GDI汽油机乙醇汽油闪急沸腾喷雾研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃用乙醇汽油的缸内直喷式(GDI)汽油机在燃油经济性以及降低CO2, NOX排放上有很大的优势,是未来乘用车发动机的主要型式,是我国节能减排需要发展的技术之一。GDI汽油机多使用高压共轨系统和多孔喷油器,在喷雾过程中会遇到空化和闪急沸腾现象。喷雾好坏直接影响燃烧过程进而决定发动机的性能。闪急沸腾和空化一方面会造成燃油计量不准确、喷雾结构发生变化,另一方面会增加扰动促进雾化。闪蒸沸腾喷雾具有雾化快、液滴小、蒸发快、贯穿距离短的优点。为了合理利用空化和闪急沸腾促进雾化的优点,需要研究空化和闪急沸腾的发生条件、发展规律及对雾化的影响。
     选用泡点作为燃油闪急沸腾的判断依据。建立了基于离散组分的乙醇汽油燃料模型。采用Peng-Robinson物性方程对乙醇汽油的气液平衡过程进行计算,研究了不同乙醇含量对燃料泡点/露点曲线的影响。结果表明:较低的乙醇含量明显拓宽了燃油的两相区域范围,在低乙醇含量条件下随着乙醇含量的增加两相区范围变大;而在高乙醇含量条件下,随着乙醇含量的增加,两相区变窄,P-T曲线更狭长;采用泡点曲线预测闪急沸腾现象更为准确合理,同时较低的燃烧室压力或者较高的燃油温度会促进闪急沸腾的发生。
     采用双流体法,对高压喷射条件下GDI多孔喷油器喷嘴内部流动进行三维数值模拟,分析和总结了GDI多孔喷油器发生空化流动的条件和发展规律。结果表明:在喷孔入口转角处以及针阀开启或关闭时针阀与阀座壁面缝隙处均有空化现象发生;喷孔入口转角处的空化气泡逐渐向下游发展,可发生部分空化及超空化流动;针阀缝隙处的空化气泡不向下游发展,在针阀完全打开或关闭时消失;喷嘴内部流动形态受燃油性质及喷嘴几何结构影响较大,在针阀保持最大升程时,喷孔内仍观察到不稳定的空化流动;空化流动造成喷嘴各孔流量、速度产生差异,影响喷雾雾化过程,是设计和喷雾模拟时必须要考虑的因素。
     在可视化定容室喷雾试验台上开展了GDI多孔喷油器使用乙醇汽油的喷雾特性试验研究。结果表明:环境压力对贯穿距的影响最大,喷射压力次之,环境温度对贯穿距的影响最小;环境温度与环境压力对油滴索特平均直径的影响较大;喷雾贯穿距随喷射压力增加而增加,随环境压力增加而减小,随环境温度变化不明显;喷雾锥角随环境压力升高而增大,但基本不受喷射压力及环境温度的影响;油滴索特平均直径随喷射压力及环境温度升高而降低,随环境压力升高而升高。
     在可视化定容弹喷雾试验台上,采用纹影法研究了不同燃油温度及不同环境压力条件下闪急沸腾喷雾发展过程。试验发现与传统喷雾相比,闪急沸腾喷雾贯穿距较短、喷雾锥角较大。在某些喷射条件下,喷雾的外缘发现了气泡聚集发展的迹象。在雾束的某些部位发现了泡状的亮斑。气泡的聚集发展会使相应区域的“膨胀”“隆起”或者“塌陷”。气泡的这种行为使得喷雾边缘更不规则,并促进了燃油的雾化。相同环境压力条件下喷雾贯穿距随温度增加先减小后增加,喷雾锥角随温度增加先增加后略有减小。闪急沸腾喷雾在高过热度条件下存在转变过程。
     为模拟闪急沸腾喷雾现象,提出了基于空隙率和过热度共同控制的闪急沸腾雾化新模型和基于双区法的蒸发模型,并编写相关程序在KIVA软件中实现了模型功能。模拟结果表明,闪急沸腾喷雾新模型较好的预测了喷雾贯穿距及喷雾锥角及其发展趋势,喷雾图像与实验结果吻合较好。该模型对中低过热度条件下空隙率控制的闪急沸腾喷雾以及高过热度闪急沸腾喷雾过渡过程有较好的模拟能力,同时可以在一定程度上预测更高过热度条件下的闪急沸腾转变过程。
Gasoline direct injection (GDI) engines fueled with ethanol gasoline blends which is a main type of future gasoline engines, have a great advantage in fuel economy and reducing CO2, NOx emissions and will be an important technology support for our energy conservation policy. Since multi-hole injector with high-pressure common rail system being widely used in GDI engines, cavitation flow and flash boiling spray emerge more often during the convention injections. The spray quality of GDI engines determines the combustion process directly and therefore affects the engine performance. Flash boiling spray and cavitation flow will cause inaccurate fuel metering and spray structural changes on the one hand, and promote the atomization by increasing disturbance on the other hand. Comparing with convention injection flash injection, which has smaller droplets and shorter penetration distance, atomize and evaporate faster. In order to use these advantages, more understandings about the occurrence of conditions and the law of development of cavitation and flash boiling atomization is required.
     The bubble point is selected to predict flash boiling phenomenon of ethanol-gasoline. A new fuel model based on discrete components is created to study the component effects on the bubble point/dew point curves and the evolution of the two-phase region, using Peng-Robinson state equation to calculate the vapor-liquid equilibrium. It shows that the two-phase region is significantly broaden with low ethanol content and increases while ethanol content rises. However two-phase region and the PT curves become narrower when ethanol content increased in high content conditions. The prediction using bubble point curve is more accurate and reasonable, while the lower combustion chamber pressure or high fuel temperature will promote the occurrence of flash boiling.
     Three-dimensional simulation of internal nozzle flow in GDI multi-hole injector during high-pressure injection conditions is carried out using two-fluid method to analyze the details about cavitation flows in nozzle. The criterion and characteristic pattern of cavitation flow are summarized. The results show that cavitation often occurs at the inlet corner as well as the gap between needle and valve seat. Cavitation bubbles at inlet corner gradually developed towards the downstream, while partial cavitation or super-cavitation flow formed accordingly. Cavitation bubbles around needle valve gap won't develop towards downstream and will disappear when the needle is fully open or close. Partial cavitation can still be observed even when at maximum needle lift. The internal flow patterns are influenced by nozzle structure and fuel properties. Differences of flow rate and velocity between each hole caused by cavitation will affect the spray atomization process, which must be considered during the design.
     Experiments on spray characteristics of GDI multi-hole injector fueled with ethanol gasoline are carried out on constant volume chamber (CVC) test rig. Results show that ambient pressure is the greatest impact on spray penetrations followed by injection pressure and ambient temperature. Suater mean diameter (SMD) of droplets is mainly influence by ambient pressure and temperature. Spray penetration increases with inject pressure increases and decreases with ambient pressure arise, but slight changes with ambient temperature. Spray cone angle increases with ambient pressure increases, but no changes with inject pressure or ambient temperature. SMD decreases with inject pressure or ambient temperature increase, while increases with ambient pressure increases.
     Schlieren shadowgraph method was adopted on CVC test rig. Experiments were carried out to study flash spray development under different fuel temperature and ambient pressure conditions. Results show that penetrations of flashing sprays were shorter and the spray angle was larger than traditional sprays. Bubble dynamic development, which will cause spay 'expansion' or 'collapse', were found on spray edge in some conditions. Bubble dynamic makes the spray edge more irregular, but promotes atomization. Under the same environment pressure, penetration first increased then decreased with the increasing of temperature, while the spray angle first increased then decreased slightly, implicating that flash boiling may have transition conditions.
     A new flash boiling spray model whose atomization criterion based on the void fraction and superheat as well as evaporation model based on the dual-zone method is established to simulate the flashing sprays. The model function is coded and implemented in KIVA program. The new flash boiling spray model predicts spray tip penetration and spray cone angle and its development trend, in good agreement with the experimental results. The model has a good capability in simulating flash sprays at low superheat conditions, which breakup is controlled by void fraction, as well as high superheat transition process. It can also predict flare flashing sprays to some extent at higher superheat conditions.
引文
[1].蔡博峰.中国城市温室气体清单研究[J].中国人口.资源与环境,2012(1):21-27
    [2]. Guenther A, Zimmerman P R, Harley P C. Isoprene and monoterpene emission rate variability:Model evaluations and sensitivity analyses[J]. Journal of Geophysical Research,1993,98:12609-12617-
    [3].苏万华,赵华,王建昕等.均质压燃低温燃烧发动机理论与技术[M].北京:科学出版社,2010
    [4].中国汽车产销量连续四年全球第一http://news.xinhuanet.com/fortune/2013-01/12/c_124222079.htm
    [5].蒋德明,陈长佑,杨嘉林等.高等车用内燃机原理[M].西安:西安交通大学出版社,2006
    [6].环保部公布实施国四标准时间表, http://www.zhb.gov.cn/
    [7].王建听,王志.高效清洁车用汽油机燃烧的研究进展[J].汽车安全与节能学报,2010(3):167-178.
    [8]. Yajima J. year book-gasoline Engine [J].Journal of JSAE,2009,63(8):93-99.
    [9]. Zhao F Q, Harrington D L, Lai M C. Automotive spark-ignited direct-injection gasoline engines [J].Progress in Energy and Combustion Science,1999,25: 437-562
    [10]. Spicher U, Reissing J, Kech J M, et al. Gasoline Direct Injection (GDI) Engines Development Potentialities[C].SAE Transactions,1999, SAE1999-01-2938.
    [11]. Ando, H., Noma, K., Iida, K., Nakayama, O. et al. Mitsubishi Gdi Engine-Strategies to Meet the European Requirements[C]. SAE Transactions,1997, SAE1997-29-0017
    [12]. Yamamoto, S., Tanada, H., Hirako, O., and Ando, H. Analysis of the Characteristics of the Spray for Gdi Engine[C]. SAE Transactions,1997, SAE978083,
    [13]. Queiroz, C. and Tomanik, E. Gasoline Direct Injection Engines-A Bibliographical Review[C]. SAE Transactions,1997, SAE9731131.
    [14].杨世春,李君,李德刚.缸内直喷汽油机技术发展趋势分析[J].车用发动机,2007(5):8-13.
    [15].江俊锋,张建昭.新型汽油机缸内直喷燃烧系统的研究[J].汽车技术,2003(2):15-19.
    [16]. Andriesse, D. and Ferrari, A. Assessment of Stoichiometric Gdi Engine Technology[C]. SAE Transactions,1997, SAE 1997-29-0006.
    [17].王建昕.高效车用汽油机的技术进步.内燃机学报[J].2008:83-89.
    [18].孙勇,王燕军,王建昕等.缸内直喷式汽油机的研究进展及技术难点.内燃机[J],2002(1):6-10.
    [19]. Xu M,Markle LE. CFD-aided Development of Spray for an Outwardly Opening Direct Injection Gasoline[C]. SAE Transactions,1998, SAE980493.
    [20]. Kume T,Iwamoto Y,Iida K,et al. Combustion Control Technologies for Direct Injection SI Engine[C]. SAE Transactions,1996, SAE960600.
    [21]. N Mitroglou, J M Nouri, M Gavaises, et al. Spray Characteristics of a Multi-hole Injector for Direct-Injection Gasoline Engines[J]. International Journal of Engine Research,2006,7:255-270.
    [22]. Edward S. S Christopher J. R, Numerical Study of Fuel/Air Mixture Preparation in a GDI Engine[C]. SAE Transactions,1999, SAE1999-01-3657.
    [23]. Kun T, Bryan D. Q, James V. Z et al. Fuel Volatility Effects on Mixture Preparation and Performance in a GDI Engine During Cold Start[C]. SAE Transactions 2001, SAE2001-01-3650.
    [24]. Tajima, H., Nakashima, M., Sawada, M., et al., Visual Study Focused on the Combustion Problem in Gasoline Direct Injection Engine[C]. SAE Transactions, 2003, SAE2003-32-0014.
    [25]. Wigley G., Goodwin, M., Pitcher, G. Temporal Analysis of the Fuel Breakup and Atomisation in the Near Nozzle Region of a GDI Injector[C]. SAE Transactions, 2003, SAE2003-01-1800.
    [26]. Park S H, Kim H J, Suh H K, et al. Atomization and spray characteristics of bioethanol and bioethanol blended gasoline fuel injected through a direct injection gasoline injector[J]. International Journal of Heat and Fluid Flow,2009 30(6): 1183-1192
    [27]. Seo J., Kim H., Bae J., et al. Numerical Studies on the Combustion and Liquid Fuel Films Characteristics with the Dependence on Injection and Spark Timing of GDI Engine[C]. SAE Transactions,2011, SAE2011-28-0060.
    [28]. Zhan R., Eakle, S., Weber P. Simultaneous Reduction of PM, HC, CO and NOx Emissions from a GDI Engine[C]. SAE Transactions,2010, SAE2010-01-0365.
    [29]. Kulzer A., Hathout, J., Sauer, C., et al. Multi-Mode Combustion Strategies with CAI for a GDI Engine[C]. SAE Transactions,2007, SAE2007-01-0214.
    [30]. Costa M., Allocca L. Montanaro A., et al., Multiple Injection in a Mixed Mode GDI Boosted Engine[C]. SAE Transactions,2010, SAE2010-01-1496.
    [31]. Grimaldi F., Gervais D., Marchal, A., et al. Single-cylinder Experiments for Downsizing-Oriented SI Concepts:GDI and VVL Thermodynamic Comparison[C]. SAE Transactions,2007, SAE2007-24-0013.
    [32].孙勇,帅石金.王建昕.汽油缸内喷射喷雾特性的三维数值模拟[J].内燃机学报,2002.20(3):193-199.
    [33].汪淼,王建昕,沈义涛等.汽油喷雾碰壁和油膜形成的可视化试验与数值模拟[J].车用发动机,2006(6):24-28
    [34].白云龙,王志,帅石金等.缸内直喷汽油机喷雾、混合气形成和燃烧过程的三维数值模拟[J].燃烧学与技术,2010,16(2):97-103
    [35].雷小呼,王燕军,王建听等.缸内直喷汽油机燃烧控制策略及实现[J].内燃机工程,2004,25(3):4-7
    [36].王燕军.基于两次喷射的汽油缸内直喷式燃烧系统的研究[D].北京:清华大学,2004
    [37].白云龙,王志,王建昕等.分层当量比混合气抑制缸内直喷汽油机爆震的模拟[J].内燃机学报,2010 28(5):393-398
    [38].王志,王建昕,帅石金等.火花点火对缸内直喷汽油机HCCI燃烧的影响[J].内燃机学报,2005,23(2):105-112
    [39].田江平.点火室式直喷汽油机燃烧系统及其喷雾特性研究[D].大连:大连理工大学,2009
    [40].韩立伟.缸内直喷汽油机应用起动—停止技术的研究[D].长春:吉林大学,2010
    [41].李明.直喷汽油机稀薄燃烧与氮氧化物排放控制研究[D].天津:天津大学,2010
    [42].蒋德明,黄佐华.内燃机替代燃料燃烧学[M].西安:西安交通大学出版社,2007
    [43].刘瑾,邬建国.生物燃料的发展现状与前景[J].生态学报,2008(4):1339-1353.
    [44].高建业,孙明,曹友宝等.全球燃料乙醇应用发展趋势[J].煤气与热力,2009(3):20-22.
    [45].李艳君.世界燃料乙醇新发展及其对中国的启示[J].国际经济合作,2008(2):28-34.
    [46].王莹.我国推广车用乙醇汽油现状及相关对策[J].国际石油经济,2005,13(5):48-50,55
    [47].李鸥,张莉.国内车用乙醇汽油的应用现状及尾气治理效果分析[J].交通标准化,2010(122):203-205
    [48].吴伟光,仇焕广,黄季焜.全球生物乙醇发展现状、可能影响与我国的对策分析.中国软科学,2009(3):23-29,38
    [49]. Anderson J., Leone T., Shelby, M., et al. Octane Numbers of thanol-Gasoline Blends:Measurements and Novel Estimation Method from Molar Composition[C]. SAE Transactions,2012, SAE2012-01-1274.
    [50]. Stein, R., Polovina, D., Roth, K., et al. Effect of Heat of Vaporization, Chemical Octane, and Sensitivity on Knock Limit for Ethanol-Gasoline Blends [J]. SAE Int. J. Fuels Lubr,2012,5(2):823-843.
    [51]. Kar, K., Last, T., Haywood, C., et al. Measurement of Vapor Pressures and Enthalpies of Vaporization of Gasoline and Ethanol Blends and Their Effects on Mixture Preparation in an SI Engine[J]. SAE Int. J. Fuels Lubr.2009,1(1):132-144.
    [52]. Boons, M., Van Den Bulk, R., King, T. The Impact of E85 Use on Lubricant Performance[C]. SAE Transactions,2008, SAE2008-01-1763.
    [53]. Chato, M., Fukuda, S., Sato, K. et al. Fuel Spray Evaporation and Mixture Formation Processes of Ethanol/Gasoline Blend Injected by Hole-Type Nozzle for DISI Engine[C]. SAE Transactions,2012, SAE2012-32-0018.
    [54]. Kumar A., Khatri D., Babu M. An Investigation of Potential and Challenges with Higher Ethanol-gasoline Blend on a Single Cylinder Spark Ignition Research Engine[C]. SAE Transactions,2009, SAE2009-01-0137.
    [55]. Boretti A. Analysis of Design of Pure Ethanol Engines[C]. SAE Transactions, 2010, SAE2010-01-1453.
    [56]. Kumar, A., Khatri, D., Babu, M. Experimental Investigations on the Performance, Combustion and Emission Characteristics of alcohol blended gasoline in a Fuel Injected Spark Ignition Engine[C]. SAE Transactions,2008, SAE2008-28-0068.
    [57]. Storey, J., Barone, T., Thomas, J., and Huff, S. Exhaust Particle Characterization for Lean and Stoichiometric DI Vehicles Operating on Ethanol-Gasoline Blends[C]. SAE Transactions,2012, SAE2012-01-0437.
    [58].李晓娟,宋崇林,郭振鹏等.乙醇/汽油的理化特性及其对电控汽油机性能的影响.农业机械学报[J],2006(11):177-179.
    [59].朱斌,许敏,张玉银等.乙醇汽油喷雾特性研究及低压直喷喷嘴优化[J].车用发动机[J],2011(1):79-84.
    [60].刘圣华,魏衍举,吕胜春等.乙醇汽油发动机排放特性研究[J].西安交通大学学报,2006(7):745-747,775.
    [61].何邦全,王建听,郝吉明等.乙醇-汽油燃料电喷汽油机的排放及催化性能[J].内燃机学报,2002(6):529-533.
    [62].郭瑞莲,鲍晓峰,岳欣等.车用乙醇汽油对发动机进气系统沉积物的影响[J].汽车 工程,2007(8):,642-644,691.
    [63].高俊华,高海洋.从蒸发排放物的成分分析乙醇汽油蒸发排放特性[J].汽车技术,2006(11):17-19.
    [64]. Oza RD, Sinnamon J.F. An Expe rimental and Analytical Study of Flash-Boiling Fuel Injection[C]. SAE Transactions,1983, SAE830590.
    [65]. Blander M, Katz J.L. Bubble nucleation in liquids[J]. AIChE Journal 1975 21 (5):833-48.;
    [66]. Buros O.K. The ABCs of desalting. Tech. Rep[M]. International Desalination Association; Topesfield, Massachusetts, USA; 2000
    [67]. Woods A, Bloom F, Orloff D. Modeling of flash evaporation I:Formulation of the mathematical model [J]. Mathematical and Computer Modelling, 2000;32(10):1153-69.
    [68]. Sebastian P, Nadeau JP. Experiments and modeling of falling jet flash evaporators for vintage treatment[J]. International Journal of Thermal Sciences 2002;41(3):269-80.
    [69]. Desideri U, Bidini G. Study of possible optimisation criteria for geothermal power plants[J]. Energy Conversion and Management,1997;38(15-17):1681-91.
    [70]. Richter H. Separated two-phase flow model:application to critical two phase flow[J]. International Journal of Multiphase Flow,1983;9(5):511-30.
    [71]. Kim YK, Twai N, Suto H, Tsuruga T. Improvement of alcohol engine performance by flashing injection. JSAE Review 1980;2:81-6.
    [72]. Lee J., Madabhushi R., Fotache C. et al. Flashing flow of superheated jet fuel[J], Proceedings of Combustion Institute 2009,32:3215-3222
    [73]. Kawano D., Senda J., Wada Y., Fujimoto H. Fuel design concept for low emission in engine systems 4th report:effect of spray characteristics of mixed fuel on exhaust concentrations in diesel engine[C]. SAE Transactions,2003, SAE2003-01-1038.
    [74]. R.D. Reitz. A photographic study of fl ash-boiling atomization[J]. Aerosol Science and Technology,1990 (12):561-569.
    [75]. Skripov VP. Metastable liquids[M]. New York:Wiley; 1974.
    [76]. Oxtoby DW. Homogeneous nucleation-theory and experiment J]. Journal of Physics:Condensed Matter,1992;4(38):7627-50.
    [77]. Rayleigh L. On the pressure developed in a liquid during the collapse of a spherical cavity[J]. Philos Mag,1917;34:94-8.
    [78]. Brennen CE. Cavitation and bubble dynamics[D]. Oxford:Oxford University Press; 1995
    [79]. Lee HS, Merte Jr H. Spherical vapor bubble growth in uniformly superheated liquids[J]. International Journal of Heat and Muss Transfer 1996;39(12):2427-47.
    [80]. Dar-Lon Chang, Chia-Fon F. Lee. Development of a simplified bubble growth model for flash boiling sprays in direct injection spark ignition engines[J]. Proceedings of the Combustion Institute,30 (2005) 2737-2744
    [81]. Licnhard, H., and Day J. B. The breakup of superheated liquid jets[J]. ASME Journal of Basic Engineering,1970:515-522.
    [82]. Oza, R. D., and Sinnamon J. F. An experimental and analytical study of flash-boiling fuel injection[C]. SAE Transactions,1983, SAE830590.
    [83]. Senda, J., Hojyo Y., Fujimoto H. Modeling on atomization and vaporization process in flash boiling spray. JSAE Review,1994.15:291-296.
    [84]. Adachi, M., McDonell V. G., Tanaka D., et al. Characterization of fuel vapor concentration inside a flash boiling spray[C]. SAE Transactions,1997, SAE97087.
    [85]. Razzaghi, M. Droplet size estimation of two-phase flashing jets [J]. Nuclear Engineering and Design,1989,14 (1):115-124
    [86]. Sher, E., Elata C. Spray formation from pressure cans by flashing[J]. Indusrrial Engineering and Process Design and Development,1977 (16):237-242.
    [87].孙民,陈石,许锋等.闪急沸腾喷雾的一种数值模拟方法[J].内燃机学报,1991,9(1):35-40.
    [88]. Zeng, Y. B., Lee C.F. An Atomization Model for Flash Boiling Sprays[J], Combustion Science and Technology,2001,169(1):45-67
    [89].张鹏,张煜盛.闪急沸腾条件下的二甲醚气爆雾化理论研究[J].内燃机工程,2010,31(1):27-31
    [90].吴东垠,田文栋,魏小林等.奥里乳化油工业试验结果分析[J].燃烧科学与技术,2000,(2):120-123.
    [91].张俊强.溶有甲烷液态燃油的喷雾特性及发动机性能试验研究[D].西安:西安交通大学,2005
    [92].段树林,冯林,许锋等.柴油闪急沸腾喷雾的试验研究[J].大连铁道学院学报,1997(1):59-62,90.
    [93]. Aquino C., Plensdorf W., Lavoie G., et al..The Occurrence of Flash Boiling in a Port Injected Gasoline Engine[C. SAE Transactions,1998, SAE982522.
    [94]. Aleiferis P.G., Serras-Pereira J., van Romunde Z., et al..Mechanisms of spray formation and combustion from a multi-hole injector with E85 and gasoline[J].Combustion and Flame,2010,157:735-756
    [95]. Serras-Pereira J., Aleiferis P.G., van Romunde Z., et al. Cavitation, primary break-up and flash boiling of gasoline, iso-octane and n-pentane with a real-size optical direct-injection nozzle[J], Fuel,2010,89(9):2592-2607.
    [96]. Zeng W., Xu M., Zhang G.M., et al. Atomization and vaporization for flash-boiling multi-hole sprays with alcohol fuels[J]. Fuel,2012,95(0):287-297.
    [97]. Bianchi G. M., Negro S, C. Forte, et al. The Prediction of Flash Atomization in GDI Multi-Hole Injectors[C]. SAE Transactions,2009, SAE2009-01-1501.
    [98].解茂昭.内燃机计算燃烧学(第二版)[M].大连:大连理工大学出版社,2005
    [99]. Kuensberg Sarre C, Kong S C, Reitz R D. Modeling the Effects of Injector Nozzle Geometry on Diesel Sprays[C]. SAE Transactions,1999, SAE199-01-0912.
    [100]. Weisman J Pei BS. Prediction of critical heat flux in flow boiling at low qualities[J]. International Journal of Heat Mass Transfer,1983,26(10):1463-1477.
    [101]. Park B.S., Lee S.Y. An experimental investigation of the flash atomization mechanism[J], Atomization and Sprays,1997,4 (2):159-179
    [102]. Model M, Reid R C. Thermodynamics and its Applications[M].2nd Edition. Englewood Cliffs:Prentice-Hall Inc.1983 244-246.
    [103]. Peng D Y, Robinson D B. A new two-constant equation of state[J]. Industrial and Engineering Chemistry Fundamentals,1976,15(1):59-64.
    [104]. Zhu G S, Reitz R D. Engine droplet high-pressure vaporization modeling[J]. Journal of engineering for gas turbines and power-transactions of the asme,2001,123(2): 412-418.
    [105]. Eric Curtis, Stephen Russ et al. The Effects of Injector Targeting and Fuel Volatility on Fuel Dynamics in a PFI Engine During Warm-up:Part Ⅱ-Modeling Results [C]. SAE Transactions,1998, SAE982519,1998.
    [106].曾东健,杨建军,姚英.不同比例乙醇汽油蒸发性试验研究[J].小型内燃机与摩托车,2008,37(1):71-74.
    [107].刘训标,龚为佳等.掺低比例乙醇的汽油蒸汽压试验测试研究[J].能源研究与利用2010,3:23-26.
    [108]. Yang J, Kenney T. Some concept of DISI engine for high fuel efficiency and low emissions [C]. SAE Transactions,2002, SAE2002-01-2747.
    [109]. Bizhan Befrui, Giovanni Corbinelli, et al. GDI Multi-hole injector internal flow and spray analysis [C]. SAE Transactions,2011, SAE2011-01-1211.
    [110].汪翔.柴油喷嘴中的不稳定空化过程及其影响射流雾化的基础研究[D].天津:天津大学,2010.
    [111]. Nurick W H. Orifice cavitation and its effects on spray mixing [J]. Fluids Engineering,1976,98:681-687.
    [112]. Gilles-Birth I, Rechs M, Spicher U. Bernhardt S. Experimental investigation of the in-nozzle flow of valve covered orifice nozzles for gasoline direct injection [C]. Proceedings of the seventh international symposium on internal combustion diagnostics, Baden-Baden, Germany,2006:59-78.
    [113]. Spraytec User Manual, Malvern Instruments Ltd.,2006
    [114].SAE J2715, "Gasoline Fuel Injector Spray Measurements and Characterizations", (2007), SAE International, Warrendale, Pennsylvania
    [115]. Hung David L.S., David L. Harrington, Anand H. Gandhi, et al..Gasoline Fuel Injector Spray Measurement and Characterization-A New SAE J2715 Recommended Practice[C] SAE Transactions,2008, SAE2008-01-1068.
    [116].黄都.GDI汽油机喷油器驱动电路及喷雾特性研究[D].武汉:华中科技大学,2011
    [117]. Gosman A.D., Johns J.R. Computer Analysis of Fuel-AirMixing in D.I. Diesel Engines[C]. SAE Transactions,1980, SAE800091.
    [118]. Amsden A.A., Butler T.D., O'Rourk eP.J., et al.. KIVA-Ⅱ:A Computer Program for Chemically Reactive Flows with Sprays. Los Alamos National Laboratory Report:LA-11560-MS,1989.
    [119].王锡斌,蒋德明,周龙保等.利用分子理论估算二甲醚的热物理特性参数[J].西安交通大学学报,2004,38(1):19-23.
    [120]. Le Metayer, O., J. Massoni and R. Saurel, Modelling evaporation fronts with reactive Riemann solvers[J]. Journal of Computational Physics,2005.205(2): 567-610.
    [121]. P. Downar-Zapolski, Z. Bilicki. The non-equilibrium relaxation model for one-dimensional flashing liquid flow[J]. International Journal of Multiphase Flow, 1996,22(3):473-483.
    [122]. Witlox H., Harper M., Bowen P., Cleary V. Flashing liquid jets and two-phase droplet dispersion:Ⅱ. Comparison and validation of droplet size and rainout formulations[J]. Journal of Hazardous Materials,2007,142(3),797-809.
    [123]. Mikic B.B., Rohsenow W.M. and Griffith P. On bubble growth rates[J]. International Journal of Heat and Mass Transfer,1970.13(4):657-666.
    [124]. Plesset M. S., Zwick S. A. The Growth of Vapor Bubbles in Superheated Liquids[J]. Journal of Applied Physics,1954,25(4):493-450.
    [125]. Zeng Y.B. and Lee C.F. Modeling droplet breakup processes under micro-explosion conditions. Proceedings of the Combustion Institute[J],2007.31(2):2185-2193.
    [126]. Vieira M.M., Simoes-Moreira J.R. Low-pressure flashing mechanisms in iso-octane liquid jet[J] Journal of Fluid Mechanics,2007,572:121-144
    [127]. Zeng. Y.B. Modeling of Multicomponent Fuel Vaporization in Internal Combustion Engines[D]. Ph. D. Thesis University of Illinois.2000.
    [128]. Dukowicz, J.K. A particle-fluid numerical model for liquid sprays[J]. Journal of Computational Physics,1980.35(2):229-253.
    [129]. Abramzon B, Sirignano WA. Droplet vaporization model for spray combustion calculations[J].International Journal of Heat Mass Transfer,1989;32:1605-1618.
    [130]. Curtis E.W., Uludogan A, Reitz R.D. A new high pressure droplet vaporization model for diesel engine modeling[C] SAE Transactions,1995, SAE 952431.
    [131]. Reitz R.D.,Diwakar R. Structure of High Pressure Fuel Sprays[C].1987, SAE 870598.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700