钙稳态系统在白念珠菌形态发生及压力应答中的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白念珠菌是临床常见的条件性致病真菌之一。由于重症特护人群、免疫缺陷人群的增加及抗生素的滥用,白念珠菌感染,尤其是白念珠菌侵袭性感染备受人们关注。白念珠菌是一种典型的两型性真菌,具有菌丝发育、生物被膜形成等形态发生能力,这些能力与该真菌的形态发生调控网络及分泌途径具有密切联系。不仅如此,白念珠菌还具有极为精细的环境压力应答系统,用以感应抗真菌药物、氧化胁迫、营养匮乏等诸多环境压力,并对其作用应答,使自身得以存活与生长。白念珠菌的形态发生与压力应答能力均是白念珠菌在宿主体内进行有效定殖并造成感染所必需的,而这些能力又与白念珠菌钙稳态系统的功能紧密相关。
     内质网与液泡是白念珠菌细胞两种极为重要的细胞器。前者是细胞分泌途径的核心,同时也是介导压力应答的主要细胞器。后者是白念珠菌细胞最主要的钙库,在调控细胞钙稳态方面扮演着重要角色。尽管白念珠菌钙稳态系统中的许多成员已为人们所知,但维持内质网功能所必需的钙泵尚未得到鉴定,且液泡钙通道Yvc1的功能仍属未知。此外,尽管人们已明确白念珠菌钙通道在形态发生及压力应答过程中发挥重要功能,但目前尚无有效抑制钙通道活性,进而指导临床实践的报道。本研究针对以上三个重要问题,对白念珠菌内质网钙泵进行鉴定及功能分析,并对液泡钙通道Yvc1的功能进行探索,同时研究钙通道阻断剂对白念珠菌形态发生及压力应答的影响,以期发现白念珠菌的新型毒力相关因子,并为临床治疗白念珠菌感染提供新的参考。本研究的主要结果如下:
     (1)通过BLASTP分析,从白念珠菌基因组数据库中鉴定出一种内质网钙泵Spfl。序列比对分析发现,该蛋白属于V型P-ATPase家族成员。采用镍柱纯化技术,纯化得到Spfl蛋白,酶活分析发现该蛋白具有ATPase活性。通过对SPF1缺失菌株spf1△/△的研究发现,spf1△/△在正常生长条件下的生长速率明显降低,菌丝发育能力明显减弱,生物被膜形成、絮凝、粘附等能力显著下降,对抗真菌药物、低钙、高钙、氧化胁迫、碱性pH及膜损伤等诸多环境压力高度敏感,并且丧失了系统性感染小鼠的能力。上述结果表明,Spfl作为白念珠菌的内质网钙泵,在白念珠菌正常生长、形态发生及压力应答方面发挥着重要作用,是白念珠菌一种重要的毒力相关因子。
     (2)采用fluo-3荧光探针法及原子吸收分光光度法,分析SPF1缺失对白念珠菌胞质钙及总钙含量的影响,发现其缺失导致压力条件下白念珠菌细胞钙稳态的严重紊乱,证明Spfl在维持细胞钙稳态方面扮演着重要角色。通过Western blotting及内切糖苷酶(EndoH)分析,发现SPF1缺失导致N-糖基化蛋白Cdc101及分泌型酸性磷酸酶(SAP)糖基化的缺陷,表明Spfl在维持内质网功能,尤其是其糖基化功能方面发挥作用。通过细胞壁压力敏感性测定,细胞壁重构及组分分析,发现SPFl缺失导致白念珠菌对细胞壁压力的敏感性增强,细胞壁重构能力降低以及细胞壁组成异常,揭示了Spfl在细胞壁完整性(CWI)维持方面的重要功能。β-半乳糖苷酶分析及RT-PCR结果表明,SPFl缺失影响白念珠菌诸多基因的表达,主要表现在钙应答基因CCH1,CWI基因PGA13、ECM331、 DFG5及氧化应答基因OYE32的表达显著上调,以及内质网功能必需基因SEC61,形态发生相关基因HWP1、ALS3及ECE1的表达显著下调。上述结果揭示了白念珠菌钙稳态系统、内质网压力应答系统与形态发生调控网络间存在紧密联系。
     (3)液体培养及点板实验表明,yvc1Δ/Δ菌株表现为对低钙、高钙、碱性pH、氧化胁迫等诸多环境压力的敏感性增强;通过流式细胞技术,发现碱性刺激下yvc1Δ/Δ丧失了第二次钙波动的能力,而在高渗刺激下完全丧失钙波动的能力;在氧化胁迫条件下,yvc1Δ/Δ菌株的ROS水平显著偏高,抗氧化酶SOD与CAT的活性及氧化应答基因表达量均显著偏低。在形态发生方面,yvc1Δ/Δ菌株的菌丝发育、絮凝、侵染式生长、生物被膜形成等诸多形态发生能力均明显下降,形态发生相关基因的表达量显著下调。首次采用FM4-64及fluo-3对白念珠菌菌丝顶端液泡、顶体及胞质钙进行共染色,发现yvc1Δ/Δ菌丝顶端不存在液泡、顶体以及高钙梯度,表明Yvc1所介导的液泡钙释放在白念珠菌形态发生中发挥重要作用,而且这种作用与形态发生相关基因的表达以及极性生长有关。系统性感染及上皮细胞侵染实验表明,yvc1Δ/Δ菌株系统性感染小鼠的能力,以及侵染、损伤宿主上皮细胞及菌丝重新定向能力均显著下降。上述结果表明,Yvc1介导的液泡钙释放在白念珠菌压力应答及形态发生过程中发挥重要作用。
     (4)采用酶标仪对fluo-3荧光信号进行动力学扫描,发现钙通道阻断剂维拉帕米(verapamil)能够明显抑制碱性刺激及药物刺激下白念珠菌的钙波动,而硝苯地平(nifedipine)同样明显抑制碱性刺激引起的钙波动,但对药物刺激下的钙内流不具有抑制作用。采用棋盘法(Chequerboard test)测定钙通道阻断剂与抗真菌药物对白念珠菌生长的协同抑制作用,发现verapamil与抗真菌药物氟康唑(fluconazole)、衣霉素(tunicamycin)具有协同作用,说明verapamil能够降低白念珠菌耐受抗真菌药物的能力,而nifedipine不具有该增强效应。在形态发生方面,verapamil能够明显抑制白念珠菌菌丝及生物被膜发育,并且能够增强抗真菌药物对生物被膜形成与维持的抑制作用。RT-PCR分析表明,verapamil的单独处理或与抗真菌药物联用能显著抑制ALS3基因的表达。上述结果揭示了verapamil对白念珠菌压力应答及形态发生的抑制作用,为临床白念珠菌感染的治疗提供了参考。
Candida albicans is one of the most important opportunistic fungal pathogens. Its infections, especially its invasive infections, were being paid attention due to the increase of ICU and immunocompromised individuals and the abuse of antibiotics. C. albicans is a typical diomorphic fungus, having the ability of morphogenesis, such as hyphal development and biofilm formation. This ability is closely associated with the morphogenesis regulation network and the secretory pathway. Moreover, This fungus evolved an elaborate stress response system to sense environmental stimuli, such as antifungal drugs, oxidative agents and nutrient depletion, and to respond to them for survival and growth. Both morphogenesis and stress response are essential for this fungus to effectively colonize and infect towards the host. Abundant evidence showed that the calcium homeostasis system plays an important role in these physiological processes.
     Both the endoplasmic reticulum(ER) and the vacuole are of significance in C. albicans cells. The ER is the centre of the secretory pathway, and is the main organelle mediating stress response, while the vacuole is the main calcium store which is indispensible for calcium homeostasis. Although many members of the calcium homeostasis system have been elucidated, the ER pump and the vacuolar channel has not been well characterized. Furthermore, although the role of calcium channels in morphogenesis and stress response has been confirmed, there has not yet been any strategy to inhibit these channels. Therefore, in this study, we identified and characterized both the ER pump and the vacuolar channel Yvcl, and investigated the effect of calcium channel blockers on morphogenesis and stress response in C. albicans. The main results were demonstrated as follows.
     (1) By BLASTP analysis, we identified an ER pump and named it Spfl. This protein belongs to the V-type P-ATPase family. By nickel affinity chromatography and ATPase assays, Spfl is confirmed to have the ability of ATPases. The SPF1-disrupted strain spf1Δ/Δ showed decreased growth rate under normal growth conditions, reduced ability of hyphal development under hyphal-inducing conditions, and a defect in biofilm formation, flocculation and adhesion. Moreover, the mutant displayed hypersensitivity to such environmental stresses as antifungal drugs, low or high calcium levels, oxidative agents, alkaline pH and membrane damage. Systemic infection model further demonstrated that the mutant was severely attenuated in virulence. These results revealed that Spfl plays an important role in cell growth, morphogenesis and stress response in C. albicans. Therefore, it is an key virulence factor of this pathogen.
     (2) The effect of SPF1disruption on cytoplasmic and total calcium content was determined by fluo-3staining and atom absorption spectrophotometry. It was confirmed that Spfl functions as an key member of the calcium homestasis. Westerin blotting and EndoH analysis revealed that the disruption of SPF1led to the defect in N-glycosylation of Cdc101and secreted acid phosphatase (SAP). Moreover, Spfl is essential for cell wall integrity (CWI). The disruption caused hypersensitivity to cell wall stresses, decreased cell wall reconstruction, and abnormal cell wall compositions. Due to the important role of this protein, disruption of SPF1affected the expression of many genes, resulting in up-regulation of the calcium response gene CCH1, the CWI genes PGA13, ECM331, DFG5and the oxidative stress response gene OYE32, and down-regulation of the ER essential gene SEC61and the morphogenesis-related genes HWP1, ALS3and ECE1. These results revealed the close link between the calcium homeostasis system, the ER stress response system and the morphogenesis regulation network.
     (3) The vacuolar calcium channel Yvcl is also necessary for stress response, morphogenesis and pathogenicity of C. albicans. In terms of stress response, yvc1Δ/Δ displayed increased sensitivity to low or high calcium levels, alkaline pH and oxidative agents, defects in calcium fluctuation under alkaline or hypertonic stimulus, decreased levels of the antioxidases and down-regulation of oxidative stress response genes. As for, morphogenesis, the mutant had defects in hyphal development, flocculation, invasive growth and biofilm formation, tip-localization of the vacuole and the Spitzenkorper, and calcium accumulation at the tip, and displayed decreased expression of morphogenesis-related genes, indicating an essential role of Yvcl in morphogenesis of C. albicans, which is associated with the expression of morphogenesis-related genes and polarized growth. Moreover, the mutant showed decreased virulence during systemic infection and reduced ability of invading, damaging host epithelial cells and re-orienting to the cells, suggesting that Yvcl is another important virulence factor in C. albicans.
     (4) The calcium channel blockers verapamil and nifedipine could significantly inhibit calcium fluctuation of C. albicans cells under alkaline stimulus. However, while verapamil could also inhibit calcium influx under the stress caused by antifungal drugs, nifedipine showed no inhibitory effect under this stress. When used in combination with the antifungal drugs, fluconazole and tunicamycin, verapamil could enhance the inhibitory effect of antifungal drugs against this fungus, whereas nifedipine could not. Furthermore, verapamil inhibited hyphal development, biofilm formation and biofilm maintenance, and enhanced the inhibitory effect of antifungal drugs against biofilms. RT-PCR assays further revealed that verapamil alone or in combination with antifungal drugs led to decreased expression of the morphogenesis-related gene, ALS3, suggesting that the effect of verapamil on morphogenesis is associated with down-regulation of morphogenesis-related genes in C. albicans. These results revealed the inhibitory effect of verapamil on drug tolerance and morphogenesis, providing a novel strategy against C. albicans infections.
引文
[1]McCullough M J, Ross B C, Reade P C. Candida albicans:a review of its history, taxonomy, epidemiology, virulence attributes, and methods of strain differentiation[J]. Int J Oral Maxillofac Surg,1996,25(2):136-144.
    [2]Klepser M E. Candida resistance and its clinical relevance. Pharmacotherapy, 2006,26(6):68-75.
    [3]Pfaller M A, Diekema D J. Epidemiology of invasive candidiasis:a persistent public health problem[J]. Clin Microbiol Rev,2007,20(1):133-163.
    [4]El Euch D, Ben Ammar F, Ben Sassi M, et al. superficial fungal infections, epidemiologic, clinical and mycologic study over a three year period[J].. Tunis Med,2006,84(7):407-410.
    [5]Abdeljelil J B, Saghrouni F, Khammari I, et al. Investigation of a cluster of Candida albicans invasive candidiasis in a neonatal intensive care unit by pulsed-field gel electrophoresis[J]. The Scientific World J,2012,2012(1):138989.
    [6]Echeverria P M, Kett D H, Azoulay E. Candida prophylaxis and therapy in the ICU[J]. Semin Respir Crit Care Med,2011,32(2):159-173.
    [7]Odds F C, Bemaerts R. CHROMagar Candida, a new differential isolation medium for presumptive identification of clinically important Candida species[J]. J Clin Microbiol, 1994(8):1923-1929.
    [8]Jabra-Rizk M A, Brenner T M, Romagnoli M, et al. Evaluation of a reformulated CHROMagar Candida[J]. J Clin Microbiol.2001,39(5):2015-2016.
    [9]Bennett R J, Johnson A D. Completion of a parasexual cycle in Candida albicans by induced chromosome loss in tetraploid strains[J]. EMBO J,2003,22(10):2505-2515.
    [10]Mayer FL, Wilson D, Jacobsen I D, et al. The novel Candida albicans transporter Dur31 Is a multi-stage pathogenicity factor[J]. PLoS Pathog,2012,8(3):e1002592.
    [11]Nielsen K, Heitman J. Sex and virulence of human pathogenic fungi[J]. Adv Genet, 2007,57(1):143-173.
    [12]Jones T, Federspiel N A, Chibana H, et al. The diploid genome sequence of Candida albicans[J]. Proc Natl Acad Sci U S A,2004,101(19):7329-7334.
    [13]Butler G, Rasmussen M D, Lin M F, et al. Evolution of pathogenicity and sexual
    , reproduction in eight Candida genomes[J]. Nature,2009,459(7247):657-662.
    [14]Blumberg H M, Jarvis W R, Soucie J M, et al. Risk factors for candidal bloodstream infections in surgical intensive care unit patients:the NEMIS prospective multicenter study[J]. Clin Infect Dis,2001,33(2):177-186.
    [15]Wilson L S, Reyes C M, Stolpman M, et al. The direct cost and incidence of systemic fungal infections[J]. Value Health,2002,5(1):26-34.
    [16]Martin G S, Mannino D M, Eaton S, et al. The epidemiology of sepsis in the United States from 1979 through 2000[J]. N Engl J Med,2003,348(16):1546-1554.
    [17]Gudlaugsson O, Gillespie S, Lee K, et al. Attributable mortality of nosocomial candidemia, revisited[J]. Clin Infect Dis,2003,37(9):1172-1177.
    [18]Rees J R, Pinner R W, Hajjeh R A, et al. The epidemiological features of invasive mycotic infections in the San Francisco Bay Area,1992-1993:results of a population-based laboratory active surveillance[J]. Clin Infect Dis,1998,27(5):1138-1147.
    [19]Wenzel R P, Gennings C. Bloodstream infections due to Candida species in the intensive care unit:identifying especially high-risk patients to determine prevention strategies[J]. Clin Infect Dis,2005,41(S6):S389-S393.
    [20]Pfaller M A, Diekema D J, Rinaldi M G, et al. Results from the ARTEMIS DISK Global Antifungal Surveillance Study:a 6.5-year analysis of susceptibilities of Candida and other yeast species to fluconazole and voriconazole by standardized disk diffusion testing[J]. J Clin Microbiol,2005,43(12):5848-5859.
    [21]Sobel J D. Vaginitis[J].N Engl J Med,1997,337(26):1896-1903.
    [22]Beck-Sague C M, Jarvis W R. National nosocomial infections surveillance system. Secular trends in the epidemiology of nosocomial fungal infections in the United states 1980-1990[J]. J Inf Dis,1993,167(5):1247-1251.
    [23]Kibbler C C, Seaton S, Barnes R A. et al. Management and outcome of bloodstream infections due to Candida species in England and Wales[J]. J Hosp Infect,2003,54(1):18-24.
    [24]Wisplinghoff H, Bischoff T, Tallent S M, et al. Nosocomial bloodstream infections in US hospitals:analysis of 24,179 cases from a prospective nationwide surveillance study[J]. Clin Infect Dis,2004,39(3):309-317.
    [25]Pfaller M A, Diekema D J. Epidemiology of invasive candidiasis:a persistent public health problem. Clin Microbiol Rev,2007,20(1):133-163.
    [26]Diekema D J, Pfaller M A. Nosocomial candidemia:an ounce of prevention is better than a pound of cure[J]. Infect Control Hosp Epidemiol,2004,25(8):624-626.
    [27]Munoz P, Burillo A, Bouza E. Criteria used when initiating antifungal therapy against Candida spp. in the intensive care unit[J]. Int J Antimicrob Agents,2000,15(2):83-90.
    [28]Ostrosky-Zeichner L. New approaches to the risk of Candida in the intensive care unit[J]. CurrOpin Infect Dis,2003,16(10):533-537.
    [29]Ostrosky-Zeichner L. Prophylaxis and treatment of invasive candidiasis in the intensive care setting[J]. Eur J Clin Microbiol Infect Dis,2004,23(10):739-744..
    [30]Ostrosky-Zeichner L, Pappas P G. Invasive candidiasis in the intensive care unit[J]. Crit Care Med,2006,34(3):857-863.
    [31]Pfaller M A, Pappas P G, Wingard J R. Invasive fungal pathogens:current epidemiological trends[J]. Clin Infect Dis,2006,43(S1):S3-S14.
    [32]Prentice H G, Kibbler C C, Prentice A G. Towards a targeted, risk-based, antifungal strategy in neutropenic patients[J]. Br J Haematol,2000,110(2):273-284.
    [33]Sobel J D, Rex J H. Invasive candidiasis:turning risk into a practical prevention policy[J]. Clin Infect Dis,2001,33(2):187-190.
    [34]Pfaller M A, Boyken L, Messer S A, et al. Evaluation of the E test method using Mueller-Hinton agar with glucose and methylene blue for determining amphotericin B MICs for 4,936 clinical isolates of Candida species[J]. J Clin Microbiol,2004,42(11):4977-4979.
    [35]Pfaller M A. Antifungal susceptibility testing methods. Curr Drug Targets,2005,6:929-943.
    [36]Klein B S, Tebbets B. Dimorphism and virulence in fungi[J]. Curr Opin Microbiol, 2007,10(3):314-319.
    [37]Romani L, Bistoni F, Puccetti P. Adaptation of Candida albicans to the host environment: the role of morphogenesis in virulence and survival in mammalian hosts[J]. Curr Opin Microbiol,2003,6(4):338-343.
    [38]Gow N A R, van de Veerdonk F L, Brown A J, et al. Candida albicans morphogenesis and host defence:discriminating invasion from colonization[J]. Nat Rev Microbiol, 2011,10(2):112-122.
    [39]Donlan R M, Costerton J W. Biofilms:survival mechanisms of clinically relevant micro-organisms[J]. Clin Microbiol Rev,2002,15(2):167-193.
    [40]Kojic E M, Darouiche R O. Candida infections of medical devices[J]. Clin Microbiol Rev, 2004,17(2):255-267.
    [41]Taschdjian C L, Burchill J J, Kozinn P J. Rapid identification of Candida albicans by filamentation on serum and serum substitutes[J]. AMA J Dis Child,1960,99(1):212.
    [42]Buffo J, Herman N, Soil D R. A characterization of pH regulated dimorphism in Candida albicans[J], Mycopathologia,1985,85(1-2):21-30.
    [43]Mardon D, Balish E, Phillips A W. Control of dimorphism in a biochemical variant of Candida albicans[J]. J Bacteriol,1969,100(2):701-707.
    [44]Simonneti N, Stripolli V, Cassone E A. Yeast-mycelial conversion induced by N-acetyl-D-glucosamine in Candida albicans[J]. Nature 1974,250(464):344-346.
    [45]Brown D H Jr, Giusani A D, Chen X, et al. Filamentous growth of Candida albicans in response to physical environmental cues and its regulation by the unique CZF1 gene[J]. Mol. Microbiol,1999,34(4):651-662.
    [46]Shareck J, Belhumeur P. Modulation of morphogenesis in Candida albicans by various small molecules[J]. Eukaryot Cell,2011,10(8):1004-1012.
    [47]Hornby, J M, Jensen E C, Lisec A D, et al. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol[J]. Appl Environ Microbiol,2001,67(7):2982-2992.
    [48]Chen H, Fujita M, Feng Q H, et al. Tyrosol is a quorum-sensing molecule in Candida albicans[J]. Proc Natl Acad Sci USA,2004,101(14):5048-5052.
    [49]De Sordi L, Muhlschlegel F A. Quorum sensing and fungal-bacterial interactions in Candida albicans:a communicative network regulating microbial coexistence and virulence[J]. FEMS Yeast Res,2009,9(7):990-999.
    [50]Hogan D A, Vik A, Kolter R A. Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology[J]. Mol Microbiol,2004,54(5):1212-1223.
    [51]Hogan D A, Kolter R. Pseudomonas candida interactions:an ecological role for virulence factors[J]. Science,2002,296(5576):2229-2232.
    [52]Sudbery P E. Growth of Candida albicans hyphae. Nature Rev Microbiol,2011,9:737-748.
    [53]Braun B R, Johnson A D. Control of filament formation in Candida albicans by the transcriptional repressor TUP1[J]. Science,1997,277(5322):105-109.
    [54]Kadosh D, Johnson A D. Induction of the Candida albicans filamentous growth program by relief of transcriptional repression:a genome-wide analysis[J]. Mol Biol Cell, 2005,16(6):2903-2912.
    [55]Braun B R, Kadosh D, Johnson A D. NRG1, a repressor of filamentous growth in C. albicans, is down-regulated during filament induction[J]. EMBO J,2001,20(17):4753-4761.
    [56]Murad A M A, Leng P, Straffon M, et al. Nrgl represses yeast-hypha morphogenesis and hypha-specific gene expression in Candida albicans[J]. EMBO J,2001,20:4742-4752.
    [57]Kadosh D, Johnson A D. Rfg1, a protein related to the Saccharomyces cerevisiae hypoxic regulator Rox1, controls filamentous growth and virulence in Candida albicans[J]. Mol Cell Biol,2001,21(7):2496-2505.
    [58]Stoldt V R, Sonneborn A, Leuker C E, et al. Efglp, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi[J]. EMBO J,1997,16 (8):1982-1991.
    [59]Leberer E, Harcus D, Broadbent I D, et al. Signal transduction through homologs of the Ste2Op and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans[J]. Proc Natl Acad Sci USA,1996,93(23):13217-13222.
    [60]Feng Q H, Summers E, Guo B, et al. Ras signaling is required for serum-induced hyphal differentiation in Candida albicans. J Bacteriol,1999,181(20):6339-6346.
    [61]Leberer E, Harcus D, Dignard D, et al. Ras links cellular morphogenesis to virulence by regulation of the MAP kinase and cAMP signalling pathways in the pathogenic fungus Candida albicans[J]. Mol Microbiol,2001,42(3):673-687.
    [62]Rocha C R C, Schroppel K, Harcus D, et al. Signaling through adenylyl cyclase is essential for hyphal growth and virulence in the pathogenic fungus Candida albicans[J]. Mol Biol Cell,2001,12(11):3631-3643.
    [63]Xu X L, Lee R T H, Fang H M, et al. Bacterial peptidoglycan triggers Candida albicans hyphal growth by directly activating the adenylyl cyclase Cyrlp. Cell Host Microbe, 2008,4(l):28-39.
    [64]Klengel T, Liang W J, Chaloupka J, et al. Fungal adenylyl cyclase integrates CO2 sensing with cAMP signaling and virulence. Curr Biol,2005,15(22):2021-2026.
    [65]Zou H, Fang H M, Zhu Y, et al. Candida albicans Cyrl, Capl and G-actin form a sensor/effector apparatus for activating cAMP synthesis in hyphal growth[J]. Mol Microbiol, 2010,75(3):579-591.
    [66]Davis-Hanna A, Piispanen A E, Stateva L I, et al. Famesol and dodecanol effects on the Candida albicans Rasl-cAMP signalling pathway and the regulation of morphogenesis[J]. Mol Microbiol,2008,67(1):47-62.
    [67]Shapiro R S, Uppuluri P, Zaas A K, et al. Hsp90 orchestrates temperature-dependent Candida albicans morphogenesis via Rasl-PKA signaling[J]. Curr Biol, 2009,19(8):621-629.
    [68]Sudbery P E. The germ tubes of Candida albicans hyphae and pseudohyphae show different patterns of septin ring localisation[J]. Mol Microbiol,2001,41(1):19-31.
    [69]Warenda A J, Konopka J B. Septin function in Candida albicans morphogenesis[J]. Mol Biol Cell,2002,13(8):2732-2746.
    [70]Soll D R, Herman M A, Staebell M A. The involvement of cell wall expansion in the two modes of mycelium formation of Candida albicans[J]. J Gen Microbiol, 1985,131(9):2367-2375.
    [71]Finley K R, Berman J. Microtubules in Candida albicans hyphae drive nuclear dynamics and connect cell cycle progression to morphogenesis. Eukaryot Cell,2005,4(10):1697-1711.
    [72]Crampin H, Finley K, Gerami-Nejad M, et al. Candida albicans hyphae have a Spitzenkorper that is distinct from the polarisome found in yeast and pseudohyphae[J]. J Cell Sci, 2005,118(Pt13):2935-2947.
    [73]Lenardon M D, Milne S A, Mora-Montes H M, et al. Phosphorylation regulates polarisation of chitin synthesis in Candida albicans[J]. J Cell Sci,2010,123(Pt 13):2199-2206.
    [74]Martin R, Walther A, Wendland J. Rasl-induced hyphal development in Candida albicans requires the formin Bnil[J]. Eukaryot Cell,2005,4(10):1712-1724.
    [75]Bishop A, Lane R, Beniston R, et al. Hyphal growth in Candida albicans requires the phosphorylation of Sec2 by the Cdc28-Ccnl/Hgcl kinase[J]. EMBO J,2010,29(17): 2930-2942.
    [76]Jones L A, Sudbery P E. Spitzenkorper, exocyst and polarisome components in Candida albicans hyphae show different patterns of localization and have distinct dynamic properties[J]. Eukaryot Cell,2010,9(10):1455-1465.
    [77]Asleson C M, Bensen E S, Gale C A, et al. Candida albicans INT1-induced filamentation in Saccharomyces cerevisiae depends on Sla2p[J]. Mol Cell Biol,2001,21(4):1272-1284.
    [78]Martin R, Hellwig D, Schaub Y, et al. Functional analysis of Candida albicans genes whose Saccharomyces cerevisiae homologues are involved in endocytosis[J]. Yeast, 2007,24(6):511-522.
    [79]Walther A, Wendland J. Polarized hyphal growth in Candida albicans requires the Wiskott-Aldrich syndrome protein homolog Wallp[J]. Eukaryot Cell,2004,3(2):3471-3482.
    [80]Borth N, Walther A, Reijnst P, et al. Candida albicans Vrpl is required for polarized morphogenesis and interacts with Wall and Myo5[J]. Microbiology,2010,156(Pt 9):2962-2969.
    [81]Oberholzer U, Marcil A, Leberer E, et al. Myosin I is required for hypha formation in Candida albicans[J]. Eukaryot Cell,2002,1(2):213-228.
    [82]Epp E, Walther A, Lepine G, et al. Forward genetics in Candida albicans that reveals the Arp2/3 complex is required for hyphal formation, but not endocytosis[J]. Mol. Microbiol, 2010,75(5):1182-1198.
    [83]Howard R J, Gow N A R. The Mycota, VIII:Biology of the Fungal Cell,2nd edition,2007.
    [84]Jamieson D J. Oxidative stress responses of the yeast Saccharomyces cerevisiae[J]. Yeast, 1998,14(16):1511-1527.
    [85]Rex J H, Rinaldi M G, Pfaller M A. Resistance of Candida species to fluconazole[J]. Antimicrob Agents Chemother,1995,39(1):1-8.
    [86]Serrano R, Ruiz A, Bernal D, et al. The transcriptional response to alkaline pH in Saccharomyces cerevisiae:evidence for calcium-mediated signalling[J]. Mol Microbiol, 2002,46(5):1319-1333.
    [87]Levin D E. Cell wall integrity signaling in Saccharomyces cerevisiae[J]. Microbiol Mol Biol Rev,2005,69(2):262-291.
    [88]Conway M K, Grunwald D, Heideman W. Glucose, nitrogen, and phosphate repletion in Saccharomyces cerevisiae:common transcriptional responses to different nutrient signals[J]. Gene Genome Genet,2012,2(9):1003-1017.
    [89]Batiza A F, Schulz T, Masson P H. Yeast respond to hypotonic shock with a calcium pulse[J]. J Biol Chem,1996,271(38):23357-2362.
    [90]Nargund A M, Avery S V, Houghton J E. Cadmium induces a heterogeneous and caspase-dependent apoptotic response in Saccharomyces cerevisiae[J]. Apoptosis. 2008,13(6):811-821.
    [91]Wang Y N, Lee H H, Lee H J, et al.Membrane-bound trafficking regulates nuclear transport of integral epidermal growth factor receptor (EGFR) and ErbB-2[J]. J Biol Chem, 2012,287(20):16869-79.
    [92]Beguin P, Hasler U, Staub O, et al. Endoplasmic reticulum quality control of oligomeric membrane proteins:topogenic determinants involved in the degradation of the unassembled Na,K-ATPase a Subunit and in its stabilization by β subunit assembly[J]. Mol Biol Cell, 2000,11(5):1657-1672.
    [93]Lecomte F J, Ismail N, High S. Making membrane proteins at the mammalian endoplasmic reticulum[J]. Biochem Soc Trans,2003,31(Pt 6):1248-1252.
    [94]Tsvetanova N G. The secretory pathway in control of endoplasmic reticulum homeostasis[J]. Small GTPases,2012,4(1):28-33.
    [95]Gorlach A, Klappa P, Kietzmann T. The endoplasmic reticulum:folding, calcium homeostasis, signaling, and redox control[J]. Antioxid Redox Signal, 2006,8(9-10):1391-1418.
    [96]Bonilla M, Nastase K K, Cunningham K W. Essential role of calcineurin in response to endoplasmic reticulum stress[J]. EMBO J,2002,21 (10):2343-2353.
    [97]Revankar S G, Nailor M D, Sobel J D. Use of terbinafine in rare and refractory mycoses[J]. Future Medicine,2008,3(1):9-11.
    [98]Fontaine J, Campagnac E. Fenpropimorph slows down the sterol pathway and the development of the arbuscular mycorrhizal fungus Glomus intraradices[J]. Mycorrhiza, 2009,19(6):365-374.
    [99]Brajtburg J, Powderly W G, Kobayashi G S, et al. Amphotericin B delivery systems[J]. Antimicrob Agents Chemother,1990,34(3):381-384.
    [100]Tkacz J S, Lampen O. Tunicamycin inhibition of polyisoprenyl N-acetylglucosaminyl pyrophosphate formation in calf-liver microsomes[J]. Biochem Bioph Res Co,1975,65(1): 248-257.
    [101]Richards T S, Olver B G, White T C. Micafungin activity against Candida albicans with diverse azole resistance phenotypes[J]. J Antimicrob Chemother,2008,62(2):349-355.
    [102]Yorimitsu T, Nair U, Yang Z, et al. Endoplasmic reticulum stress triggers autophagy[J]. J Biol Chem,2006,281(40):30299-304.
    [103]Babour A, Bicknell A A, Tourtellotte J, Niwa M. A surveillance pathway monitors the fitness of the endoplasmic reticulum to control its inheritance[J]. Cell, 2010,142(2):256-269.
    [104]Kadowaki H, Nishitoh H, Ichijo H. Survival and apoptosis signals in ER stress:the role of protein kinases[J]. J Chem Neuroanat,2004,28(1-2):93-100.
    [105]Dudgeon D D, Zhang N, Ositelu O O. Nonapoptotic death of Saccharomyces cerevisiae cells that is stimulated by Hsp90 and inhibited by calcineurin and Cmk2 in response to endoplasmic reticulum stresses[J]. Eukaryotic cell,2008,9(12):2037-2051.
    [106]LaFayette S L, Collins C, Zaas A K, et al. PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkcl, Calcineurin, and Hsp90[J]. PLoS Pathogens,2010,6(8):1-23.
    [107]Karababa M, Valentino E, Pardini G. CRZ1, a target of the calcineurin pathway in Candida albicans[J]. Mol Microbiol,2006,59(5):1429-1451.
    [108]Onyewu C, Wonnley Jr F L, Perfect J R, et al. The calcineurin target, Crzl, functions in azole tolerance but is not required for virulence of Candida albicans. Infection and immunity[J],2004,72(12):7330-7333.
    [109]Cunningham K W, Fink G R. Calcineurin inhibits VCX1-dependent H+/Ca2+ exchange and induces Ca2+ ATPases in Saccharomyces cerevisiae[J]. Mol Cell Biol, 1996,16(5):2226-2237.
    [110]Heath V L, Shaw S L, Roy S, et al. Hphlp and Hph2p, novel components'of calcineurin-mediated stress responses in Saccharomyces cerevisiae[J].Eukaryot Cell, 2004,3(3):695-704.
    [111]Tokichi M. Physiological roles of calcineurin in Saccharomyces cerevisiae with special emphasis on its roles in G2/M cell-cycle regulation. Biosci Biotechnol Biochem, 2007,71(3):633-645.
    [112]Szathmary R, Bielmann R, Nitalazar M, et al. Yos9 protein is essential for degradation of misfolded glycoproteins and may function as lectin in ERAD[J]. Mol Cell, 2005,19(6):765-775.
    [113]Molinari M, Calanca V, Galli C, et al. Role of EDEM in the release of misfolded glycoproteins from the calnexin cycle[J]. Science,2003,299(5611):1397-1400.
    [114]Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response[J]. Nat Rev Mol Cell Biol,2007,8(7):519-529.
    [115]Okamura K, Kimata Y, Higashio H, et al. Dissociation of Kar2p/BiP from an ER sensory molecule, Irelp, triggers the unfolded protein response in yeast[J], Biochem Biophys Res Commun,2000,79(2):445-450.
    [116]Cox J, Walter P. A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response[J]. Cell,1996,87(3):391-404.
    [117]Haze K, Yoshida H, Yanagi H, et al. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress[J]. Mol Biol Cell,1999,10(11):3787-3799.
    [118]Hong M, Luo S, Baumeister P, et al. Under glycosylation of ATF6 as a novel sensing mechanism for activation of the unfolded protein response[J]. J Biol Chem, 2004,2799(12):11354-11363.
    [119]Harding H P, Zhang Y, Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase[J]. Nature,1999,397(6716):271-274.
    [120]Harding H P, Novoa I, Zhang Y et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells[J]. Mol Cell,2000,6(5):1099-1108.
    [121]Singh J, Tyers M. A Rab escort protein integrates the secretion system with TOR signaling and ribosome biogenesis[J]. Genes Dev,2009,23(16):1944-1958.
    [122]Scrimale T, Didone L, de Mesy Bentley K L, et al. The unfolded protein response is induced by the cell wall integrity mitogen-activated protein kinase signaling cascade and is required for cell wall integrity in Saccharomyces cerevisiae[J].Mol Biol Cell, 2009,20(9):164-175.
    [123]Levin D E. Cell Wall Integrity Signaling in Saccharomyces cerevisiae[J]. Microbiol Mol Biol Rev,2005,69(2):262-291.
    [124]Kim K Y, Truman A W, Caesar S. Yeast Mpkl Cell wall integrity mitogen-activated protein kinase regulates nucleocytoplasmic shuttling of the Swi6 transcriptional regulator[J]. Mol Biol Cell,2010,21 (9):1609-1619.
    [125]Bicknell A A, Tourtellotte J, Niwa M.2010. Late phase of the endoplasmic reticulum stress response pathway is regulated by Hogl MAP kinase[J]. J Biol Chem,285(23): 17545-17555.
    [126]Mekahli D, Bultynck G, Parys J B, et al. Endoplasmic-reticulum calcium depletion and disease[J]. Cold Spring Harb Perspect Biol,2011,3(6):a004317.
    [127]Dolman N J, Tepikin A V. Calcium gradients and the Golgi[J]. Cell Calcium, 2006,40(5-6):505-512.
    [128]Gunter T E, Yule D I, Gunter K K, et al. Calcium and mitochondria[J]. FEBS Lett, 2004,567(1):96-102.
    [129]Tan A R, Cai A Y, Deheshi S, et al. Elevated intracellular calcium causes distinct mitochondrial remodelling and calcineurin-dependent fission in astrocytes[J]. Cell Calcium, 2011,49(2):108-114.
    [130]Kaufman R J, Swaroop M, Murtha-Riel P. Depletion of manganese within the secretory pathway inhibits O-linked glycosylation in mammalian cells[J]. Biochemistry,1994,33(33): 9813-9819.
    [131]Clapham D E.Calcium signaling[J]. Cell,2007,131(6):1047-1058.
    [132]Gerke V, Creutz C E, Moss S E. Annexins:linking Ca2+ signalling to membrane dynamics[J]. Nat Rev Mol Cell Biol,2005,6(6):449-461
    [133]Carafoli E. Calcium signaling:A tale for all seasons[J]. Proc Natl Acad Sci U S A, 2002,99(3):1115-1122.
    [134]Dodd A N, Kudla J, Sanders D. The language of calcium signaling[J]. Annu Rev Plant Biol, 2010,61:593-620.
    [135]Berridge M J, Bootman M D, Roderick H L.Calcium signalling:dynamics, homeostasis and remodelling[J]. Nat Rev Mol Cell Biol,2003,4(7):517-529.
    [136]Rich C. New knowledge of calcium homeostasis--advance of a once backward field[J]. Calif Med,1971,114(3):75-76.
    [137]Marin J, Encabo A, Briones A, et al. Mechanisms involved in the cellular calcium homeostasis in vascular smooth muscle:calcium pumps[J]. Life Sci,1999,64(5):279-303.
    [138]Sanglard D, Ischer F, Marchetti O, et al. Calcineurin A of Candida albicans:involvement in antifungal tolerance, cell morphogenesis and virulence[J]. Mol Microbiol, 2003,48(4):959-976.
    [139]Wang H, Liang Y, Zhang B, et al. Alkaline stress triggers an immediate calcium fluctuation in Candida albicans mediated by Rim101p and Crzlp transcription factors [J]. FEMS Yeast Res,2011,11(5):430-439.
    [140]Brand A, Lee K, Veses V, et al. Calcium homeostasis is required for contact-dependent helical and sinusoidal tip growth in Candida albicans hyphae[J]. Mol Microbiol, 2009,71(5):1155-1164.
    [141]Fischer M,Schnell N, Chattaway J, et al. The Saccharomyces cerevisiae CCH1 gene is involved in calcium influx and mating[J]. FEBS Lett,1997,419(2-3):259-262.
    [142]Muller E M, Mackin N A, Erdman S E, et al. Figlp facilitates Ca2+ influx and cell fusion during mating of Saccharomyces cerevisiae[J]. J Biol Chem,2003,278(40):38461-38469.
    [143]Palmer C P, Zhou X L, Lin J, et al. A TRP homolog in Saccharomyces cerevisiae forms an intracellular Ca(2+)-permeable channel in the yeast vacuolar membrane[J]. Proc Natl Acad Sci USA,2001,98(14):7801-7805.
    [144]Cronin S R, Rao R, Hampton R Y. Codlp/Spflp is a P-type ATPase involved in ER function and Ca2+ homeostasis[J]. J Cell Biol,2002,157(6):1017-1028.
    [145]Sorin A, Rosas G, Rao R. PMR1, a Ca2+-ATPase in yeast Golgi, has properties distinct from sarco/endoplasmic reticulum and plasma membrane calcium pumps[J]. J Biol Chem, 1997,272(15):9895-901.
    [146]Cunningham K W, Fink G R. Calcineurin-dependent growth control in Saccharomyces cerevisiae mutants lacking PMC1, a homolog of plasma membrane Ca2+ ATPases[J]. J Cell Biol,1994,124(3):351-363.
    [147]Cunningham K W, Fink G R. Calcineurin inhibits VCX1-dependent H+/Ca2+ exchange and induces Ca2+ ATPases in Saccharomyces cerevisiae[J]. Mol Cell Biol, 1996,16(5):2226-2237.
    [148]Brand A, Shanks S, Duncan V M S, et al. Hyphal orientation of Candida albicans is regulated by a calcium-dependent mechanism[J]. Curr Biol,2007,17(4):347-352.
    [149]Bates S, MacCallum D M, Bertram G, et al. Candida albicans Pmrlp, a secretory pathway P-type Ca2+/Mn2+-ATPase, is required for glycosylation and virulence[J]. J Biol Chem, 2005,280(24):23408-23415.
    [150]Mayer F L, Wilson D, Jacobsen I D, et al. The novel Candida albicans transporter Dur31 Is a multi-stage pathogenicity factor[J]. PLoS Pathog,2012,8(3):e 1002592.
    [151]Iida K, Teng J, Tada T, et al. Essential, completely conserved glycine residue in the domain III S2-S3 linker of voltage-gated calcium channel alphal subunits in yeast and mammals[J]. J Biol Chem,2007,282(35):25659-25667.
    [152]Ozeki-Miyawaki C, Moriya Y, Tatsumi H, et al. Identification of functional domains of Midl, a stretch-activated channel component, necessary for localization to the plasma membrane and Ca2+ permeation[J]. Experiment Cell Res,2005,311(1):84-95.
    [153]Jennifer L, Reedy A, Scott G, et al. Elucidating the Candida albicans calcineurin signaling cascade controlling stress response and virulence[J]. Fungal Genet Biol[J], 2010,47(2):107-116.
    [154]Brand A, Lee K, Veses V, et al. Calcium homeostasis is required for contact-dependent helical and sinusoidal tip growth in Candida albicans hyphae[J]. Mol Microbiol, 2009,71(5):1155-1164.
    [155]Yang M, Brand A, Srikantha T, et al. Figl facilitates calcium influx and localizes to membranes destined to undergo fusion during mating in Candida albicans[J]. Eukaryot Cell,2011,10(3):435-444.
    [156]Itallie C M, Anderson J M. Claudins and epithelial paracellular transport. Annu Rev Physiol, 2006,68(1):403-429.
    [157]Wu V M, Schulte J, Hirschi A, et al. Sinuous is a Drosophila claudin required for septate junction organization and epithelial tube size control[J]. J Cell Biol,2004,164(2):313-323.
    [158]Pfeffer S R. Entry at the trans-face of the Golgi[J]. Cold Spring Harb Perspect Biol, 2011,3(3):a005272.
    [159]Bonifacino J S, Rojas R. Retrograde transport from endosomes to the trans-Golgi network[J]. Nat Rev Mol Cell Biol,2006,7(8):568-579.
    [160]Alberts B, Johnson A, Lewis J, et al. Transport from the trans Golgi network to the cell exterior:exocytosis[M]. Molecular biology of the cell.4th ed. New York:Garland Science, 2002.1-100.
    [161]Bartoszewska M, Kiel J A. The role of macroautophagy in development of filamentous fungi[J]. Antioxid Redox Signal,2011,14(11):2271-2287.
    [162]P6csi I, Prade R A, Penninckx M J. Glutathione, altruistic metabolite in fungi [J]. Adv Microbiol Physiol,2004,49(1):1-76.
    [163]Geissenhoner A, Sievers N, Brock M, et al. Aspergillus nidulans DigA, a potential homolog of Saccharomyces cerevisiae Pep3 (Vpsl8), is required for nuclear migration, mitochondrial morphology and polarized growth[J]. Mol Gen Genomics, 2001,266(4):672-685.
    [164]Li S C, Kane P M. The yeast lysosome-like vacuole:endpoint and crossroads[J]. Biochim Biophys Acta,2009,1793 (4):650-663.
    [165]Chang Y, Schlenstedt G, Flockerzi V, et al. Properties of the intracellular transient receptor potential (TRP) channel in yeast, Yvcl[J]. FEBS Letters,2010,584(1):2028-2032.
    [166]Halachmi D, Eilam Y. Cytosolic and vacuolar Ca2+ concentrations in yeast cells measured with the Ca2+-sensitive fluorescence dye indo-1[J]. FEBS Lett,1989,256(1-2):55-61.
    [167]Dunn T, Gable K, Beeler T. Regulation of cellular Ca2+by yeast vacuoles[J]. J Biol Chem, 1994,269(10):7273-7278.
    [168]Garrett-Engele P, Moilanen B, Cyert M S. Calcineurin, the Ca2+/calmodulin-dependent protein phosphatase, is essential in yeast mutants with cell integrity defects and in mutants that lack a functional vacuolar H(+)-ATPase[J]. Mol Cell Biol,1995,15(8):4103-4114.
    [169]Ohya Y, Kawasaki H, Suzuki K, et al. Two yeast genes encoding calmodulin-dependent protein kinases. Isolation, sequencing and bacterial expressions of CMK1 and CMK2[J]. J Biol Chem,1991,266(19):12784-12794.
    [170]Nguyen T, Di Giovanni S. NFAT signaling in neural development and axon growth [J]. Int J Dev Neurosci,2008,26(2):141-145.
    [171]Hameed S, Dhamgaye S, Singh A, et al. Calcineurin signaling and membrane lipid homeostasis regulates iron mediated multi-drug resistance mechanisms in Candida albicans[J]. PLoS One,2011,6(4):e18684.
    [172]Santos M, de Larrinoa I F. Functional characterization of the Candida albicans CRZ1 gene encoding a calcineurin-regulated transcription factor[J]. Curr Genet,2005,48(2):88-100.
    [173]Peter R, Krausa B C, Joseph H. Coping with stress:calmodulin and calcineurin in model and pathogenic fungi[J]. Biochem and Bioph Res Co,2003,311(4):1151-1157.
    [174]Babu Y S, Bugg C E, Cook W J. Structure of calmodulin refined at 2.2A resolution[J]. J Mol Biol,1988,204(1):191-204.
    [175]LaPorte D C, Wierman B M, Storm D R. Calcium-induced exposure of a hydrophobic surface on calmodulin[J]. Biochem,1980,19(16):3814-3819.
    [176]Krebs J, Buerkler J, Guerini D.3-(Trifluoromethyl)-3-(m-[125I]iodophenyl) diazirine, a hydrophobic, photoreactive probe, labels calmodulin and calmodulin fragments in a Ca2+-dependent way[J]. Biochem,1984,23(3):400-403.
    [177]Zhang M, Tanaka T, Ikura M. Calcium-induced conformational transition revealed by the solution structure of apocalmodulin[J]. Nature Struct Mol Biol,1995,2(9):758-767.
    [178]Sabie F T, Gadd G M. Involvement of a Ca2+-calmodulin interaction in the yeast-mycelial (Y-M) transition of Candida albicans[J]. Mycopathologia,1989,108(1):47-54.
    [179]Watanabe Y, Perrino B A, Soderling T R. Activation of calcineurin A subunit phosphatase activity by its calcium-binding B subunit[J]. Biochem,1996,35(2):562-566.
    [180]Kissinger C R, Parge H E, Knighton D R, et al. Crystal structures of human calcineurin and the human FKBP12-FK506-calcineurin complex[J]. Nature,1995,378(6557):641-644.
    [181]Hemenway C S, Heitman J. Calcineurin:structure, function, and inhibition[J]. Cell Biochem Bioph,1999,30(1):115-151.
    [182]Polizotto R S, Cyert M S. Calcineurin-dependent nuclear import of the transcription factor Crzlp requires Nmd5p[J]. J Cell Biol,2001,154(5):951-960.
    [183]Boustany L M, Cyert M S. Calcineurin dependent regulation of Crzlp nuclear export requires Msn5p and a conserved calcineurin docking site[J]. Gene Dev, 2002,16(5):608-619.
    [184]Mora-Montes H M, Bates S, Netea M G, et al. Endoplasmic reticulum alpha-glycosidases of Candida albicans are required for N glycosylation, cell wall integrity, and normal host-fungus interaction [J]. Eukaryot Cell,2007,6(12):2184-2193.
    [185]Morrow M W, Janke M R, Lund K, et al. The Candida albicans Kar2 protein is essential and functions during the translocation of proteins into the endoplasmic reticulum[J]. Curr Genet,2011,57(1):25-37.
    [186]Fonzi W A. The protein secretory pathway of Candida albicans[J]. Mycoses,2009,52(4): 291-303.
    [187]Kawase Y, Hajjar R J. The cardiac sarcoplasmic/endoplasmic reticulum calcium ATPase:a potent target for cardiovascular diseases[J]. Nat Clin Pract Cardiovasc Med,2008,5(9): 554-565.
    [188]Bakowski D, Parekh A B. Sarcoplasmic/endoplasmic-reticulum-Ca2+ -ATPase-mediated Ca2+ reuptake, and not Ins(1,4,5)P3 receptor inactivation, prevents the activation of macroscopic Ca2+ release-activated Ca2+ current in the presence of physiological Ca2+ buffer in rat basophilic leukaemia-1 cells[J]. Biochem J,2001,353(Pt 3):561-567.
    [189]Goffeau A. Drug resistance:the fight against fungi[J]. Nature,2008,452(7187):541-2.
    [190]Jia X M, Wang Y, Jia Y, et al. RTA2 is involved in calcineurin-mediated azole resistance and sphingoid long-chain base release in Candida albicans[J]. Cell Mol Life Sci, 2009,66(1):122-134.
    [191]Hoehamer C F, Cummings E D, Hilliard G M, et al. Changes in the proteome of Candida albicans in response to azole, polyene, and echinocandin antifungal agents [J]. Antimicrob Agents Chemother,2010,54(5):1655-1664.
    [192]Castillo L, Calvo E, Martinez A I, et al. A study of the Candida albicans cell wall proteome[J]. Proteomics,2008,8(18):3871-3881.
    [193]Poulain D, Jouault T. Candida albicans cell wall glycans, host receptors and responses: elements for a decisive crosstalk[J]. Curr Opin Microbiol,2004,7(4):342-349.
    [194]McKenzie C G, Koser U, Lewis L E, et al.Contribution of Candida albicans cell wall components to recognition by and escape from murine macrophages[J]. Infect Immun, 2010,78(4):1650-1658.
    [195]Viladevall L, Serrano R, Ruiz A, et al. Characterization of the calcium-mediated response to alkaline stress in Saccharomyces cerevisiae[J]. J Biol Chem,2004,279(42):43614-43624.
    [196]Bonilla M, Cunningham K W. Mitogen-activated protein kinase stimulation of Ca(2+) signaling is required for survival of endoplasmic reticulum stress in yeast[J]. Mol Biol Cell, 2003,14(10):4296-42305.
    [197]Brostrom M A, Brostrom, C O. Calcium dynamics and endoplasmic reticular function in the regulation of protein synthesis:implications for cell growth and adaptability [J]. Cell Calcium,2003,34(4-5):345-363.
    [198]Gorlach A, Klappa P, Kietzmann T. The endoplasmic reticulum folding calcium homeostasis signaling and redox control[J]. Antioxid Redox Signal, 2006,8(9-10):1391-418.
    [199]Torres M, Encina G, Soto C, et al. Abnormal calcium homeostasis and protein folding stress at the ER:A common factor in familial and infectious prion disorders [J]. Commun Integr Biol,2011,4(3):258-261.
    [200]Netea M G, Brown G D, Kullberg B J, et al. An integrated model of the recognition of Candida albicans by the innate immune system[J]. Nature Rev Microbiol,2008,6(1):67-78.
    [201]Romani L. Immunity to fungal infections. Nature Rev. Immunol,2011,11(4):275-288.
    [202]Chavan M, Suzuki T, Rekowicz M, et al. Genetic, biochemical, and morphological evidence for the involvement of N-glycosylation in biosynthesis of the cell wall betal,6-glucan of Saccharomyces cerevisiae. Proc Natl Acad Sci USA,2003,100(26):15381-15386.
    [203]Yan Q, Lennarz W J. Studies on the function of oligosaccharyl transferase subunits. Stt3p is directly involved in the glycosylation process[J]. J Biol Chem,2002,277(49):47692-47700.
    [204]de la Rosa J M, Ruiz T, Fonzi W A, et al. Analysis of heterologous expression of Candida albicans SEC61 gene reveals differences in Sec61p homologues related to species-specific functionality [J]. Fungal Genet Biol,2004,41(10):941-953.
    [205]Denis V, Cyert M S. Internal Ca(2+) release in yeast is triggered by hypertonic shock and mediated by a TRP channel homologue[J]. J Cell Biol,2002,156(1):29-34.
    [206]Mikoshiba K. IP3 receptor/Ca2+ channel:from discovery to new signaling concepts[J]. J Neurochem,2007,102(5):1426-1446.
    [207]Decuypere J P, Monaco G, Ludwig Missiaen, et al. IP3 Receptors, mitochondria, and Ca2+ signaling:implications for aging[J]. J Aging Res,2011,2011(1):920178.
    [208]Fill M, Copello J A. Ryanodine receptor calcium release channels[J]. Physiol Rev, 2002,82(4):893-922.
    [209]Dunn T, Gable K, Beeler T. Regulation of cellular Ca2+ by yeast vacuoles[J]. J Biol Chem, 1994,269(10):7273-7278.
    [210]Klionsky D J, Herman P K, Emr S D. The fungal vacuole:composition, function, and biogenesis[J]. Microbiol Rev,1990,54(3):266-292.
    [211]Pittman J K, Cheng N, Shigaki T, et al. Functional dependence on calcineurin by variants of the Saccharomyces cerevisiae vacuolar Ca2+/H+ exchanger Vcxlp[J]. Mol Microbiol, 2004,54(4):1104-1116.
    [212]Minke B. Light-induced reduction in excitation efficiency in the trp mutant of Drosophila[J]. J Gen Physiol,1982,79(3):361-385.
    [213]Venkatachalam K, Montell C. TRP channels[J]. Annu Rev Biochem,2007,76(1):387-417.
    [214]Nilius B, Owsianik G, Voets T, et al. Transient receptor potential cation channels in disease[J]. Physiol Rev,2007,87(1):165-217.
    [215]Chaffin W L, Lopez-Ribot J L, Casanova M, et al. Cell wall and secreted proteins of Candida albicans:identification, function, and expression[J]. Microbiol Mol Biol Rev, 1998,62(1):130-180.
    [216]Chaffin W L. Candida albicans cell wall proteins[J]. Microbiol Mol Biol Rev,2008,72(3): 495-544.
    [217]Sharkey L L, McNemar M D, Saporito-Irwin S M, et al. HWP1 functions in the morphological development of Candida albicans downstream of EFG1, TUP1, and RBF1[J]. J Bacteriol,1999,181(17):5273-5279.
    [218]Phan Q T, Myers C L, Fu Y, et al. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells[J]. PLoS Biol,2007,5(3):e64.
    [219]Finkel J S, Mitchell A P. Genetic control of Candida albicans biofilm development[J]. Nat Rev Microbiol,2011,9(2):109-118.
    [220]Richard M L, Plaine A. Comprehensive analysis of glycosylphosphatidylinositol-anchored proteins in Candida albicans[J]. Eukaryot Cell,2007,6(2):119-133.
    [221]Crampin H, Finley K, Gerami-Nejad M, et al. Candida albicans hyphae have a Spitzenkoper that is distinct from the polarisome found in yeast and pseudohyphae[J]. J Cell Sci,2005,118(Pt 13):2935-2947.
    [222]Silverman-Gavrila L B, Lew R R. Calcium gradient dependence of Neurospora crassa hyphal growth[J]. Microbiol,2003,149(Pt 9):2475-2485.
    [223]Silvennan-Gavrila L B, Lew R R. An IP3-activated Ca2+ channel regulates fungal tip growth[J]. J Cell Sci,2002,115(Pt 24):5013-5025.
    [224]Alexandra B, Gow N A R. Mechanisms of hypha orientation of fungi[J]. Curr Opin Microbiol,2009,12(4):350-357.
    [225]Sica D A. Pharmacotherapy review:calcium channel blockers[J]. J Clin Hypertens (Greenwich),2006,8(1):53-56.
    [226]Eisenberg M J, Brox A, Bestawros A N. Calcium channel blockers:an update[J]. Am J Med, 2004,116(1):35-43.
    [227]Opie L H. Calcium antagonists. Mechanisms, therapeutic indications and reservations:a review[J]. Q J Med,1984,53(209):1-16.
    [228]McTavish D, Sorkin E M.Verapamil. An updated review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in hypertension[J]. Drugs, 1989,38(1):19-76.
    [229]Brogden R N, McTavish D. Nifedipine gastrointestinal therapeutic system (GITS). A review of its pharmacodynamic and pharmacokinetic properties and therapeutic efficacy in hypertension and angina pectoris[J]. Drugs,1995,50(3):495-512.
    [230]Zhai B, Zhou H, Yang L, et al. Polymyxin B, in combination with fluconazole, exerts a potent fungicidal effect[J]. J Antimicrob Chemother,2010,65(5):931-938.
    [231]Odds F C. Synergy, antagonism, and what the chequerboard puts between them[J]. J Antimicrob Chemother,2003,52(1):1.
    [232]Teng J, Goto R, Iida K, et al. Ion-channel blocker sensitivity of voltage-gated calcium-channel homologue Cchl in Saccharomyces cerevisiae[J]. Microbiol,2008,154(Pt 12):3775-3781.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700