用户名: 密码: 验证码:
微针肋热沉结构优化及Micro-PIV系统下单相与两相可视化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微电子技术的迅速发展,先进设备与器件的热负荷不断提高,传统冷却器的设计与制作已经无法满足现代技术飞速发展的要求。伴随着微加工技术的日臻完善,使更为复杂的微通道热沉进入国际传热学界的研究视野。同时微尺度流动测试技术也成为国内外研究的焦点。
     本文研究内容主要包括两大部分:不同结构微针肋热沉流动与传热特性;微尺度单相及两相流场测试技术。
     第一部分内容,本文主要提出了长菱形微针肋热沉及组合式微针肋热沉。
     在研究过程中,加工了硅基长菱形微针肋热沉,并对其流动与换热性能进行了实验研究和数值模拟。结果显示:在实验Re数范围内,长菱形针肋的换热系数随Re的增大而增大。相同Re数下,热流密度对换热系数的影响较小。热阻随泵功的增加不断降低;在泵功较小时,热阻降低的速度较快;当泵功增大到一定值时,热阻的变化趋势趋于平缓。在一定的泵功下不同热流密度之间的总热阻值并没有太大的区别,Nu随着Re增大均增大。与同样尺寸圆形、菱形针肋相比,45o长菱形针肋具有较好的的换热性能,可以避免针肋尾部涡脱落造成的阻力损耗,同时长菱形针肋尾部延伸拓展了换热面积并扩大固体导热区,从而提高换热效果。
     对于组合式微针肋热沉,采用数值模拟进行强化传热研究。流场中加入以一定冲角布置的三角小肋可以有效强化换热,且不同的冲角所产生的强化换热效果不同。结果表明:所设计的4种布置方式的微针肋,在相同Re,冲角越大,压降也越大,平均Nu也越大,因此存在一个最优化角度布置即冲角为30°时,可使强化换热效果达到最佳。组合式微针肋主要通过三角小肋的存在破坏边界层的发展,在圆肋尾部形成纵向涡,减小尾部回流,增强流场的扰动性和混和性,提高流场和温度场的协同性,使整体和局部的换热都得到极好强化
     第二部分内容,本文主要基于Micro-PIV流场可视化实验台,进行了单相流体横掠顺排圆形微针肋的流场测试及Y型进口微通道内液液两相混合流场测试。
     在研究过程中,加工制作了PDMS材质顺排圆形微针肋,并在小雷诺数下对其内部流场特性进行测试。结果表明:顺排圆形微针肋沿第1-2排针肋之间主通道方向流速呈周期性变化;在较小雷诺数下,涡量分布区域面积较小,涡量主要集中分布于沿着流向微针肋的左右两侧,且涡量强度大小相近;较小雷诺数下的涡量在与流动垂直方向的扩散能力大于较大雷诺数的涡量。
     对PDMS材质Y型进口微通道内液液两相流场进行可视化研究。结果表明:Y型通道中生成的液弹,形状规则,大小均一。液弹的形成经历了生长,冲刷,拉伸,脱落的过程。在恒定流量比下,Y形通道内液弹的轴向长度随连续相Ca数增大而减小;在恒定连续相Ca数下,Y形通道内液弹的轴向长度随流量比增大而增大。
With the development of technology, the higher integration degree of electronicdevices results in more heat flux. The traditional cooler design and production hasbeen unable to meet the rapid development of modern technology. As themicro-processing technology is getting more sophisticated, more complex,micro-channel heat sink has become goes into the international heat transfer academicresearch. The microscale flow test technology has become the focus of research athome and abroad.
     The content of this paper includes two parts: the flow and heat transfer of two kindmicro pin fin heat sink; microscale single-phase and two-phase flow testingtechniques.
     For the first part of the contents, we propose long-diamond shaped micro pin finheat sink and a combined micro pin fin heat sink.
     During the study, the silicon long-diamond shaped micro pin fin was processed.Experimental research and numerical simulation about the flow and heat transfer oflong-diamond shaped micro pin fin were performed. The results showed that: withinthe range of the number of experiments Re, the heat transfer coefficient of thelong-diamond shaped micro pin fin increases with Re. with same Reynolds number,the heat flux has no effect on heat transfer coefficient. Thermal resistance decreasedwith the increased pump power. The thermal resistance decreased faster when pumppower is small. And the thermal resistance becomes a certain value when the pumppower increases to a point. There is no total thermal resistance difference for differentheat fluxes. Nu increases with the increase of Re. Compared with the same sizecircular, and diamond micro pin fin,45o long-diamond micro pin fin has the bestrheat transfer performance. The long-diamond design avoids the vortex sheddingwhich will cause the resistance loss. Also, the long-diamond design extends the heattransfer area and conductivity of solid. Thereby it enhanced the heat transfer effect.
     A numerical simulation about the heat transfer characteristic for combined micropin fin has been done. The heat transfer effect of the combined micro-pin fin withdifferent angles decreased as the Re increasing among the present Re range. Therefore,this new structure was more appropriate for the condition of low Re. The combinedmicro-pin fin could damage the development of boundary layer by the little triangularmicro-pin fins, it could form longitudinal vortexs in the tail of circular micro-pin finand decrease backflow, enhance the effect of disturbance and mixing. The combinedmicro-pin fin improved the synergy of flow field and tempreture field; the heattransfer effect could be enhanced greatly for both the whole and the local. Thecombined micro-pin fin improved the synergy of flow field and tempreture field; theheat transfer effect could be enhanced greatly for both the whole and the local.
     The second part of this paper is mainly based on Micro-PIV flow visualizationexperimental system. Two parts of flow field testing were performed: the ingle-phasefluid flow field measurement of in-lined circular micro pin fin and liquid-liquidtwo-phase mixture flow field measurement of Y-import microchannel.
     In the course of the study, device of in-lined circular micro pin fin was processedusing PDMS material. And its internal flow field testing was performed. The resultsshow that: the velocity along the direction of the main channel at thefirst to secondrow of in-lined circular micro pin fin changes periodically. At lower Reynoldsnumbers, the vorticity distribution area is small. Vorticity mainly distributes at thearea along the flow of the left and right sides of the micropin fin, and the vorticitystrength is almost the same. At low Reynolds numbers, the vorticity diffusioncapacityin the direction perpendicular to the flow is greater than that at large Reynoldsnumber.
     A liquid-liquid phase flow field visualization test was performed in PDMS materialY imported micro channel. The results show that the slug flow in Y imported microchanne is regular shape, uniform size. The formation of the liquid projectile hasexperienced growth, scouring, and stretching, shedding process. With the constantflow rate ratio, the axial length of slug decreased with the increased continuous phaseCa; with the constant continuous phase Ca, the axial length of slug increase with theincreased flow ratio.
引文
[1]杨洪海.电子设备的散热问题与新型冷却技术的应用.新技术新工艺,2006,(5):71-72.
    [2] Moore G. E.Cramming more components on to integrated circuits. Electronics,1965,38(8):46-54.
    [3] Moore G. E. Progress in digital integrated electronics.Proceeding of IEEE InternationalElectron Devices Meeting,1975.
    [4]杨桂杰,杨银堂,李跃进.多芯片组件热分析技术研究.微电子学与计算机,2003,7:78-80.
    [5] Ozmat B., Instruments T., Dallas T. X. Interconnect technologies and the thermalperformance of MCM. IEEE Trans Components, Packaging, and ManufacturingTechnology,1992,15(5):860-865.
    [6]李腾,刘静.芯片冷却技术的最新研究进展及其评价.制冷学报,2004(3):22-32.
    [7] Avram B. C., Lyengar M., Kraus A. D. Design of optimum plate-fin natural convective heatsinks [J]. ASME J Electron Packg,2007,125:208-216.
    [8]黄德修,刘雪峰.半导体激光器及其应用.北京:国防工业出版社,1999.
    [9]杜宝勋.半导体激光器原理.修订版.北京:兵器工业出版社,2004.
    [10] Leers M., Scholz C., Boucke K., et al. Next Generation Heat Sinks for High-power DiodeLaser Bars.23rd IEEE SEMI-THERM Symposium, San Jose, CA,2007:105-111.
    [11] Koecher W.固体激光工程.北京:科学出版社,2002:273-274.
    [12]刘明.高功率半导体激光器阵列的散热-无氧铜微通道热沉研究.长春理工大学,硕士学位论文.2004:20.
    [13] Cotter T. P. Principles and prospects for micro heat pipe. Proceedings5th International HeatPipe Conference,1984:328-335.
    [14]何叶,李磊民,杨涛.基于MEMS技术的新型微冷却方式.仪表技术与传感器,2004(9):44-46.
    [15] Tuckerman D. B, Pease R. F. W. High-performance Heat Sinking for VLSI. IEEE ElectronDevice Letter,1981,15:126-129
    [16] Tuckerman D. B. Heat-transfer microstructures for integrated circuits.PhD thesis,StanfordUniversity,Stanford,California,1984:29-131.
    [17] Riddle R. A., Contolini J.,Bernhardt A. F. Design calculations for the microchannelheatsink. Proc. National Electronic Products Conference,1991:161-171.
    [18] Peng X F, Wang B X, Peterson G P, et al. Experimental investigation of heat transfer in flatplates with rectangular microchannels. Heat Mass Transfer,1995,38(1):127-138.
    [19] Peng X. F.,Peterson G. P.,Wang B. X. Frictional flow characteristics of water flowingthrough rectangular microchannels. Heat Mass Transfer,1995,38(1):249-264.
    [20] Choi S. B., Barron R. F., Warrington R. O. Fluid flow and Heat transfer in microtubes.ASME Proc,1991,32:123-134.
    [21] Rushing L., Shakouri A., Ablraham P., et al. Micro Thermoelectric Coolers for IntegratedApplications[C]. International Conference on Thermoelectrics, ICT, Proceedings,1997.IEEE, Piscataway, NJ, USA,1997:646-649.
    [22]王小群,徐俊.微型热电制冷器制造技术及其性能.制冷学报,2007,28(6):41-42.
    [23] Vandersande Jan W., Fleurial Jean-pierre. Thermal management of power electronics usingthermoelectric coolers[C].15th International conference thermoelectric proceedings,ITC’96.IEEE, Piscataway, NJ, USA,1996:252-256.
    [24]陈旻,廖波,孔德文.基于MEMS技术的微热电器件的研究进展.微电子学,2004,34(1):8-9
    [25] Incropera F. P., Dewitt, David P. Fundamentals of heat and mass transfer. FourthEdition,New York:John Wiley&Sons,Inc.,1996:588-637.
    [26] Mmaddox D. E., Bar Cohen A. Thermofluid design of single-phase submerged-jetimpingement cooling for electronic components. ASME Journal of ElectronicPackaging,1994,116.
    [27]马晓雁.高效微射流阵列热沉内流体压降和传热特性的研究.北京工业大学.工学硕士学位论文.2006:4.
    [28] Ma C. F. Enhanced Heat Transfer of Impinging Liquid Jets with or without PhaseChange.Invited Lecture of International Symposium on Multiphase Flow and InternationalSymposium on Multiphase Fluid.Non-Newtonian Fluid and Physico-Chemical FluidFlows,Beijing,1997
    [29] Ma C. F.Impingement Heat Transfer with Meso-scale Fluid Jets. Proceedings of12thInternational Heat Transfer Conference.2002,1:287-297.
    [30] Webb B. W., Ma C. F.Single-Phase Liquid Jet Impingement Heat Transfer.Advances in HeatTransfer.Academic Press.1995,(26):105-217
    [31]马晓雁,夏国栋,刘青等.高效微射流阵列冷却热沉的阻力特性.工程热物理学报,2006,27(2):259-261.
    [32]刘青,夏国栋,刘启明等.高效微射流阵列冷却热沉的数值模拟.自然科学进展,2005,15(8):987-992.
    [33]张忠江,夏国栋,马晓雁等.高效微射流阵列冷却热沉传热特性.工程热物理学报,2007,28(3):448-450.
    [34]夏国栋,贾真,陈永昌.微阵列射流冲击肋化表面传热特性.航空动力学报,2009,24(1):7-12.
    [35] Ruth, E K. Experiments on a Cross Flow Heat Exchange with Tubes of Lenticular Sharp.Journal of Heat Transfer,1983,105:571-575.
    [36] Sparrow E M., Grannis V. B. Pressure Drop characteristics of Heat Exchangers Consistingof Arrays of Diamond-shaped Pin Fins. International Journal of Heat and MassTransfer,1991,34:589-600.
    [37] Gaddis E S., Gnielski V. Pressure Drop in Horizontal Cross Flow across Tube Bundles.International Chemical Engineering,1985,25:1-15.
    [38] Gunther A. Y., Shaw W. A. A General Correlation of Fiction Factor for Various Types ofSurfaces in Cross Flow. Mechanical Engineering (ASME),1945,67:161~173
    [39] Jacob M. Discussion-Heat Transfer and Flow Resistance in Cross Flow of Gases over TubeBanks. Transactions of Ameican Society of Mechanical Engineering,1938,60:381-392.
    [40] Bergelin O. P., Leighton M. D., Lafferty W. L., et al. Heat Transfer and Pressure Drop duringViscous and Turbulent Flow across Baffled and Unbaffled Tub Banks. University ofDelaware Engineering Experimental Station,1950, B uller in No.2
    [41] Damerow W. P., Murtaugh J. C., Burgraf F. Experimental and Analytical Investigation of theCoolant Flow Characteristics in Cooled Turbine Airfoils. NASA, CR-12088:1972.
    [42] Metzger D. E., Fan Z. N., Shepard W. B. Pressure Loss and Through Multiple Rows ofShort Pin Fins. Journal of Heat Transfer,1982,3:137-142.
    [43] Short Jr. B. E., Raad P. E., Price D. C.. Performance of Pin Fin Cast Aluminum Coldwalls,Partl: Friction Factor Correlations.Journal of Thermophysics and HeatTransfer,2002,16:389-396.
    [44] Zukauskas A. A. Heat Transfer from Tubes in Cross Flow. Advances in Heat Transfer,Academic Press, New York,1972,8:93~160
    [45] Morgan V. T. The Overall Convective Heat Transfer from Smooth Circular Cylinders.Advances in Heat Transfer,1975,11:199-264.
    [46] Webb R. L. Air-side Heat Transfer in Finned Tube Heat Exchangers. Heat TransferEngineering,1980,1:33-49.
    [47Moores K. A, Joshi K. Effect of Tip Clearance on the Thermal and HydrodynamicPerformance of a Shrouded Pin Fin Array. Journal of Heat Transfer,2003,125:999-1006.
    [48] Whitaker S. Forced Convection Heat-Transfer Correlations for Flow in Pipes, Past FlatPlates, Single Cylinders, Single Spheres, and For Flow in Packed-Beds and Tube Bundles.AIChE Journal,1972,18:361-371.
    [49] Hwang T. H, Yao S C.Crossflow Heat Transfer in Tube Bundles at Low ReynoldsNumbers.ASME Journal of Heat Transfer,1986,108(3):697-700.
    [50] El-Sheikh H. A., Garimella S. V. Heat Transfer from Pin Fin Heat Sinks under MultipleImpinging Jets. IEEE Transactions on Advanced Packaging,2000,23:113-120.
    [51] Igarashi T. Fluid Flow and Heat Transfer around Rectangular Cylinders (the Case of aWidth/Height Ratio of a Section of0.33-1.5). International Journal of Heat and MassTransfer,1987,30:893-901.
    [52] Merker G. P., Hanke H. Heat Transfer and Pressure Drop on the Shell-Sic of Tube-BanksHaving Oval-Shaped Tubes. International Journal of Heat and MassTransfer,1986,29:1903-1909.
    [53]凯斯W. M.,伦敦A. L.紧凑式热交换器.北京:科学出版社,1997.
    [54] Brigham B. A., Van Fossen G. J. Length-to Diamond Ratio and Row Number Effects inShort Pin Fin Heat Transfer. Journal of Engineering for Gas Turbines and Power,1984,106:241-246.
    [55] Armstrong J., Winstanley D. A. Review of Staggered Array Pin Fin Heat Transfer forTurbine Cooling Applications. Journal of Turbomachinery.1988,110:94-103.
    [56] Sparrow E. M, Stahl T. J., Traub P. Heat Transfer Adjacent to the Attached End of a Cylinderin Crossflow. International Journal of Heat and Mass Transfer,1984,27:233-242.
    [57] Chyu M. K., Hsing Y. C., Natarajan V. Convective Heat Transfer of Cubic Fin Arrays in aNarrow Channel. Journal of Heat Transfer,1998,120:362-367.
    [58] Short B. E., Raad P. E., Price D. C. Performance of Pin Fin Cast Aluminum Coldwalls, Part.2: Colburn j-factor correlations. Journal of Thermophysics and Heat Transfer,2002,16:397~403
    [59] Metzger D. E., Shepard W. B., Haley S. W. Row Resolved Heat Transfer Variations in PinFin Arrays Including Effects of Non-uniform Arrays and Flow Convergence. InternationalGas Turbine Conference and Exhibit, Duesseldorf, West German,1986, No.86-GT-132
    [60] Copeland D. Single-phase and Boiling Cooling of Small Pin Fin Arrays by Multiple SlotNozzle Suction and Impingement, IEEE Trans. Compon. Packag. Technol.,1995,18(3):510~516
    [61] Brignoni L. A., Garimella V. Experimental Optimization of Confined Air Jet Impingement ona Pin Fin Heat Sink. IEEE Trans. Compon. Packag. Technol.,1999,22(3):399~404.
    [62] Chien H. C., Tseng M. H., Wang C. Y., et al. The study of micro-fin heat sinks forelectronic cooling applications. Annual IEEE Semiconductor Thermal Measurement andManagement Symposium,2001:219-222.
    [63] El-Sheikh H. A., Garimella S. V. Enhancement of Air Jet Im-pingement Heat TransferUsing Pin Fin Heat Sinks. IEEE Trans. Compon. Packag. Technol.,2000,23(2):300-308.
    [64] Li C. Y., Garimella S. V. Prandtl Number Effects and Generalized Correlations forConfined and Submerged Jet Impingement. Int. J. Heat Mass Transfer,2001,44:3471–3480.
    [65] Garimella S. V. Heat Transfer and Flow Fields in Confined Jet Im-pingement. Annu. Rev.Heat Transfer,1999,11:413-494.
    [66] Issa J. S., Ortega A. Experimental Measurements of the Flow and Heat Transfer of a SquareJet Impinging on an Array of Square Pin Fins. Journal of Electronic Packagin,2006,128:61~70
    [67]过增元.国际传热研究前沿──微细尺度传热.力学进展,2000,(1):1-6.
    [68]马哲数,姚寿广,等.微细尺度传热学及其研究进展.科学进展,2003,25(2):76-79.
    [69] Marques C., Kelly K. W.. Fabrication and Performance of a Pin Fin Micro Heat Exchanger.Journal of Heat Transfer,2004,126(3):434-444.
    [70] Peles Y., Kosar A., Mishra C., et al. Forced convective heat transfer across a pin fin microheat exchanger. Int. J. Heat Mass Transfer,2005,48(17):3615-3627.
    [71] Kosar A., Mishra C., Peles Y. Laminar flow across a bank of low aspect ratio micro pin fin.Journal of Fluids Engineering,2005,127(3):419-430.
    [72] Kosar A., Peles Y. Thermal-hydraulic performance of MEMS-based pin fin heat sink. J.Heat Transfer,2006,128:121-131.
    [73] Kosar A, Peles Y. Convective flow of refrigerant (R-123) across a bank of micro pin fins.Int. J. Heat Mass Transfer,2006,49:3142-3155.
    [74] Kosar A., Peles Y. Boiling heat transfer in a hydrofoil-based micro pin fin heat sink, Int. J.Heat Mass Transfer,2007,50:1018-1034.
    [75] Kosar A., Peles Y. Micro Scale Pin Fin Heat Sink-Parametric Performance EvaluationStudy.IEEE Transaction on Components and Packaging Technologies,2007,30(4):855~865/69
    [76] Prasher R. S., Dirner J., Chang J. Y., et al. Nusselt Number and Friction Factor of StaggeredArrays of Low Aspect Ratio Micropin-Fins Under Cross Flow for Water as Fluid. Journal ofHeat Transfer,2007,129:141~153
    [77]夏国栋,李宴君,孔凡金.流体横掠方形微针肋阵列热沉的传热特性.工程热物理学报,2008,29(4):628-630.
    [78]夏国栋,孔凡金,李宴君等.流体横掠微针肋阵列热沉的阻力特性.工程热物理学报,2009,30(2):249-252.
    [79] Siu-Ho A., Qu Weilin. Experimental study of pressure drop and heat tansfer in a single-phasemicropin-fin heat sink. Journal of Electronic Packaging,2007,129(4):479-487.
    [80] Qu Weilin, Siu-Ho A. Liquid single-phase flow in an array of micro-pin-fins-Part Ⅱ:Pressuredrop characteristics. Journal of Heat Transfer,2008,130(12):124501-1-4
    [81] Qu Weilin, Siu-Ho A. Liquid single-phase flow in an array of micro-pin-fins-Part I:Heattransfer characteristics. Journal of Heat Transfer,2008,130(12):122402-1-11.
    [82] Qu Weilin. Comparison of thermal-hydraulic performance of singe-phase micro-pin-fin andmicro-channel heat sinks.11th IEEE Intersociety Conference on Thermal andThermomechanical Phenomena in Electronic Systems, I-THERM,2008:105-112.
    [83] San J. Y., Huang W. C., Heat transfer enhancement of transverse ribs in circular tubes withconsideration of entrance effect. Int. J. Heat Mass Transfer2006,49:2965-2971.
    [84] Guo Z. Y., Li Z. X. Size Effect on Single-phase Channel Flow and Heat Transfer atMicroscale. International Journal of Heat and Fluid Flow.2003,24:284~298
    [85]王昊利.微通道流动的理论分析和实验研究[D].西安:西安交通大学,2006.
    [86]盛森芝,沈熊、舒玮.流速测量技术[M].北京:北京大学出版社,1987.
    [87] Westeiweel J. Fundamentals of digital particle image velocimetry [J]. Measurement Scienceand Technolony,1997,8(12):1379-1392
    [88] Raffel M, Willert C E, Kompenhans J. Particle image velocimetry: a practical guide. Berlin:Springer,1998.
    [89] Westerweel J. Digital particle image velocimetry: theory and application. Delft: DelftUniversity,1993.
    [90] Taylor J A, Yeung E S. Imaging of hydrodynamic and electrokinetic flow profiles forcapillaries [J]. Analytical Chemistry,1993,65(29):28-32
    [91] Brody J P, Yager P, Goldstein R E, et al. Biotechnology at low Reynolds numbers[J].Biophysical Journal,1996,71(6):3430-3441.
    [92] Santiago J G, Wereley S T, Meinhart C D, et al. A micro particle image velocimetry system [J].Experiments in Fluids,1998,25(4):316-319.
    [93] Meinhart C D, Wereley ST, Santiago J G. PIV measurements of a microchannel flow[J].Experiments in Fluids,1999,27(5):414-19
    [94] Meinhart C D, Wereley S T, Santiago J G. A PIV algorithm for estimating time-averagedvelocity fields[J]. Journal of Fluids Engineering,2000,122(2):285-289.
    [95] Santiago J G, Werely S T, Meinhart C D. A particle image velocimetry system formicrofluidics [J]. Experiments in Fluids,1998.25(4):316-319.
    [96]Meinhart C D, Zhang H. The flow structure inside a microfabricated inkjet printhead [J].Microelectromechanical Systems,2000,9(3):67-75.
    [97] Koutsiaris A G, Mathioulakis D S, Tsangaris S. Microscope PIV for velocity-fieldmeasurement of particle suspensions flowing inside glass capillaries[J]. MeasurementScience and Technology,1999,10(11):1037-1046.
    [98] Devasenathipathy S, Santiago J G. Particle tracking techniques for electrokineticmicrochannel flows [J]. Analytical Chemistry,2002,74(15):3704-3713.
    [99] Klank H, Goranovic G, Kutter J P. PIV measurements in a microfluidic3D-sheathingstructure with three-demensional flow behaviour [J]. Journal of Micromechanics andMicroengineering,2002,12(2):862-869.
    [100] Ovryn B. Three-dimensinal forward scattering particle image velocimetry applied to amicroscopic field-of-view [J]. Experiments in Fluids,2000,(Suppl): S175-S184.
    [101] Park H, Pak J J, Son S Y. Fabrication of A Microchannel Integrated With Inner Sensors andThe Analysis of its Laminar Flow Characteristics [J]. Sensors and Actuators A: Physical,2003,103(3):317-329.
    [102] Pai V M, Chen C J, Haik Y. Microscopic Flow Visualization System for Fluids in MagneticField [J]. Magnetism and Magnetic Mater,1999,194(1-3):262-266.
    [103] Zeihami R, Laser D, Zhou P, et al. Experimental Investigation of Flow Transition inMicrochannels Using Micro-Resolution Particle Image Velocimetry[A]. In:Thermomechanical Phenomena in Electronic Systems Proceedings of the IntersocietyConference[C]. Las Vegas: Knosuem C B,2000,148-159.
    [104] Klank H, Goranovic G, Kutter J P. PIV measurements in a flow microfluidic3D-sheatingstructure with three-dimensional flow behavior[J]. Journal of Micromechanics andMicroengineering,2002,12(2):862-869.
    [105] Ovryn B. Three-dimensinal forward scattering particle image velocimetry applied to amicroscopic field-of-view[J]. Experoments in Fluids,2000,(Suppl): S175~S184.
    [106] Willert CE, Gharib M. Three-dimensional particle imaging with a single camera[J].Experiments in Fluids,1992,12(6):353-358.
    [107] Pereira F, Gharib M. Defocusing digital particle imagevelocimetry and the hree-dimensionalcharacterization of two-phase flows[J]. Measurement Science and tTechnology,2002,13(5):683-694.
    [108] Pereira F, Gharib M, Dabiri D, Modarress D. Defocusing digital particle image velocimetry:a3-component3-dimensional DPIV measurement technique. Application to bubbly flows[J].Experiments in Fluids,2000,29(7): S78-S84.
    [109] Bown M R, MacInnes J M, Allen R. Three-dimensional, three-component microfluidicvelocity measurements using stereoscopic micro-PIV and PTV[J]. Measurement science andtechnology,2006,17(8):2175-2185.
    [110] Yoon S Y, Kim K C.3D particle position and3D velocity measurement in a microvolumevia the defocusing concept[J]. Measurement Science and Technology,2006,17(11):2897-2905.
    [111] Pereira F, Lu J, Castano-Graff E, Gharib M. Microscale3D flow mapping with mDDPIV[J].Experiments in Fluids,2007,42:589-599.
    [112] Tanaami T, Otsuki S. High-speed1-frame/ms scanning confocal microscope with amicrolens and Nipkow disks[J]. Applied Optics,2002,41(22):4704-4708.
    [113] Park J S, Kihm K D. Use of confocal laser scanning microscopy (CLSM) for depthwiseresolved microscale-particle image velocimetry (μ-PIV)[J]. Optics and Lasers in Engineering,2006,44(3-4):208-223.
    [114] Kinoshita H, Kaneda S, Fujii T. Three-dimensional measurement and visualization ofinternal flow of a moving droplet using confocal micro-PIV[J]. Lab on a Chip,2007,7(3):338-346.
    [115] Chao S H, Holl M R, Koschwanez J H. Velocity measurement in microchannels with a laserconfocal microscope and particle linear image velocimetry[J]. Microfluidics andNanofluidics,2005,1(2):155-60.
    [116] Lima R, Wada S. Confocal micro-PIV measurements of three-dimensional profiles of cellsuspension flow in a square microchannel[J]. Measurement Science and Technology,2007,17(4):797–808.
    [117] Lima R, Wada S. In vitro confocal micro-PIV measurements of blood flow in a squaremicrochannel: the effect of the haematocrit on instantaneous velocity profiles[J]. Journal ofBiomechanics,2007,40(12):2752-2757.
    [118] Lima R, Ishikawa T. Radial dispersion of red blood cells in blood flowing through glasscapillaries: the role of hematocrit and geometry[J]. Journal of Biomechanics,2008,41(10):2188-2196.
    [119] Lima R, Wada S. In vitro blood flow in a rectangular PDMS microchannel: experimentalobservations using a confocal micro-PIV system[J]. Biomed Microdevices,2008,10(2):153-167.
    [120] Ichiyanagi M, Sato Y, Hishida K. Optically sliced measurement of velocity and pHdistribution in microchannel [J]. Experiments in Fluids,2007,43(2-3):425-435.
    [121] Arroyo M, Greated C. Stereoscopic particle image velocimetry [J]. Meas. Sci. Technol.,1991,2(12):86-118.
    [122] Prasad A. Stereoscopic particle image velocimetry [J]. Experiments in Fluids,2000,29(2):103-116.
    [123] Lindken R, Westerweel J. Stereoscopic micro particle image velocimetry [J]. Experiments inFluids,2006,41(2):161-171.
    [124] Bown M R, MacInnes J M. Three-dimensional, three-component velocity measurementsusing stereoscopic micro-PIV and PTV[J]. Measurement Science and Technology,2006,17(8):2175-2185.
    [125] Yang C T, Chuang H S. Measurement of a microchamber flow by using a hybridmultiplexing holographic velocimetry [J]. Experiments in Fluids,2005,39(2):385-396.
    [126] Satake S, Kunugi T, Sato K. Measurements of3D flow in a micropipe via micro digitalholographic particle tracking velocimetry [J]. Measurement Science and Technology,2006,17(7):1647-1651.
    [127] Satake S, Kunugi T, Sato K. Three-dimensional flow tracking in a micro channel with hightime resolution using micro digital-holographic particle-tracking velocimetry [J]. OpticalReview,2005,12(6):442-444.
    [128] Kim S, Lee S J. Measurement of3-D laminar flow inside a micro tube using digitalMicroengineering,2007,17(10):2157-2162.
    [129] Sheng J, Malkiel E. Digital holographic microscope for measuring three-dimensionalparticle distributions and motions[J]. Applied Optics,2006,45(16):3893-3901.
    [130] Leonardo R D, Leach J. Multipoint holographic optical velocimetry in microfluidicsystems[J]. Physical Review Letters,2006,96(13):134502-134502.
    [131] Shinohara Y, Sugii J H, Jeong K. Development of quasi-three-dimensional scanning microparticle image velocimetry system using a piezo actuator[J]. Review of Scientific
    [132] Pomer M S. Fluid mechanic manipulations on cells[D]. Santa Barbara: University ofCalifornia,2007. Instruments,2006,76:106-109.
    [133] Angele Y, Suzuki Y, Niwa J, et al. Development of a high-speed scanning Micro-PIV system[J]. Measurement Science and Technology,2005,17(7):1639-1646.
    [134] WERELEY S T, MEINHART C D. Recent advances in micro-particle image velocimetry[J].Annual Review of Fluid Mechanics,2010,42:557-76.
    [135]赵海亮,由长福,祁海鹰.两相流显微PIV/PTV系统的开发[J].实验力学,2005,20(4):595-600.
    [136]王飞,王健,何枫.无移动部件微泵的设计、制造及基于微PIV技术的流动测量[J].实验流体力学,2005,19(3):67-72.
    [137]王健,郝鹏飞,何枫.梯形截面微管道内流场的PIV测量[J].实验流体力学,2005,19(3):94-98.
    [138] Wang R J, Lin J Z, Xie H B. Velocity measurement of flow in the microchannel with arriersusing micro-PIV[J]. Journal of Visual Languages and Computing,2006,9:209-217.
    [139] Todd Thorsen, Richard W. Roberts, Frances H. Arnold Dynamic pattern formation in avesicle generating microfluidic device[J]. PHYSICAL REVIEW LETTERS,2001,86(18):4163-4166.
    [140] Piotr Garstecki, Michael J. Fuerstman, Howard A. Stone, et al. Formation of dropletsand bubbles in a microfluidic T-junction-scaling and mechanism of break-up [J]. Lab Chip,2006,6:437–446.
    [141] Gordon F. Christopher, N. Nadia Noharuddin, Joshua A. Taylor, et al. Experimentalobservations of the squeezing-to-dripping transition in T-shaped microfluidic junctions[J].PHYSICAL REVIEW E,2008,78:036317..

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700