用户名: 密码: 验证码:
车用柴油机燃烧过程分析及EGR分层研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柴油机问世至今,无论是系统附件还是燃烧模式都发生了很大变化,从粗笨、噪声大、冒黑烟的形象中彻底脱离,代之以高效、节油、可靠、清洁,并广泛应用于汽车领域。随之快速发展的高压共轨燃油喷射系统、EGR技术、后处理技术等已极大的解决了柴油机排放问题,然而在超低排放与能源危机的双重压力下,考虑到能源的全循环生命周期效率,排放控制问题不能只通过简单的物理吸附及化学催化反应来解决,需要从排放物生成的根源——燃烧过程进行控制。本研究为了解决柴油机燃烧过程中NO_x与soot排放的折衷关系,采用试验台架与数值模拟平台结合的方式对重型高压共轨涡轮增压柴油机稳态及瞬态工况下的工作过程、人为设定缸内EGR分层、进气过程实现缸内EGR分层等问题进行了研究,探索有效降低柴油机氮氧化物与微粒排放及实现显著的缸内组分分层的方法。
     本研究的研究对象为重型高压共轨涡轮增压柴油机。首先建立了重型柴油机瞬态及稳态试验平台,通过改变喷油参数研究柴油机稳态过程燃烧及排放特征的变化规律。稳态及瞬态过程研究一方面实现了对数值模型的多工况校验;一方面得到了柴油机缸内NO_x与soot生成特征及规律,为缸内EGR分层设定提供理论基础。
     瞬态过程的研究表明:随着瞬变循环数增加,缸内温度-当量比分布向双岛图的NO_x岛的递进减小,向soot岛的递进增加,对应NO_x排放降低而碳烟排放增加;缸内油气分布不均匀程度呈先增加后减小的趋势;瞬变过程第176循环与相应的50%稳态负荷点(相同转速,相同平均指示压力,IMEP)相比,缸内分布不均匀程度在碳烟生成持续期内偏高是导致瞬变过程缸内碳烟排放恶化的主要原因;瞬变过程中缸内高温区持续时间对NO_x生成的影响大于缸内高温区体积的影响,并且45个试验工况点的NO_x排放与缸内平均温度特征的相关性分析结果与模拟分析结果一致。
     课题组前期时序分区燃烧的研究表明,采用后喷结合缸内化学氛围迁移可以解决缸内碳烟与NO_x排放的折衷关系,但由于对后喷量及后喷时刻等参数十分敏感,时序分区燃烧降低排放的能力有限,因此本研究提出EGR分层的概念。基于缸内NO_x与碳烟生成区域与生成时间不同的机理,在NO_x生成区保持缸内较高的EGR,控制燃烧温度降低NO_x生成,而在碳烟生成区使其保持充足的氧氛围,并利用缸内流动对缸内组分的迁移作用向碳烟区补充氧气,促进碳烟后期氧化。旨在缸内局部燃烧区内形成EGR率浓区,其余位置为新鲜空气充量,这样既可以降低向气缸内引入EGR的量,使EGR冷却损失下降,涡轮增压能力提高,又可以使缸内平均氧浓度保持在较高的水平,燃烧效率得到提高。
     EGR分层研究首先采用人为设定缸内EGR分布的方式,探索径向与轴向分层特征对柴油机燃烧及排放的影响规律及同时降低NO_x与碳烟排放的潜力;其次,搭建重型柴油机全气道仿真模型,在切向进气道截面不同位置通入EGR,研究进气过程对缸内EGR分布的影响,结果表明:缸内设定EGR分层可同时降低NO_x与碳烟排放;轴向分层局部EGR率30%时,排放同时降低效果优于径向分层;EGR分层与时序分区燃烧耦合,主喷定时由-3°提前到-5°时,碳烟与NO_x同时降低,且此时对应的指示热效率也较高,能够打破NO_x与碳烟排放间的折衷关系;进气过程EGR与空气未经混合流入进气道,继而流入气缸,缸内EGR呈梯度分布,可实现EGR分层,最大EGR率梯度可达18.3%。
     人为设定EGR分层能够实现同时降低NO_x与碳烟排放,且与时序分区燃烧耦合通过调整喷油参数使柴油机保持较高的指示热效率。继而本研究设计了CO_2喷射试验,研究如何实现EGR分层,并结合数值仿真分析评价CO_2喷射试验的缸内组分分布。
     搭建CO_2进气喷射试验台架及数值模拟平台;改造重型柴油机第一缸进气系统,分别在第一缸的切向与螺旋气道安装CO_2喷管,并保证喷管出口靠近进气门位置,降低进气道内CO_2与空气的混合机会;在1缸排气道内安装废气采样管,对1缸废气采样并由Horiba废气分析仪测量废气排放;结合全气道数值模型研究CO_2喷射试验中缸内组分分布特征。研究结果表明:CO_2喷射试验存在CO_2窜缸的问题,CO_2质量流量为10kg/h时,误差约为4%,CO_2质量流量为50kg/h时,误差约为10%,因此CO_2喷射试验只分析切向、螺旋及双进气道三种不同CO_2喷射方式在随着CO_2喷射质量流量的增加,柴油机燃烧及排放的变化规律;作者提出两种缸内组分分布评价方法,一是缸内组分质量浓度场及其浓度梯度,一是结合经济学中的洛伦兹曲线与基尼系数,评价不同CO_2喷射方式缸内的氧气与CO_2分配不均匀程度;组分的浓度梯度可直观表征缸内分布不均匀性,但仅限于局部特征,洛伦兹曲线及基尼系数由缸内全局单元格数据统计计算而得,反映的是缸内整体分布不均匀性特征。两种方法互为印证,互为补充。均匀CO_2进气、切向气道、螺旋气道及双气道喷射CO_2的四种方式对比得出,控制氧浓度在0.21附近,可以使发动机排放满足欧四水平,继续降低氧浓度能够使NO_x与THC达到欧Ⅴ排放法规要求,但CO与碳烟排放较高,并会牺牲指示热效率,其中螺旋气道喷射CO_2方式在缸内平均氧浓度为0.21时,NO_x、碳烟、CO与THC排放同时满足欧Ⅳ排放水平,切向与双气道喷射也比较接近,但切向喷射NO_x排放略高,双气道喷射CO排放略高;数值模拟分析表明采用进气道加装CO_2喷管控制缸内组分分布虽然能实现缸内组分浓度梯度分布,但全局分层特征较低。
     为了解决CO_2喷射试验的缸内全局分层特征较低的问题,本研究提出时序进气概念,即将进气过程分段。时序进气可以控制进气组分在缸内的分布位置,先进入气缸的组分在缸内分布为下浓上稀,后进入气缸的组分为下稀上浓;两段时序进气,第一段通入空气,第二段通入CO_2,缸内氧气质量浓度梯度可达7.38%,缸内不均匀性特征高于0.2;与均匀进气相比,缸内平均CO_2率相同时,时序进气的NO_x与碳烟排放均较低,NO_x降低51.2%,碳烟降低13.4%,由于燃烧区域CO_2质量浓度高于均匀进气情况,燃油滞燃期更长,放热率峰值更高,但缸内压力偏低。
Diesel has been changed not only on the appearance but also the combustionmode. It is never looked as heavy, noise and always with black smoke, instead,effective and reliable, save oil and clean are used to describe it, and widely used inautomobile since the first diesel came out. However, ultralow emissions and energycrisis challenge the diesel for combustion control to reduce emission on its generation,cycle life is a new topic for the requirement of energy efficiency, which meansafter-treatments and alternative fuel engines are limited compared with diesel. Tosolve the trade-off between NO_xand soot emissions, this work have analyzed steadyand transient operation of diesel combustion process, diesel combustion and emissionsof EGR stratification set artificially in cylinder, and how to realize in-cylinderstratification through intake process based on heavy and medium duty turbocharginghigh pressure common rail diesel engines by experiments and simulations.
     In this work steady and transient combustion process had been analyzed based onHD (heavy duty) diesel with common rail fuel injection system and turbocharger.Tested bed and simulation model were first established, and fuel injection parameterswere adjusted to obtain the relationship of CA50(crank angle when50%of fuelburned) and emissions with fuel injection parameters under steady condition.3Dcombustion and spray simulation on DI High pressure common rail HD diesel engineunder transient operations had also been conducted. Experimental results of constantspeeding increasing torque transient process rated at1650rpm, and torque increasedfrom10%to90%under10s, had been separated into discrete points based on cycle.NO_xemissions mechanism had been analyzed by volume and duration of in-cylinderhigh temperature area and φ-T diagram. As analysis shown, the simulation results ofseparated transient loads agreed with that of corresponding experimental data. NO_xemissions dropped under increasing torque process while soot emissions rosesubstantially as explained in φ-T diagram that in-cylinder equivalence ratio andtemperature march a lot to soot area and retreat to NO_xarea as loads increased.Uniformity of cylinder mixture was analyzed by Lorenz curve which is a graphicalrepresentation of the cumulative distribution function of the empirical probabilitydistribution of wealth. Under transient conditions, soot emission deterioration isattributable to more heterogeneous of in-cylinder fuel-air mixture compared to steadycondition. Simulation results and experimental analysises have reached an agreementthat NO_xemissions are dependent on duration of in-cylinder high temperature.
     Timing-sequential regionalized diesel combustion proposed in previous investigation is realized by post injection and proper in-cylinder chemical atmospheretransport to keep post injection fuel injecting to high oxygen concentration region.NO_xand soot emissions decrease simulanously, however, mass of post injection fueland post injection timimg are sensitive for threshold of emissions, consequently, EGRstratification is proposed based on the difference of NO_xand soot generation area andtiming, which means high EGR concentration at the region of spray while highoxygen at the other region. NO_xgeneration is depressed by high EGR during maininjection fuel combustion, and soot oxidation is enhanced by high oxygenconcentration realized by in-cylinder chemical atmosphere migration during postinjection fuel combustion. As a result, mass of EGR introduced in cylinder decreases,cooler lose of EGR decreases and exhaust energy flowing to turbocharger increasesmore importantly, in-cylinder mean oxygen concentration is higher than uniform EGRwhat will make combustion efficiency increasing.
     EGR stratification first discussed numerically using STAR-CD3.26by settingin-cylinder EGR distribution using subroutines. Combustion results of EGRstratification have similar heat release rate character compare to uniform EGR casewhile lower soot and NO_xemissions with the same mass of EGR introduced tocylinder. Axial and radical EGR stratification that defined artificially in cylinder underthe condition of1650r/min and50%load have been numerically analysed. It isindicated that both axial and radical distribution of EGR stratification make NO_xandsoot emissions decreasing simultaneously, however, radical EGR distribution worksbetter under low local EGR rate, axial EGR stratification degrades more in NO_xandsoot emissions. EGR stratification coupled with timing-sequential regionalized dieselcombustion has the potential to resovle the trade-off between NO_xand soot emissionswhile keep high indicated heat efficiency.
     EGR introduction strategies were discussed for diesel EGR stratification usingComputational Fluid Dynamics (CFD) and experimental test bed. And in-cylinderdistribution before the start of fuel injection for different stratification strategies wasanalyzed. In-cylinder gas heterogeneous distribution during intake and compressionstroke were realized by means of introducing EGR gas to tangential and spiral intakeport respectively and kept EGR away from fresh air using separated runner extendedto each intake valve. In this work, CO_2gas was selected to substitute for EGR.In-cylinder pressure of simulation results agreed with that of experiments. Twomethods were proposed to evaluate in-cylinder stratification, one is in-cylinderinhomogeneity and oxygen mass concentration field contour for local distribustioncharacter, the other is Lorenz curve and the Gini coefficient which is a graphicalrepresentation of the cumulative distribution function of the empirical probabilitydistribution of wealth in economics and the Gini coefficient is calculated based onLorenz curve and used to quantify in-cylinder inhomogeneity of different simulation cases for global distribustion character. Tested bed is reformed from CA6DL dieselengine for the intake system of first cylinder, two pipes were fitted separately totangential and spiral intake port of first cylinder, and exhaust sampling system wasinstalled to first cylinder for exhaust analysis. The problem of the CO_2injectionsystem is the leakage of CO_2to the other intake port, the maximum error is10%high,so the experimental results are just used to qualitative analysis. The results indicatethat CO_2injection strategies have the potential to meet the Euro4emisions stardardwhen in-cylinder mean oxygen mass concentration is0.21, as oxygen massconcentration lower further, NO_xand THC emissions reached the Euro5standardwith a little higher emission of CO and soot and lower indicated heat efficiency.In-cylinder distribustion simulation results suggest that in-cylinder stratification isobtained, however global inhomogeinty is very low by injecting CO_2to intake port.
     Timing intake has been proposed to obtain in-cylinder stratification for higherglobal inhomogeinty. Compare to CO_2injection strategy for different CO_2flow path,timing intake strategy obtain higher global inhomogienty. Further investigations onin-cylinder distribustin and combustion are conducted by splitting intake process fortwo phases, during first phase air flows into the cylinder and mainly distribute at thebottom of combustion charmber, and second phase for CO_2gas mainly distribute atthe top of cylinder, the in-cylinder inhomogeneity is higher and notable as oxygenmass concentration gradient is7.38%and the Gini coefficient is higher than0.2.Compared with uniform intake, NO_xand soot reduced substantially with the samemass of CO_2in-cylinder. NO_xdecreased51.2%and soot decreased13.4%. However,ignition delay lags as higher CO_2concentration compare to uniform intake atcombustion area, the peak of heat release rate is higher, while the cylinder pressure islower. Four characters have been used to evaluate in-cylinder distribution of intakecharge, mass ratio of O_2/CO_2distribution; it is the maximum value of CO_2and O_2distribution inhomogeneity. Axial distribution is gas stratification on piston movementdirection. And radical distribution is gas stratification on radical distance withcylinder axis, and spherical distribution is on fuel injection direction.
引文
[1] Rolf D. Reitz. Directions in internal combustion engine research[J]. combustionand flame.160(2013):1-8
    [2] Walsh MP. Global diesel emission trends[J]. Automotive Eng Int1998:114–8
    [3] Wagner RM, Green Jr JB, Dam TQ, Edwards KD, Storey JM. Simultaneous lowengine-out NOxand particulate matter with highly diluted diesel combustion[C]. SAE2003-01-0262;2003
    [4] Wade RW. Light duty NOx-HC particulate trade-off[C]. SAE800335;1980.
    [5] John B, Heywood. Internal Combustion Engine Fundamentals[M]. New York:McGraw-Hill, Inc.1988,491-511
    [6] Zheng M, Reader GT, Hawley JG. Diesel engine exhaust gas recirculation areview on advanced and novel concept. Energy Convers Manage[J].2004;45:883–900
    [7] Ghazikhani M, Feyz ME, Joharchi A. Experimental investigation of the exhaustgas recirculation effects on irreversibility and brake specific fuel consumption ofindirect injection diesel engines[J]. Appl Therm Eng2010;30:1711–1718
    [8] Deepak Agarwal, Shrawan Kumar Singh, Avinash Kumar Agarwal. Effect ofExhaust Gas Recirculation (EGR) on performance, emissions, deposits and durabilityof a constant speed compression ignition engine[J] Applied Energy88(2011)2900–2907
    [9] JA Caton. A Review of Investigations Using the Second Law of Thermodynamicsto Study Internal-Combustion Engines[C].SAE2000-01-1081,2000
    [10] KD Edwards, RM Wagner, RL Graves. Identification of PotentialEfficiencyOpportunities in Internal Combustion Engines Using a Detailed ThermodynamicAnalysis of Engine Simulation Results[C].SAE2008-01-0293,2008
    [11] KD Edwards, RM Wagner, RL Graves. Identification and evaluation of nearterm opportunities for efficiency improvement[C/OL].14th Diesel Engine efficiencyand Emissions Research (DEER) Conference.http://www.eere.energy.gov/vehiclesandfuels/resources/proceedings/2008_deer_presentations.html
    [12] WR Dunbar, NM Lior (1994) Sources of Combustion Irreversibility[J].Combustion Science and Technology,103:41-61
    [13] M. Bergman and V. I. Golovitchev. Application of Transient Temperature vs.Equivalence Ratio Emis-sion Maps to Engine Simulations[C]. SAE2007-01-1086,2007
    [14] Pickett, L.M., Caton, J.A., Musculus, M.P.B., and Lutz, A.E. Evaluation of theEquivalence Ratio-Temperature Region of Diesel Soot Precursor Formation using aTwo-Stage Lagrangian Model[J]. Int. J. Engine Res.7:349-370,2006
    [15] S W Park, R D Reitz,[J] Combust. Sci. Technol.179(11)(2007)2279–2307
    [16] K. Akihama, Y. Takatori, K. Inagaki, S. Sasaki, and A. Dean. Mechanism ofthe Smokeless Rich Diesel Combustion by Reducing Temperature[C]. SAE2001-01-0655,2001
    [17] William L. Easley.et.al, Modeling of HCCI combustion and emissions usingdetailed chemistry[C]. SAE2001-01-1029,2001
    [18]隆武强,冯立岩,许锋,杜宝国.伞状喷雾及HL喷雾在柴油机均质预混合燃烧中的应用研究[J].内燃机工程,2004(1)
    [19]陈征,尧命发,郑尊清,张波,邢元.双燃料HCCI燃烧的优化策略[J].燃烧科学与技术,2006(02)
    [20]潘雪伟,平银生,丁贤华,二甲醚均质压燃、柴油补燃混合燃烧模式的试验研究[J].内燃机工程,2006(1)
    [21]沈自友,何洪,纪常伟,訾学红,李超,王亮,马重芳.燃料添加剂改善燃料均质自燃着火的研究[J].燃烧科学与技术,2006(05)
    [22] Jari.et.al, Supercharging HCCI to Extend the Operating Range in aMulti-Cylinder VCR-HCCI Engine[C]. SAE2003-01-3214,2003
    [23] W. L. Hardy.et.al. A Study of the Effects of High EGR, High EquivalenceRatio, and Mixing Time on Emissions Levels in a Heavy-Duty Diesel Engine forPCCI Combustion[C]. SAE,2006-01-0026,2006
    [24] Keiichi Okude.et.al. Premixed Compression Ignition (PCI) Combustion forSimultaneous Reduction of NOx and Soot in Diesel Engine[C]. SAE2004-01-1907,2004
    [25] Naoki Shimazaki et.al. Dual Mode Combustion Concept With PremixedDiesel Combustion by Direct Injection Near Top Dead Center[C].SAE2003-01-0742,2003
    [26] Timothy J. Jacobs.et.al. Lean and Rich Premixed Compression IgnitionCombustion in a Light-Duty Diesel Engine[C]. SAE.2005-01-0166,2005
    [27] Takeshi Hashizume, Takeshi, Miyamoto,Hisashi Akagawa, Kinji Tsujimura.Emission Characteristics of a MULDIC Combustion Diesel Engine: Effects of EGR[J]JSAE Review20(1999),421—438,1999
    [28] Yoshi aki Nishi jima et.al. Impingement Spray System with Direct WaterInjection for Premixed Lean Diesel Combustion Control[C]. SAE2002-01-0109,2002
    [29] Bruno Walter.et.al, Using Dual Mode Diesel Combustion to Achieve ZeroNOxand Particulate Emissions[C]. SAE2002-01-1744,2002
    [30] Gatellier B.et.al.满足欧5排放标准的新技术[J]国外内燃机,2006(3):31-36
    [31] Ryo Hasegawa.et.al. HCCI Combustion in DI Diesel Engine[C]. SAE2003-01-0745,2003
    [32] Shuji Kimura, Osamu Aoki, Hiroshi Ogawa and Shigeo Muranaka, YoshiteruEnomoto. New Combustion Concept for Ultra-Clean and High-Efficiency Small DIDiesel Engines[C], SAE1999-01-3681,1999
    [33] Kimura, S., Aoki, O., Kitahara, Y., and Aiyoshizawa, E., Ultra-CleanCombustion Technology Combining a Low-Temperature and Premixed CombustionConcept for Meeting Future Emission Standards[C]. SAE2001–01–0200,2001
    [34]宫本武司,浅海靖男等人,采用分层混合气压缩着火燃烧降低烟度[J]国外内燃机,2002(3)
    [35]汪洋,谢辉,苏万华.激光诱导荧光法研究柴油机新概念燃烧中的喷雾混合过程[J].燃烧科学与技术,2002,8(4):338-341
    [36]赵昌普,苏万华,汪洋,余皎,林铁坚. Bump燃烧室内新概念稀扩散燃烧混合气形成机理的研究[J].燃烧科学与技术,2004(4)
    [37]苏万华,林铁坚,张晓宇,裴毅强,赵华.MULINBUMP-HCCI复合燃烧放热特征及其对排放和热效率的影响[J].内燃机学报,.2004,(03)
    [38] Splitter, D.A., High Efficiency RCCI Combustion[D]. Ph.D. Thesis, Madison,University of Wisconsin-Madison,2012
    [39] Splitter,D.,Kokjohn,S.,Rein,K.,Hanson,R.et al.. AnOptical Investigation ofIgnition Processes in Fuel Reactivity Controlled PCCI Combustion[J] SAEInt.J.Engines3(1):142-162,2010
    [40] Derek E. Nieman, Adam B. Dempsey, Rolf D. Reitz. Heavy-Duty RCCIOperation Using Natural Gas and Diesel[C].SAE2012-01-0379,2012
    [41] J. Arregle, V. Bermudez, J. R. Serrano, and E. Fuentes. Procedure for enginetransient cycle emissions testing in real time[J].Experimental Thermal and FluidScience,30(5):485,2006
    [42] M.J. Samulski and C.C. Jackson. Effects of Steady-State and TransientOperation on Exhaust Emissions from Nonroad and Highway Diesel Engines[C]. SAE982044,1998
    [43] McClure, B. T. Characterization of the Transient Response of a DieselExhaust-Gas Measurement System[C]. SAE881320,pp.1680–1689.
    [44] J. Benajes et al Predictive Modeling Study of the Transient Load Response ina Heavy-Duty Turbocharged Diesel Engine [C]. SAE2000-01-0583,2000.
    [45] R. Ramamurthy, N. N. Clark, C. M. Atkinson and D. W. Lyons, Models forPredicting Transient Heavy Duty Vehicle Emissions[C]. SAE982652,1998.
    [46] Y. Cui, K. Deng and J. Wu. A modeling and experimental study of transientNOx emissions in turbocharged direct injection diesel engines[J]. Proc. Instn Mech.Engrs Vol.218Part D: Journal ofAutomobile Engineering,2004:535-541
    [47] Kang, H., and Farrell, P. V. Experimental Investigations of TransientEmissions HC and NOx in a High Speed Direct Injection HSDI Diesel Engine[C].SAE Powertrain and Fluid Systems Conference and Exhibition, San Antonio, TX,Oct.2005, SAE.2005–01-3883
    [48] Xavier Tauzia et.al. Measurement and Simulation of Instantaneous Emissionsof a Heavy Truck Diesel Engine During Transients[J]. Journal of Engineering for GasTurbines and Power JANUARY2008, Vol.130
    [49] J.R.Serrano et.al. Methodology For Characterisation and Simulation ofTurbocharged Diesel Engines Combustion during Transient Operation.Part2:Phenomenological Combustion Simulation [J] Applied Thermal Engineering29(2009)150–158d
    [50] Jonathan R. Hagena et.al Transient Diesel Emissions: Analysis of EngineOperation During a Tip-In [C] SAE.2006-01-1151,2006
    [51] P. Kirchen. Development and Validation of a Mean Value Soot Model forSteady-State and Transient Op-eration based on Exhaust-Stream and In-CylinderMeasurements[D]. Phd, ETH Zurich,2008. Diss. Nr.18088
    [52] Sui Ling-Ge, Liu Zhong-Chang, Han Yong-Qiang, Shen Zhao-Jie, ZhengGuang-Yong. Discussion of transient response optimization strategies of turbochargeddiesel engine under EGR step change operation[C]. CDCIEM2011, p423-427,2011
    [53] Sui Ling-Ge, Liu Zhong-Chang, Han Yong-Qiang, Zheng Guang-Yong, ShenZhao-Jie. Realization of the simulation platform of turbocharged diesel engine withEGR loop under transient conditions[C]. ICCASM2010v8, p V8274-V8279,2010
    [54]张志强,赵福全,邓俊,李理光,沈源.大负荷工况下柴油机低温燃烧的模拟与优化[J].汽车工程2012(09):763-770
    [55]黄豪中,苏万华,裴毅强,刘斌.MULINBUMP复合燃烧系统多次脉冲喷油控制参数的优化研究Ⅱ:5次脉冲喷油控制参数的优化[J].内燃机学报.2009(04):289-297
    [56] D. Ajtay and M. Weilenmann. Compensation of the exhaust gas transportdynamics for accurate instan-taneous emission measurements[J]. EnvironmentalScience&Technology,38(19):5141–5148,2004
    [57] Minoru Kowada et.al. Hino’s Advanced Low-EmissionTechnologiesDeveloped to Meet Stringent Emissions Standards[C]. SAE2006-01-0275,2006
    [58] Yutaka Muratat et.al. Achievement of Medium Engine Speed and LoadPremixed Diesel Combustion with Variable Valve Timing[C]. SAE2006-01-0203,2006
    [59]神谷等人,通过多次喷射降低大型柴油机的排放[J]国外内燃机,2008(2)
    [60] Hasegawa R., Yanagihara H., HCCI Combustion in DI Diesel Engine[C]. SAE2003-01-0745,2003
    [61] Kook S., Bae C., CombustionControl Using Two-Stage Diesel Fuel Injectionin a Single-Cylinder PCCI Engine [C]. SAE2004-01-0938,2004
    [62] Sun Y., Reitz R. D., Modeling Diesel Engine NOx and Soot Reduction withOptimized Two-Stage Combustion[C]. SAE2006-01-0027,2006
    [63]石磊,邓康耀,崔毅,彭海勇,基于两次燃油喷射策略的柴油p-HCCI燃烧研究[J].内燃机学报,2008,(06) pp:481-486
    [64] William de Ojeda.et.al. Development of a Fuel Injection Strategy for DieselLTC[C]. SAE2008-01-0057,2008
    [65] Tobias Husberg et.al. Analysis of Advanced Multiple Injection Strategies in aHeavy-Duty Diesel Engine Using Optical Measurements and CFD-Simulations [C]SAE2008-01-1328,2008
    [66] Sylvain Mendez et.al, Using Multiple Injection Strategies in DieselCombustion: Potential to Improve Emissions, Noise and Fuel Economy Trade-Off inLow CR Engines[C]. SAE2008-01-1329,2008
    [67] Idicheria, C. A. and Pickett, L.M...Soot Formation in Diesel Combustionunder High-EGR Conditions[C]. SAE2005-01-3834,2005
    [68] Yasuhiro Daisho The3nd International Symposium on Clean andHigh-Efficiency Combustion in Engines,Waseda University, Japan,2008
    [69]曾文,解茂昭,贾明,催化燃烧对均质压燃发动机排放影响的数值模拟[J].燃烧科学与技术2007(1)pp:55-62
    [70]苏万华.高密度-低温柴油机燃烧理论与技术的研究与进展[J].内燃机学报2008增刊pp:1-8
    [71] Alain Maiboom et al. New Phenomenological Six-Zone Combustion Modelfor Direct-Injection Diesel Engines[J]. Energy&Fuels2009(23), pp:690–703
    [72] T. Cerri et al1D Engine Simulation of a Small HSDI Diesel Engine Applyinga Predictive Combustion Model[J]. ASMEJANUARY2008, Vol.130
    [73] Hristopher Simoson et al, Effects of Cooled EGR on a Small DisplacementDiesel Engine: A Reduced-Order Dynamic Model and Experimental Study[J]ASMEMARCH2008,Vol.130
    [74] Horng-Wen Wu et al. Combustion characteristics of a closed cycle dieselengine with different intake gas contents [J]Applied Thermal Engineering29(2009)pp:848–858
    [75]刘忠长,金华玉,王忠恕,沈照杰,李康,基于后喷策略的柴油机时序分区燃烧模拟[J].燃烧科学与技术,2010(1) pp:23-29
    [76] Dec JE. Advantages of charge strati fi cation in HCCI engines[C], ICE2007.8th International conference on engines for automobiles, Capri, Napoli;2007
    [77] Sj berg M, Dec JE. Smoothing HCCI heat-release rates using partial fuelstrati-fication with two-stage ignition fuels[C]. SAE2006-01-0629;2006
    [78] Sj berg M, Dec JE. Effects of engine speed, fueling rate, and combustionphasing on the thermal strati fi cation required to limit HCCI knocking intensity[C].SAE2005-01-2125;2005
    [79] Angelo P. Chialva. Analysis of Intake Charge Temperature and EGRStratification Effects on HCCI Combustion[D]. Ph.D. thesis Madision. University ofWisconsin–Madison,2006;12-13
    [80] Grenda, J.M. Numerical Modeling of Charge Stratification for the CombustionControl of HCCI Engines[C]. SAE2005-01-3722,2005
    [81] Zhao F. Auomotive Gasoline Direct Injection Engines[M]. SAE International,Warrendale, PA,2002
    [82] Nakano, H., Lim, O., and Iida, N.. An Investigation of the Effect of ThermalStratification on HCCI Combustion by using Rapid Compression Machine[C]. SAE2007-01-1870,2007
    [83] Jeong, D.W., Lim, O.T., and IIDA, N., Influence of Cooled EGR rate on theHigh-Load limits of Fuel Stratified DME HCCI Engine by Numerical Analysis[C],Advanced Diesel Combustion for Low Emissions and High Thermal Efficiency,2010
    [84] Jung, D., Kwon, O. and Lim, O., Comparison of DME HCCI operating rangesfor the thermal stratification and fuel stratification based on a multi-zone model[J].Journal of Mechanical Science and Technology,(2011) Vol.25-6, pp.1383-1890
    [85] CHRISTIAN CHANDRAKUMAR ZAVIER. CHARGE STRATIFICATIONFOR AN INTERNAL COMBUSTION ENGINE. Master thesis. University ofCanterbury,1991
    [86] Narankhuu JamsranandOcktaeck Lim, Norimasa Iida An Investigation onDME HCCI Engine about Combustion Phase Control using EGR Stratification byNumerical Analysis[C]. SAE2012-30-0077,2012
    [87] Fuyuto T, Nagata M, Hotta Y, Inagaki K, Nakakita K, Sakata I. In-cylinderstratification of external exhaust gas recirculation for controlling diesel combustion[J].Int J Engine Res2010;11:1-15
    [88] Choi S. The effects of in-cylinder EGR stratifi cation on combustion andemission characteristics in a diesel engine[D]. Ph.D. thesis, Seoul National University,Seoul, Korea;2010
    [89] Claudia O. Iyer, Zhiyu Han and Jianwen Yi. CFD Modeling of a VortexInduced Stratification Combustion (VISC) System[C]. SAE2004-01-0550,2004
    [90]解茂昭,内燃机计算燃烧学[M].大连,大连理工大学出版社,2005:242-243
    [91] Masahiko Sugimoto, Kazumichi Matsuishi, Tadao Okazaki. Development ofEGR system for industrial diesel engine using CFD approach[C]. JSAE20119635/SAE2011-32-0635,2011
    [92] Constantine D. Rakopoulos,Evangelos, G. Giakoumis. Diesel Engine TransientOperation. Principles of Operation and Simulation Analysis.[M] Springer. Athens,2009:355-358
    [93] C.D. Rakopoulos et al. Cylinder wall temperature effects on the transientperformance of a turbocharged Diesel engine [J]. Energy Conversion andManagement45(2004)2627–2638
    [94] Han, Z. and Reitz, R. D. Turbulence Modeling of Internal CombustionEngines Using RNG k-e Models[J]. Combustion Science and Technology,1995, Vol.106, pp.267-295
    [95] Kokjohn, S., Hanson, R., Splitter, D., and Reitz, R.,“Experiments andModeling of Dual-Fuel HCCI and PCCI Combustion Using In-Cylinder FuelBlending[C].SAE Int. J. Engines2(2):24-39,2010
    [96] Dohoy Jung and Dennis N. Assanis. Multi-Zone DI Diesel Spray CombustionModel for Cycle Simulation Studies of Engine Performance and Emissions[C]. SAE2001-01-1246,2001
    [97] M. Warth, P. Obrecht, A. Bertola, and K. Boulouchos. PredictivePhenomenological C.I. Combustion Mod-eling Optimization on the Basis ofBio-Inspired Algo-rithms[C]. SAE2005-01-1119,2005
    [98] BORDET Nicolas, CAILLOL Christian, HIGELIN Pascal. A Physical0DDiesel Combustion Model UsingTabulated Chemistry with PresumedProbabilityDensity Function Approach: For engine pre-Mapping[C].FISITA2010-SC-O-26
    [99] Beale, J. C. and Reitz, R. D. Modeling Spray Atomization with theKelvin-Helmholtz/Rayleigh-Taylor hybridmodel[J]. Atomization and Sprays,1999,Vol.9, pp.623-650
    [100] Abani, N., Munnannur, A., and Reitz, R. D. Reduction of NumericalParameter Dependencies in Diesel Spray Models[J]. Journal of Engineering for GasTurbines and Power,2008, Vol.130,032809
    [101] Ra, Y. and Reitz, R. D. The application of a multicomponent dropletvaporization modeltogasoline direct injection engines[J]. International Journal ofEngine Research,2003, Vol.4, pp.193-218
    [102] Han, Z., Parrish, S., Farell, P.V., and Reitz, R.D., Modeling AtomizationProcess of Pressure Swirl Hollow-Cone Fuel Sprays[J]. Atomization and Sprays7:663-684,1997
    [103] Patrick Kirchen, Peter Obrecht and Konstantinos Boulouchos. Soot EmissionMeasurements and Validation of a Mean Value Soot Model for Common-Rail DieselEngine during Transient Operation[C]. SAE2009-01-1904,2009
    [104] Kong, S. C. and Reitz, R. D. Modeling Diesel Spray Flame Liftoff, SootingTendency, and NOx Emissions Using Detailed Chemistry with PhenomenologicalSoot Model[J]. Journal of Engineering for Gas Turbines and Power,2007, Vol.129,pp.245-251
    [105] S.S. Sazhin et.al Models for droplet transient heating: Effects on dropletevaporation, ignition, and break-up[J]. International Journal of Thermal Sciences44(2005)610–622
    [106] Alain Maiboom et al.New Phenomenological Six-Zone Combustion Model forDirect-Injection Diesel Engines[J] Energy&Fuels2009,23,690–703
    [107] R. Lebas et al Numerical simulation of primary break-up and atomization:DNS and modelling study[J]. International Journal of Multiphase Flow35(2009)247–260
    [108] S. Hossainpour et al Investigation of fuel spray atomization in a DIheavy-duty diesel engine and comparison of various spray breakup models[J]. Fuel88(2009)799–805
    [109] S. Tonini et al The role of droplet fragmentation in high-pressure evaporatingdiesel sprays[J]. International Journal of Thermal Sciences48(2009)554–572
    [110] Neerav Abani et al. Reduction of Numerical Parameter Dependencies inDiesel Spray Models[C] MAY2008, Vol.130/032809
    [111] Feng Tao et al. Nine-step phenomenological diesel soot model validated overa wide range of engine conditions[J]. International Journal of Thermal Sciences48(2009)1223–1234
    [112] Sebastian Mosbach et al Towards a detailed soot model for internalcombustion engines[J]. Combustion and Flame156(2009)1156–1165
    [113] P. Kirchen and K. Boulouchos. Development and Validation of aPhenomenological Mean Value Soot Model for Common-Rail Diesel Engines[C].SAE2009-01-1277,2009
    [114] Mueller, C.J., Pickett, L.M., Siebers, D.L., Pitz, W.J. et al., Effects ofOxygenates on Soot Processes in DI Diesel Engines: Experiments and NumericalSimulations[C]. SAE2003-01-1791,2003
    [115] Mohammedi K., Sadi A., Belaidi I., Bouziane A., Boudieb D., Simulation andExergy Analysis of a Small Scale Seawater Desalination/Electricity ProductionPrototype Powered with Renewable Energy[J]. Int. J. of Thermal&EnvironmentalEngineering,2011, Vol.2(No.2),107-112
    [116] A. Parlak, H. Yasar, O. Eldogan. The effect of thermal barrier coating on aturbo-chargedDiesel engine performance and exergy potential of the exhaust gas[J].EnergyConversionandManagement. Vol.46.2005. pp.489-499
    [117] C D. Rakopoulos, E. G. Giakoumis. Availability analysis of a turbochargeddiesel engine operating under transient load conditions[J]. Energy. Vol.29.2004. pp.1085-1104
    [118] Mohamed M. El-Awad. Energy and Exergy Analysis of acombinedDiesel-Engine Gas-Turbine System for Distributed Power Generation.[J]. Int. J. ofThermal&Environmental Engineering Volume5, No.1(2013)31-39
    [119] G. Bourhis and P. Leduc. Energy and Exergy Balances for Modern Diesel andGasoline Engines[J] Oil&Gas Science and Technology–Rev. IFP,Vol.65(2010), No.1, pp.39-46
    [120] Woo, Y., Yeom, K., Bae, C., Oh, S. et al., Effects of Stratified EGR on thePerformance of a Liquid Phase LPG Injection Engine, SAE Technical Paper2004-01-0982,2004
    [121] Sarikoc, F., Kettner, M., Velji, A., Spicher, U. et al., Potential of Reducing theNOX Emissions in a Spray Guided DI Gasoline Engine by Stratified Exhaust GasRecirculation (EGR), SAE Technical Paper2006-01-1261,2006
    [122] Jamsran, N., Lim, O., and Iida, N., An Investigation on DME HCCI Engineabout Combustion Phase Control using EGR Stratification by Numerical Analysis,SAE Technical Paper2012-32-0077,2012
    [123]高剑,蒋德明,黄佐华,王锡斌.缸内直喷(GDI)汽油机燃油喷雾和分层燃烧的数值研究(英文)[J]内燃机学报.2005(04),23:291-306
    [124]郑永伟.分层稀燃LPG缸内直喷发动机燃烧及排放过程的理论研究[D].山东建筑大学2012
    [125]马骁,何旭,王建昕.用PLIF法研究缸内直喷发动机稀燃分层与当量比分层策略[J].燃烧科学与技术.2010(04),16:328-334
    [126]阳冬波,王志,王建昕.用汽油和甲醇燃油分层拓展HCCI燃烧高负荷的试验研究[J].内燃机工程.2012(03),33:1-5
    [127] Junnian Zheng, Jerald A. Caton. Second law analysis of a low temperaturecomb ustion diesel engine: Effect of injection timing and exhaust gas recirculation [J].Energy38(2012)78-84
    [128] C.D. Rakopoulos, E.G. Giakoumis. Second-law analyses applied to internalcombustion engines operation [J]. Progress in Energy and Combustion Science32(2006)2–47
    [129] E.G. Giakoumis. Cylinder wall insulation effects on the first-and second-lawbalances of a turbocharged diesel engine operating under transient load conditions [J].Energy Conversion and Management48(2007)2925–2933
    [130] C.D. Rakopoulos, E.G. Giakoumis. Comparative first-and second-lawparametric study of transient diesel engine operation [J]. Energy31(2006)1927–1942
    [131] Shen Zhaojie, Liu Zhongchang; Tian Jing, Li, Kang Liu Jiangwei. Simulationof EGR stratification on timing-sequential regionalized diesel combustion. FISITA2012World Automotive Congress.2013(2)827-838
    [132]金华玉.核心边界条件对柴油机燃烧的影响及优化[D].吉林大学2008
    [133]杨福源,杨雨平,欧阳明高,陈林,杨学青.柴油机基于缸压的闭环反馈控制技术[J].内燃机学报.2012(02),30:172-178
    [134] Bengtsson J, Strandh P, Johansson R, Tunestal P, Johansson B. Closed-loopcombustion control of homogeneous charge compression ignition (HCCI) enginedynamics [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL ANDSIGNAL PROCESSING2004,Vol18(2):167-179

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700