, D. J. Hills. Sensitivity of microirrigation system pressure to emitter plugging and lateral line perforations. Transactions of the ASAE 1994,
    
    37(3): 793~799
    63. Sadler, E. J., C. R. Camp, and W. J. Busscher, Emitter flow rate changes causec by excavating subsurface microirrigation tubing. In Proc. 5thInt' 1 Microirrigation Congress, ed. F. R. Lamm, 1995, 763~768, St, Joseph, Mich:ASAE
    64. Saldivia, L. a., V. F. Bralts, W. n. Shayya and L. J. Segerlind. Hydraulic analysis of sprinkler irrigation system components using the finite element method. Transactions of the ASAE 1990. 33(4): 1195~1202
    65. Shani, S. Xue, R.. Gordin-Katz, and A. W. Warrick. Soil-limiting flow from subsurface emitters. Ⅰ Pressure measurements. Jour. of Irri. and Drai. Engi, 1996 9/10, 291~295
    66. Vincent. F. Bralts, I-Pal Wu. Harris M. Gitlin. Drip irrigation uniformity considering emitter plugging. Transactions of the ASAE, 1981, 24 (5): 1234~1240
    67. A. W. Warrick and U. Shani Soil-limiting flow from subsurface emitters. ⅡEffect on uniformity. Jour. of Irri. and Drai. Engi, 1996, 9/10, 291~300
    68. Wu, I. P. and H. M. Gitlin, Hydraulics and uniformity for drip irrigation. Journal of the Irrigation and Drain Division. ASCE, 1973, IR2; 157~168
    69. Wu. I. P. and H. M. Gitlin. Design of drip irrigation lines. Technical Bulletion of the University of Hawaii 1974a. 96:3~29
    70. Wu. I. P. and H. M. Gitlin. Drip irrigation design based on uniformity. Transactions of the ASAE 1974b. 17(4): 429~432
    71. I. P. Wu, R. Yue. Drip lateral design using energy gradient line approach. Transactions of the ASAE, 1993, 36 (2): 389~394
    72. Wu, I. P. Engergy gradient line approach for direct hydraulic calculation in drip irrigation design. Irrigaion Sci. 1992, 13:21~38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700