智能群体系统集群行为的动力学建模与分析及其仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
集群是一种普遍存在的自然现象,是对现实世界中的群居性生物群体和人工群体所呈现出的有序集群行为的一种高度抽象。群由数目庞大的相互作用的个体组成,其本质特征是其个体具有较少智能或没有智能,但由于个体之间的交互作用而自底向上涌现出集群智能,体现了生物进化及智能体间分布式协调合作机制等的内在原因。智能群体系统本质上是一种复杂适应系统。
     集群智能控制研究的是智能群体系统的运动行为的软控制。而由多个智能个体耦合而成的多智能体系统经由相互的分布式协调合作机制可实现对复杂系统的控制。多智能体系统的控制问题与智能群体系统的集群运动控制问题之间有着天然的内在联系。多智能体分布式协调合作控制问题的目标是使多智能体达到一致,这与集群智能控制系统的研究目标相符合。近年来,一致性问题的研究重点在于研究一致性机制在具体的智能群体工程应用中的性质,如同步、编队、集群、蜂拥、聚集等相关的一致性问题。
     本文针对智能群体系统运动行为的软控制,通过建立反映群居性生物群体集群行为的涌现机制与一致性问题之间的映射关系为纽带,将从前者中抽取的群体运动规律作为智能群体系统的动力学建模和协调行为的软控制工具,然后结合一致性机制应用中由迁移、蜂拥行为延伸出的避碰、避障、编队、目标跟踪、覆盖搜索等主要环节的需求,进行软控制策略设计及其仿真研究。围绕这些内容所进行的主要工作如下:
     (1)借鉴群居性生物的感知能力和交互能力,建立了集群系统运动行为分析的基本框架,给出了集群行为动态特性与一致性问题之间的映射关系,从而揭示了智能群体系统的协调控制与一致性应用机制之间的内在联系。
     (2)生物群体的集群行为中蕴涵着潜在的内部运行机理。为便于群体系统运动规律的分析,文中采用空间法建模中的拉格朗日框架和欧拉框架,分别构建了三种不同类型的智能群体动力学模型。同时,针对不同的感知环境,就有限感知、全局感知、各向同性、各向异性、随机干扰、有无时延等情形,分别对这三类模型进行了细化和描述。并在对有限感知和指数型随机两类拉格朗日模型处于不同情形下的控制律进行分析的基础上,就其集群行为进行了仿真测试,验证了这两类模型的正确性和有效性。
     (3)从控制系统稳定性的分析着手,从理论上证明了有限感知、指数型随机和互惠扩散三类集群系统模型的聚集性与稳定性。并针对智能群体系统协调行为的软控制中涉及到的避障、编队、抑噪、目标跟踪、覆盖搜索等一致性应用问题,就有限感知、指数型随机这两类集群系统模型分别进行了检验其软控制性能的仿真测试。仿真结果表明,这两类智能群体系统模型均具有良好的稳定性。
     (4)针对面向盐湖采卤及盐田监测的仿生机器鱼系统实际应用中涉及到的协调合作作业问题,构建了机器鱼群体的控制体系结构的基本框架,并就系统的控制方案设计、研究目标、技术路线等问题进行了讨论,论证了所建立的航迹导航策略与协调作业机制的可行性。
Swarming is the ubiquitous phenomenon in nature. This phenomenon is thehighly abstracted of the orderly collective behavior, which is emerging from socialbiological population and man-made population in the real word. Flock is made up bythe interaction individuals with enormous number. The intrinsic character of flock isthat the intelligent individual has little or no intelligence at all. This kind ofintelligence it does is spontaneously emerging from bottom to top via the interactionsamong individuals. It shows the internal reason of biologic evolution, the mechanismof distributed coordination and cooperation among intelligent agents, and so on.Intelligent swarm system is essentially a kind of complex adaptive system.
     Collective intelligent control study the motion behavior’s soft controlling ofintelligent swarm system. Meantime, the multi-agent system with a lot of intelligentagents via the mechanism of distributional coordination and cooperation can realizethe control on complicated system. The control problem of multi-agent system linkswith the swarming motion control problem of intelligent swarm systems in natureinherent. The objective of the control problem of multi-agent’s distributionalcoordination and cooperation is multi-agent coincident with the consensus, which iswell coincide with the research objective of collective intelligent control system. Inrecent years, the studying emphasis in consensus problem is studying the concreteproperties of the consensus mechanism’s intelligent swarm engineering applications.Some relative problems are analyzed here respectively, such as synchronization,formation problem, swarming and flocking, rendezvous problem, and so on.
     Aiming at the motion behavior’s soft controlling of intelligent swarm systems, themapping relation is built up to reflect the relations between the emergency mechanismof social biological population’s collective behavior and consensus problem in thispaper. The group’s motion law is be drawn from the former by taking the mappingrelations as bond, and use it as a tool to be used in dynamic modeling and soft controlon coordination behavior of intelligent swarm systems. And then unifies the mainlinks’ require of the consensus mechanism’s applications, the soft control strategydesign and simulation are studied. In which, the main links refer to such motionbehavior as collision-avoidance, obstacle-avoidance, formation configuration,trajectory tracking, coverage search, and so on. The main links are extended frommigration or flocking behavior. Being focused on this topic, the main work in thispaper is as following:
     (1) Drawing lessons from the perception and interaction capabilities of socialbiological, the basic frame of the motion behavior analysis of swarming system isestablished, the mapping relation is given to reflect the relations between the dynamiccharacteristic of collective behavior and consensus problem. It is revealed that there is an internal relation between coordination control of intelligent swarm systems andconsensus application mechanism.
     (2) The collective behavior of biological population which implicates thepotential interior operational principle. For the convenience of the analysis on motionlaw of swarm systems, three kinds of the dynamic models of different types onintelligent swarm systems are constructed respectively based on the two differentframeworks which are Lagrangian framework and Eulerian framework, and which aresubordinate to the spatial approach is adopted while modeling in this paper.Meanwhile, the detailed analysis and description of these three kinds of models hasbeen done respectively which is aiming at the difference of the perceptionenvironment’s condition and considering under different situation such as finiteperception, global perception, isotropy, anisotropy, stochastic disturbance, withtime-delay, without time-delay, and so on. And then the collective behavior issimulated and tested with the two kinds of Lagrangian models which are the rangelimit perceived swarms model and exponential type stochastic swarms model basedon the analyses of the control rules for the two kinds of Lagrangian models underdifferent situation in this paper. The correctness and validity of the two kinds ofLagrangian models has been verified by simulation.
     (3) Theoretically, it has been proved that the aggregation and stability on the threekinds of swarm systems models which are the range limit perceived swarms modeland the exponential type stochastic swarms model and the cooperative diffusionswarms model from control system stability analysis, and in addition to this, thesimulation and testing on the soft control performance of the two kinds of swarmsmodels which are the range limit perceived swarms model and exponential typestochastic swarms model is done which is aiming at the consensus applicationsproblems during the soft control on coordination behavior of intelligent swarmsystems such as obstacle-avoidance, formation configuration, noise suppression,trajectory tracking, coverage search, and so on. The simulation result confirms the twokinds of intelligent swarm systems models which all posses better stability.
     (4) Aiming at the particular requirement of coordination and cooperationproblems on the brine extraction and monitoring process with multiple biomimeticrobotic fishes system as well as some basic problems in salt field, the basic frameworkof the control architecture of multiple bionic robot fishes system is constructed. Someproblems bearing relationship with it have been discussed, such as control schemedesign, research objective, technology route, and so on. The feasibility demonstrationis done yet simultaneously on the track navigation strategy and coordinative operationmechanisms which have been established in this paper.
引文
[1]程代展,陈翰馥.从群集到社会行为控制.科技导报(复杂性科学研究专题),2004,8(1):4-7
    [2]徐东,刘佰龙,张汝波.群体觅食行为启发的多机器人分布式编队控制方法研究.小型微型计算机系统,2009,30(10):2034-2038
    [3]许国志,顾基发,车宏安.系统科学与工程研究.第2版.上海:上海科技教育出版社,2000,167-182
    [4]约翰·霍兰.涌现:从混沌到有序.陈禹等译.上海:上海世纪出版集团,2006,1-17
    [5]陈世明.群集行为的建模与控制方法综述.计算机工程与科学,2007,29(7):102-105
    [6]楚天广,杨正东,邓魁英等.群体动力学与协调控制研究中的若干问题.控制理论与应用,2010,27(1):86-93
    [7]陈世明.群体系统蜂拥控制理论及应用研究进展.计算机应用研究,2009,26(6):2004-2007
    [8]杨波,方华京.大规模群体系统的现状研究.武汉理工大学学报(信息与管理工程版),2007,29(1):1-6
    [9]王龙,伏锋.演化动力学与合作复杂性.见:中国自动化大会暨两化融合高峰会议论文集.杭州:中国自动化学会,2009,1-14
    [10] E Bonabeau, M Dorigo, G Theraulaz. Swarm Intelligence: From Natural toArtificial Systems. New York: Oxford University Press,1999
    [11] S Camazine, J L Deneubourg, N R Franks, et al. Self-organization in BiologicalSystems. Princeton: University Press,2001
    [12] D Payton, M Daily. Pheromone Robotics. Autonomous Robots,2001,11(1):319-324
    [13]范永,谭民. MRCS中机器人控制体系结构.控制与决策,2000,15(3):325-328
    [14]高志军,颜国正,丁国清等.多机器人协调与合作系统的研究现状和发展.光学精密工程,2001,9(2):99-103
    [15]川谈大龙,黄闪,李淑华.分布自主协作式的多机器人系统研究.机器人,1996,18(6):338-343
    [16]陈忠泽,林良明,颜国正.基于MAS(Multi-Agent System)的多机器人系统:协作多机器人学发展的一个重要方向.机器人,2001,23(4):368-373
    [17]国家高技术研究发展计划(“863”计划)先进制造技术领域2006年度专题课题申请指南,2006.URL http://www.most.gov.cn/tztg/t20061001_36446.htm
    [18]863计划先进制造技术领域智能机器人技术专题2006年度立项课题清单,2006. URLhttp://www.most.gov.cn/wzfwtj/zshyxx/200612/p020061207413353486702.doc
    [19]国家自然科学基金“十一五”发展规划,2006.URL http://www.most.gov.cn/nsfc/fzjh10-1-5/index.htm
    [20]国家自然科学基金“十二五”发展规划,2011.URL http://www.most.gov.cn/nsfc/cen/bzgh-125
    [21]国家科技支撑计划“十一五”发展纲要,2006.URL http://www.most.gov.cn/ztzl/qgkjgzhy/2007/2007syw/200702/p0200702146117959837060.doc
    [22]2005年度国家自然科学基金重点项目申请指南,2005.URL http://www.nsfc.gov.cn/nsfc/cen/glbf/02/20051201_02.htm
    [23]2004年度国家自然科学基金项目申请指南,2004.URL http://www.nsfc.gov.cn/nsfc/cen/xmzn/2004xmzn/index.htm
    [24]2005年度国家自然科学基金项目申请指南,2005.URL http://www.nsfc.gov.cn/nsfc/cen/xmzn/2005xmzn/index.htm
    [25]2009年度国家自然科学基金项目申请指南,2009.URL http://www.nsfc.gov.cn/nsfc/cen/xmzn/2009xmzn/index.htm
    [26]2011年度国家自然科学基金项目申请指南,2011.URL http://www.nsfc.gov.cn/nsfc/cen/xmzn/2011xmzn/index.htm
    [27] J K Parrish, L Edelsten-keshet. Complexity, Pattern, and Evolutionary Trade-offsin Animal Aggregations. Science,1999,284(2):99-101
    [28] P Tarasewich, P McMullen. Swarm Intelligence: Power in Numbers.Communications of the ACM,2002,45(8):62-67
    [29] Z Chen, H Zhang. No-beacon Collective Circular Motion of Jointly ConnectedMulti-agents. Automatic,2011,47(1):1929-1937
    [30] C Grosan, A Abraham. Intelligent systems: A Modern Approach. Berlin,Heidelberg: Springer-Verlag,2011,409-422
    [31] I D Couzin, J Krause, R James, et al. Collective Memory and Spatial Sorting inAnimal Groups. Journal of Theoretical Biology,2002,218(1):409-421
    [32] B Camazine. Bird Flocks, Zebra Stripes, Honeybee Swarms: Self-organization inBiological Systems,2003. URL http://order.ph.utexas.edu/Camazine.pdf
    [33] R Olfati-Saber, J Shamma. Consensus Filters for Sensor Networks andDistributed Sensor Fusion. In: Proceedings of Conference on Decision andControl and European Control Conference (CDC-ECC’05). Seville: IEEE,2005,6698-6703
    [34] M D Lemmon, Y Sun. Cohesive Swarming Under Consensus. In: Proceedings ofthe45th IEEE Conference on Decision and Control. San Diego: IEEE,2006,5091-5096
    [35] N A Lynch. Distributed Algorithms. Elsevier India Private Limited: MorganKaufmann Publishers, Inc,1997
    [36] M H DeGroot. Reaching a Consensus. Journal of American StatisticalAssociation,1974,69(345):118-121
    [37] J A Benediktsson, P H Swain. Consensus Theoretic Classification Method. IEEETrans. on Systems, Man and Cybernetics,1992,22(4):688-704
    [38]杨文,汪晓帆,李翔.一致性问题综述.见:中国控制会议论文集.哈尔滨:中国自动化学会与IEEE,2006,1482-1486
    [39]谢光强,章云.多智能体系统协调控制一致性问题研究综述.计算机应用研究,2011,28(6):2035-2039
    [40]冯元珍.多智能体系统一致性问题综述.长江大学学报(自然科学版),2011,8(3):84-87
    [41]刘成林,田玉平.具有时延的多个体系统的一致性问题综述.控制与决策,2009,24(11):1601-1614
    [42]乔琳,邓彥松,田晓亮.基于一致性理论的多机器鱼编队控制.兵工自动化,2011,30(12):70-74
    [43]蒋嶷川.多Agent群体行为中的扩散趋同综述.模式识别与人工智能,2009,22(6):877-883
    [44]陈世明.特征个体有界交互作用构成的集群模型.控制理论与应用,2010,27(9):1227-1230
    [45]蔡自兴等.多移动机器人协同原理与技术.北京:国防工业出版社,2011,73-124
    [46]谭民,范永,徐国华.机器人群体协作与控制的研究.机器人,2001,23(2):178-182
    [47]谭民,王硕,曹志强.多机器人系统.北京:清华大学出版社,2005,6-20
    [48] O Yadgar, S Kraus, CL Ortiz Jr. Hierarchical Organizations for Real-TimeLarge-Scale Task and Team Environments. In: Proceedings of the1st Int’l JointConf. on Autonomous Agent and Multi-agent Systems: Part3. New York, NY,USA: ACM,2002,1147-1148
    [49]张海英,刘祚时,林桂娟.群体机器人研究的现状和发展.电子技术应用,2004,30(2):1-3
    [50] J Liu, X Jin, K C Tsui. Autonomy Oriented Computing (AOC): From ProblemSolving to Complex Systems Modeling. Boston: Kluwer Academic Publisher,2005
    [51] C W Reynolds. Flocks, Herds, and Schools: A Distributed Behavioral Model.ACM SIGGRAPH Computer Graphics,1987,21(4):25-34
    [52]李欣,李若琼,董海鹰.基于仿生群体协同的集群智能控制研究.电气自动化,2006,28(4):3-5
    [53]王瑛,候朝桢,冯天飞.分布式智能控制的研究.见:中国控制与决策学术年会论文集.沈阳:东北大学出版社,2001,512-514
    [54]王小平,曹立明.遗传算法——理论、应用与软件实现.西安:西安交通大学出版社,2002,38-49
    [55]薛宏涛,沈林成,叶媛嫒等.基于协进化方法的多智能体协作系统体系结构及其仿真框架.系统仿真学报,2002,14(3):297-303
    [56] C W Reynolds. An Evolved, Vision-Based Behavioral Model of CoordinatedGroup Motion. In: Proceedings of the Second International Conference onSimulation of Adaptive Behavior (From Animals to Animats2). Cambridge,Massachusetts: MIT Press,1992,384-392
    [57]方美琪,张树人.复杂系统建模与仿真.北京:中国人民大学出版社,2005,1-73
    [58]郑大钟.线性系统理论.北京:清华大学出版社,1990,1-221
    [59]方崇智,萧德云.过程辨识.北京:清华大学出版社,1988,1-23
    [60]齐欢,王小平.系统建模与仿真.北京:清华大学出版社,2004,1-26
    [61]王红卫.建模与仿真.北京:科学出版社,2002,1-16
    [62] J K Parrish, W M Hamner. Animal Groups in Three Dimensions. Cambridge:Cambridge University Press,1997,257-281
    [63] D Grünbaum. Schooling as A Strategy for Taxis in A Noisy Environment.Evolutionary Ecol,1998,12(5):503-522
    [64] C M Breder. Equations Descriptive of Fish Schools and Other AnimalAggregations. Ecology,1954,35(3):361-370
    [65] K Warburton, J Lazarus. Tendency-distance Models of Social Cohesion inAnimal Groups. Theoretical Biol,1991,150(4):473-488
    [66] A Okubo. Dynamical Aspects of Animal Grouping: Swarms, Schools, Flocks,and Herds. Advances in Biophysics,1986,22(1):1-94
    [67] D Grünbaum, A Okubo. Modeling Social Animal Aggregations. In: Frontiers ofTheoretical Biology. Lecture Notes in Biomathematics, Vol.100, Berlin,Heidelberg: Springer-Verlag,1994,296-325
    [68] A Mogilner, L Edelstein-Keshet. A Non-local Model for A Swarm. J Math Biol,1999,38(6):534-570
    [69] R Durrett, S Levin. The Importance of Being Discrete (and Spatial). TheoreticalPopulation Biology,1994,46(3):363-394
    [70] S Gueron, S A Levin. The Dynamics of Group Formation. Math Biosciences,1995,128(1-2):243-264
    [71] Czirok, T Vicsek. Collective Behavior of Interacting Self-Propelled Particles.Physica. A,2000,281(1-4):17-29
    [72] A Jadbabaie, J Lin, A S Morse. Coordination of Groups of Mobile AutonomousAgents Using Nearest Neighbor Rules. IEEE Transactions on Automatic Control,2003,48(6):988-101
    [73] H Shi, L Wang, T Chu. Swarming Behavior of Multi-agent Systems. Journal ofControl Theory and Applications,2004,2(4):313-318
    [74] M Clerc, J Kennedy. The Particle Swarm-explosion, Stability, and Convergencein a Multidimensional Complex Space. IEEE Trans. Evolutionary Computation,2002,6(1):58-73
    [75] T Balch, R C Arkin. Behavior-based Formation Control for Multi-robot Teams.IEEE Transactions on Robotics and Automation,1998,14(6):926-939
    [76] I Suzuki, M Yamashita. Distributed Anonymous Mobile Robots: Formation ofGeometric Patterns. SIAM Journal on Computing,1999,28(4):1347-1363
    [77] H Yamaguchi. A Cooperative Hunting Behavior by Mobile-robot Troops. TheInternational Journal of Robotics Research,1999,18(9):931-940
    [78] J H Reif, H Wang. Social Potential Fields: A Distributed Behavioral Control forAutonomous Robots. Robotics and Autonomous Systems,1999,27(3):171-194
    [79] J P Desai, J Ostrowski, V Kumar. Controlling Formations of Multiple MobileRobots. In: Proc IEEE Int Conf Robot Automat. Leuven, Belgium: IEEE,1998,2864-2869
    [80] P gren, M Egerstedt, X Hu. A Control Lyapunov Function Approach toMulti-agent Coordination. In: Proc Conf Decision Contr. Orlando, Florida, USA:IEEE,2001,1150-1155
    [81] N E Leonard, E Fiorelli. Virtual Leaders, Artificial Potentials and CoordinatedControl of Groups. In: Proceedings of the40th IEEE Conference on Decisionand Control. Orlando, Florida, USA: IEEE,2001,2968-2973
    [82] R Bachmayer, N E Leonard. Vehicle Networks for Gradient Descent in ASampled Environment. In: Proc Conf Decision Contr. Las Vegas, NV, USA:IEEE,2002,112-117
    [83]潘福臣,陈雪波,李琳.群集系统的软控制.控制与决策,2008,23(8):953-956
    [84] V Gazi, K M Passion. Stability Analysis of Social Foraging Swarms. IEEETransactions on Systems, Man, and Cybernetics (Part B),2004,34(1):539-557
    [85] J Liu, B Hu. On Emergent Complex Behaviour, Self-organised Criticality andPhase Transitions in Multi-agent Systems: Autonomy Oriented Computing (AOC)Perspectives. Int J Modelling, Identification and Control,2008,3(1):3-16
    [86] T Vicsek, A Czirok, E Ben-Jacob et al. Novel Type of Phase Transition in aSystem of Self-Driven Particles. Phys Rev Lett,1995,75(6):1226-1229
    [87] V Gazi, K M Passion. Stability Analysis of Swarms. In: Proceedings of theAmerican Control Conference. Anchorage, Alaska, USA: IEEE,2002,1813–1818
    [88] J Jeanne, N E Leonard, D A Paley. Collective Motion of Ring-coupled PlanarParticles. In: Proceedings of the IEEE Conference on Decision and Control.Princeton, NJ, USA: IEEE,2005,3929-3934
    [89] E W Justh, P S Krishnaprasad. Equilibria and Steering Laws for PlanarFormations. Systems and Control Letters,2004,52(1):25-38
    [90] J A Marshall, M E Broucke, B A Francis. Formations of Vehicles in CyclicPursuit. IEEE Transactions on Automatic Control,2004,49(11):1963-1974
    [91] D A Paley, N E Leonard, R Sepulchre. Collective Motion: Bistability andTrajectory Tracking. In: Proceedings of the IEEE Conference on Decision andControl. Princeton, NJ, USA: IEEE,2004,1932-1936
    [92] R Sepulchre, D A Paley, N E Leonard. Stabilization of Planar Collective Motion:All-to-all Communication. IEEE Transactions on Automatic Control,2007,52(5):811-824
    [93] N Ceccarelli, M D Marco, A Garulli, et al. Collective Circular Motion ofMulti-vehicle Systems. Automatica,2008,44(12):3025-3035
    [94] D Helbing, I Farkas, T Vicsek. Simulating Dynamical Features of Escape Panic.Nature,2000,407(28):487-490
    [95] V Gazi, K M Passion. Stability Analysis of Swarms. IEEE Transactions onAutomatic Control,2003,48(4):692-697
    [96]陈亮,许力.基于无界排斥的各向异性Swarm模型.浙江大学学报(工学版),2007,41(6):905-914
    [97] A Mogilner, L Edelstein-Keshet, L Bent, et al. Mutual Interactions, Potentials,and Individual Distance in A Social Aggregation. J Math Biol,2003,47(1):353-389
    [98] L Chen, L Xu. Collective Behavior of an Anisotropic Swarm Model Based onUnbounded Repulsion in Social Potential Fields. In: Proceedings of theInternational Conference on Intelligent Computing (Part3: ComputationalIntelligence and Bioinformatics). Lecture Notes in Computer Science, Vol.4115,Berlin, Heidelberg: Springer-Verlag,2006,164-173
    [99] O Khabit. Real-Time Obstacle Avoidance for Manipulators and Mobile Robots.The International Journal of Robotics Research,1986,5(1):90-98
    [100] E Rimon, D E Koditschek. Exact Robot Navigation Using Artificial PotentialFunctions. IEEE Transactions on Robotics and Automation,1992,8(5):501-518
    [101]陈世明,方华京.大规模智能群体的建模及稳定性分析.控制与决策,2005,20(5):490-494
    [102]陈世明,方华京.大规模移动智能群体的建模及联合行为分析.控制与决策,2005,20(12):1392-1396
    [103] S Chen, H Fang. An Improved Cooperative Tracking Model Used forLarge-scale Social Foraging Swarm. ACTA AUTOMATIC SINICA,2002,32(1):38-42
    [104] S Chen, H Fang. Modeling and Stability Analysis of Social Foraging Swarms inMulti-obstacle Environment. Journal of Control Theory and Applications,2006,4(1):343-348
    [105] S Chen, H Fang. Modelling and Stability Analysis of Emergent Behavior ofScalable Swarm System. Journal of Zhejiang University SCIENCE A,2006,7(6):952-959
    [106] T Chu, L Wang, S Mu. Collective Behavior Analysis of an Anisotropic SwarmModel. In: Proceedings of the16th International Symposium on MathematicalTheory of Networks and Systems. Leuven, Belgium: Katholieke UniversiteitLeuven Press,2004,1–14
    [107] L Wang, H Shi, T Chu, et al. Aggregation of Foraging Swarms. In: Proceedingsof Australian Conference on Artificial Intelligence (Computer Science). LectureNotes in Artificial Intelligence, Vol.3339, Berlin, Heidelberg: Springer-Verlag,2004,766-777
    [108] B Liu, T Chu, L Wang, et al. Collective Motion of a Class of Social ForagingSwarms. Chaos Solitons and Fractals,2007,38(1):277-292
    [109] F Pan, X Chen, L Li. Stability Analysis of Stochastic Swarms System. In:Proceedings of the6th World Congress on Intelligence Control and Auomation.Dalian, Liaoning, CHINA: IEEE,2006,1048–1051
    [110] X Chen, F Pan, L Li, et al. Practical Stability Analysis for Swarm Systems. In:Proceedings of the32nd Annual Conference on IEEE Industrial Electronics.Anshan, Liaoning, CHINA: IEEE,2006,3904–3909
    [111] F Pan, X Chen, L Li. Practical Stability Analysis of Stochastic Swarms. In:Proceedings of the3rd International Conference on Innovative ComputingInformation and Control. Dalian, Liaoning, CHINA: IEEE,2008,32–35
    [112] F Pan, X Chen, L Li. Practical Stability in Swarms System. J Appl Math AndInformatics,2008,26(1-2):203-212
    [113]杨波,方华京.随机群体系统的数值仿真研究.武汉理工大学学报,2007,29(5):130-133
    [114] B Yang, H Fang. Practical Stability in Swarms System. Wuhan UniversityJournal of Natural Sciences,2007,12(3):506-510
    [115]陈虹舟,秦世引.演化动力学与合作复杂性.见:第十一届中国人工智能学术年会论文集.武汉:中国人工智能学会,2005,1030-1035
    [116]陈虹舟,秦世引.基于相关机会规划的多机器人觅食过程的参数优化.复杂系统与复杂性科学,2005,2(4):67-71
    [117] K Sugawara, M Sano. Cooperative Acceleration of Task Performance: ForgingBehavior of Interacting Multi-robots System. Physica D,1997,100(3):343-354
    [118] F Chantemargue, B Hirsbrunner. A Collective Robotics Application Based onEmergence and Self-organization. In: Proceedings of the Fifth InternationalConference for Young Computer Scientists. Nanjing, Jiangsu, CHINA:International Academic Publishers,1999,1–8
    [119] K Lerman, A Galstyan. Mathematical Model of Foraging in A Group of Robots:Effect of Interference. Autonomous Robots,2002,13(2):127-141
    [120] K Lerman, A Galstyan. Automatically Modeling Group Behavior of SimpleAgents. In: Proceedings of the International Conference on Autonomous Agentsand Multi-Agent Systems (In: Agent Modeling Workshop). New York, NY,USA: IEEE,2004,1–7
    [121]杨洪勇,徐群叁.具有单向时延的多智能体系统的一致性分析.复杂系统与复杂性科学,2008,5(3):62-67
    [122] D Jin, L Gao. Stability Analysis of Swarm Based on Double Integrator Model.In: Proceedings of the International Conference on Intelligent Computing (Part3: Computational Intelligence and Bioinformatics). Lecture Notes in ComputerScience, Vol.4115, Berlin, Heidelberg: Springer-Verlag,2006,201-210
    [123] D Jin, L Gao. Stability Analysis of A Double Integrator Swarm Model Relatedto Position and Velocity. Transactions of the Institute of Measurement andControl,2008,30(3-4):275-293
    [124] V Gazi, K M Passion. A Class of Attractions/Repulsion Functions for StableSwarm Aggregations. Int J Control,2004,77(18):1567-1579
    [125] V Gazi, K M Passion. A Class of Attraction/Repulsion Functions for StableSwarm Aggregations. In: Proceedings of the41st IEEE Conference on Decisionand Control. La Vegas, Nevada, USA: IEEE,2002,2842–2847
    [126] L Edelstein-Keshet. Mathematical Models of Swarming and Social Aggregation.In: Proceedings of the International Symposium on Nonlinear Theory and itsApplications (Invited Lecture). Miyagi, JAPAN: Miyagi University Press,2001,1–7
    [127]赵延忠.具有阶段结构的互惠模型解的整体性态.北京工商大学学报(自然科学版),2009,27(4):76-78
    [128] X Zhang, L Chen, A U Neumann. The Stage-Structured Predator-Prey Modeland Optimal Harvesting Policy. Math Boisci,2000,168(2):201-210
    [129] M I Koksal, V Gazi, B Fidan, et al. Tracking a Maneuvering Target with aNon-holonomic Agent Using Artificial Potentials and Sliding Mode Control. In:Proceedings of the16th Mediterranean Conference on Control and Automation.Ajaccio, France: IEEE,2008,1174–1179
    [130] B Chopard, M Droz.物理系统的元胞自动机模拟.祝玉学,赵学龙译.北京:清华大学出版社,2003,1-138
    [131]王宏华,王时胜.现代控制理论.北京:电子工业出版社,2006,193-197
    [132] H K Khalil.非线性系统.朱义胜,董辉,李作洲等译.北京:电子工业出版社,2011,83-85
    [133]廖晓昕.动力系统的稳定性理论和应用.北京:国防工业出版社,2000,462-469
    [134]王明新.非线性抛物型方程.北京:科学出版社,1993,121-122
    [135] D Henry. Geometic Theory of Semilinear Parabolic Equations. Lecture Notes inMathematics, Vol.840, Berlin, Heidelberg: Springer-Verlag,1981,1-348
    [136] K J Brown, P C Dunne, R A Gardner. A Semilinear Parabolic System Arising inthe Theory of Superconductivity. Journal of Differential Equations,1981,40(2):232-252
    [137] J Han, M Li, L Guo. Soft Control on Collective Behavior of a Group ofAutomamous Agents by a Shill Agent. Journal of Systems Science andComplexity,2006,19(1):54-62
    [138] J Han, L Guo, M Li. Guiding a Group of Locally Interacting AutonomousMobile Agents. In: Proceedings of the24th Chinese Control Conference.Guangzhou, CHINA: South China University of Technology Press,2005,184–187
    [139]潘福臣,陈雪波,李琳.群集系统的软控制.控制与决策,2008,23(8):953-956
    [140]蔡自兴,徐光祐.人工智能及其应用.第3版.北京:清华大学出版社,2004,312-315
    [141]王晓丽.多智能体系统分布式控制的研究新进展.复杂系统与复杂性科学,2010,7(2-3):70-81
    [142] J G Walker. The Geometry of Satellite Cluster. Journal Orbital Dynamics(British Interplanetary Society),1982,35(1):345-354
    [143] X Chen, Y Li. Smooth Formation Navigation of Multiple Mobile Robots forAvoiding Moving Obstacles. International Journal of Control, Automation, andSystems,2006,4(4):466-479
    [144] X Chen, Y Li. Stability on Adaptive NN Formation Control with VariantFormation Patterns and Interaction Topologies. International Journal ofAdvanced Robotic Systems,2008,5(1):69-82
    [145] Y Q Chen, Z Wang. Formation Control: a Review and a New Consideration. In:Proceedings of the International Conference on Intelligent Robots and Systems.Edmonton, Alberta, CANDA: IEEE,2005,3181–3186
    [146] Y S Hanay, H V Hünerli, M I K ksal. Formation Control with PotentialFunctions and Newton's Iteration. In: Proceedings of the European ControlConference. Kos, Greece: The European Union Control Association (EUCA),2007,4584–4590
    [147] V Gazi, B Fidan, Y Hanay, et al. Aggregation, Foraging and Formation Controlof Swarms with Non-Holonomic Agents Using Artificial Potentials and SlidingMode Techniques. Turkish Journal of Electrical Engineering,2007,15(2):149-168
    [148] E M Saad, M H Awadalla, A M Hamdy, et al. A Distributed Algorithm forRobot Formations Using Local Sensing and Limited Range Communications.In: Proceedings of the Third Virtual International Conference on IntelligentProduction Machines and Systems. Cardiff, UK: Elsevier,2007,481–485
    [149] D W Gage. Command Control for Many-Robot Systems. In: Proceedings of theNineteenth Annual AUVS Technical Symposium. Huntsville,Alabama,USA:IEEE,19922,22–24
    [150]曹峰,刘丽萍,王智.能量有效的无线传感器网络部署.信息与控制,2006,35(2):147-153
    [151]喻俊志,陈尔奎,王硕等.仿生机器鱼研究的进展与分析.控制理论与应用,2003,20(5):485-491
    [152]喻俊志,王硕,谭民.多仿生机器鱼控制与协调.机器人技术及应用,2003,16(3):27-35
    [153]张毅,杨锐敏,王洲等.机器鱼的研究动态综述.重庆邮电大学学报(自然科学版),2007,19(5):598-601
    [154] J Liu, H Hu. A3D Simulator for Autonomous Robotic Fishes. InternationalJournal of Automation and Computing,2004,1(1):42-50
    [155] H Hu. Biologically Inspired Design of Autonomous Robotic Fish at Essex. In:Proceedings of the IEEE SMC UK-RI Chapter Conference on Advances inCybernetic Systems. Sheffield, UK: IEEE,2006,3–8
    [156]梁建宏,王田苗,魏洪兴.水下仿生机器鱼的研究进展I-鱼类波动推进机理.机器人,2002,24(2):107-111
    [157] H Hu, J Liu, I Dukes, et al. Design of3D Swim Patterns for AutonomousRobotic Fish. In: Proceedings of the International Conference on IntelligentRobots and Systems. Beijing, CHINA: IEEE,2006,2406–2411
    [158] J Liu, H Hu. Biological Inspiration: From Carangiform Fish to Multi-jointRobotic Fish. Journal of Bionic Engineering,2010,7(1):35-48
    [159] T Wang, J Liang. Stabilization based Design and Experimental Research of aFish Robot. In: Proceedings of the International Conference on IntelligentRobots and Systems. Alberta, CANDA: IEEE,2005,954–959
    [160]喻俊志,陈尔奎,王硕等.一种多仿生机器鱼协作系统的设计与初步实现.系统仿真学报,2002,14(10):1361-1320
    [161]杨廷敖,哈占芳,张跃东.青海盐湖集团一期工程采卤现状综述及可持续发展探讨.盐湖研究,2005,13(3):46-51
    [162]李建国.盐湖晶间卤水制取含钠光卤石的相图分析.海湖盐与化工,2002,31(2):25-27
    [163]周超,曹志强,王硕等.仿生机器鱼俯仰与深度控制方法.自动化学报,2008,34(9):1215-1218

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700