鸡粪好氧堆肥氨氧化霉菌的筛选及生物学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
异养氨氧化作用是异养型的细菌或霉菌等将铵态氮或其他负三价氮氧化为羟胺、亚硝态氮或硝态氮的过程。作为氮素循环的重要环节,异养氨氧化作用对高有机物、高氮环境中的氮素转化具有重要意义。鸡粪等固体废弃物的好氧堆肥是高有机物、高氮的好氧体系,因其中的氨挥发致使氮素严重损失,影响堆肥肥效。在该体系中强化异养氨氧化,即将铵态氮转化为亚硝态氮和硝态氮,具有遏制其中氮素挥发、保持肥效的意义。
     本研究以鸡粪好氧堆肥中分离的10株霉菌为对象,测定受试菌株的氮转化能力,筛选高效氨氧化菌株;测定高效氨氧化菌株不同生长时期的氮转化能力,明确菌体生长与氮转化作用的关系;改变培养条件,明确各环境因素对高效氨氧化菌株氮转化作用的影响;将高效菌株回归至鸡粪好氧堆肥,验证其实际效果。该研究旨在明确鸡粪好氧堆肥体系中氨氧化霉菌的存在情况、作用特性及实际效果,为降低该体系的氮素损失提供依据。
     主要研究结果:
     (1)受试的10株霉菌均能将铵态氮氧化为亚硝态氮和硝态氮,即均为氨氧化霉菌,提示该类霉菌在鸡粪好氧堆肥中普遍存在。确定的两株高效氨氧化霉菌菌株M25-22(Penicillium sp.)与M40-4(Aspergillus sp.)在氨氧化霉菌培养基中培养5d后,均能使铵态氮降低0.3mg·mL-1以上,生成亚硝态氮和硝态氮总量分别约在1.1×10-3mg·mL-1、1.5×10-3mg·mL-1。
     (2)M25-22菌体生长量及铵态氮利用率在1~5 d迅速增加;硝态氮浓度3~5d上升迅速,以后维持在1.1~1.2μg·mL-1;亚硝态氮在2d后开始有微量生成,4d后呈降低趋势。M40-4菌体生长量及铵态氮利用率在1~3d迅速增加;硝态氮3~5d迅速增加;亚硝态氮在2d后开始增加,4d后趋于稳定。提示两株菌的氨氧化作用均属于次级代谢。
     (3)M25-22与M40-4均能在以葡萄糖、蔗糖、淀粉或纤维素为唯一碳源的培养基中进行氨氧化作用,能氧化硫酸铵、蛋白胨、乙酰胺、尿素或L-天冬氨酸中的负三价氮,其中可溶性淀粉、纤维素、蛋白胨等缓效碳、氮源对该作用更有利。在以蔗糖为唯一碳源、铵盐为唯一氮源的培养基中,M25-22氨氧化的最适条件为:蔗糖浓度12g·L-1、铵态氮浓度2.438 mg·mL-1、pH 7.5和培养温度30℃;M40-4氨氧化的最适条件为:蔗糖浓度10g·L-1、铵态氮浓度2.014 mg·mL-1、pH 7.0和培养温度45℃。
     (4)M25-22与M40-4分别回归堆肥后,均能明显降低堆肥氮素损失,促进堆肥腐熟,在鸡粪等固体废弃物的好氧堆肥中具有应用价值。
Heterotrophic ammonium oxidation is a process that ammonium nitrogen or negative trivalent organic nitrogen are oxidized into hydroxylamine, nitrite nitrogen or nitrate nitrogen by heterotrophic bacteria or molds. As an important part of global nitrogen cycle, heterotrophic ammonium oxidation plays a significant role in nitrogen transformation in systems containing high contents of organic compounds and nitrogen. Aerobic composting of solid waste, such as aerobic chicken manure composting is such a system in which ammonium volatilization resulted in serious nitrogen loss. The enhancement of heterotrophic ammonium oxidation is of significance in preventing nitrogen loss.
     In the study, nitrogen transformation activities of 10 strains of molds isolated from aerobic chicken manure composting were determined to screen ammonia-oxidizing molds and define high-effective strains. Culture conditions were changed to evaluate effects of environmental factors on the nitrogen transformation activity of high-effective strains. Finally, the high-effective strains were added into aerobic chicken manure composting to verify application effects. The objective of the study is to make clear the existence, characteristics of nitrogen transformation and application effects of ammonia-oxidizing molds in aerobic chicken manure composting, and to provide evidence for the inhibition of ammonium volatilization in the process of aerobic composting. The main results were as follows.
     (1) All of the 10 strains could oxidize ammonium nitrogen into nitrite and nitrate nitrogen, showing that they are ammonia-oxidizing molds, and indicating that ammonia-oxidizing molds are widely distributed in aerobic chicken manure composting. Both of the two defined high-effective strains, named M25-22 and M40-4, could decrease ammonium nitrogen by above 0.3mg·mL-1, and produce nitrite and nitrate nitrogen with a total concentration of 1.1×10-3mg·mL-1, 1.5×10-3mg·mL-1, respectively.
     (2) In media containing (NH4)2SO4 at a concentration of 5mg·mL-1, mycelium weight of M25-22 and its utilization ratio of ammonium nitrogen increased markedly during the first 5 days; nitrate concentration increased markedly from the 3rd to 5th day, and remained constant thereafter; nitrite concentration remained at a low level. Mycelium weight of M40-4 and its utilization ratio of ammonium nitrogen increased markedly during the first 3 days; nitrate concentration increased markedly from the 3rd to 5th day; nitrite was produced after 2 days, and remained constant after 4 days.
     (3) Both of the strain M25-22 and M40-4 showed the activity to oxidize ammonium nitrogen growing in media containing glucose, sucrose, starch or cellulose as the sole carbon source, and to oxidize the negative trivalent nitrogen of ammonium sulfate, peptone, acetamide, urea or L-aspartate. Slowly available carbon or nitrogen sources, such as starch, cellulose and peptone, were beneficial to ammonium oxidation by them. In media containing sucrose as the sole carbon source and ammonium sulfate as the sole nitrogen source, nitrate formation was the most pronounced with sucrose present at a concentration of 12g·L-1 and ammonium nitrogen present at a concentration of 2.438mg·mL-1, at the initial pH level of 7.5 and at 30℃by the strain M25-22, and with sucrose present at a concentration of 10g·L-1 and ammonium nitrogen present at a concentration of 2.014mg mL·-1, at the initial pH level of 7.0 and at 45℃.
     (4) After added into aerobic chicken manure composting, both of the two high-effective strains could decrease nitrogen loss and promote the maturity of compost, indicating that they have significant application value in aerobic composting of solid wastes such as chicken manure.
引文
曹立群.2008.好氧堆肥氮转化与异养亚硝化细菌的筛选及生物学特性研究[D].哈尔滨:东北农业大学硕士论文
    曹喜涛.2004.禽粪便堆制过程中氮素损失及接种异养亚硝化细菌的初步研究[D].南京:南京农业大学硕士论文
    程皆能.1989.微生物生理学[M].上海:复旦大学出版社.130~133
    陈世和,张所明,宛玲等.1989.城市生活垃圾堆肥处理的微生物特性研究[J].上海环境科学,8(8):17~21
    何霞,吕剑,何义亮.2006.异养硝化机理的研究进展[J].微生物学报,46(5):544~567
    何志刚,孙军德.2007.复合微生物菌剂在牛粪堆肥中的试验研究[J].安徽农业科学, 35(16) :4922~4933
    黄国锋,吴启堂,孟庆强等.2002.猪粪堆肥化处理的物质变化及腐熟度评价[J].华南农业大学学报,23(3):1~4
    黄懿梅,苟春林,来航线.2005.两种添加剂对猪粪玉米秸秆堆肥氮素转化和堆肥质量的影响[J].干旱地区农业研究,23(6):112~116
    黄懿梅,曲东,李国学等.2002.两种外源微生物对鸡粪高堆肥的影响[J].农业环境保护, 21(3):208
    李艳霞,王敏健,王菊思.1999.环境温度对污泥堆肥的影响[J].环境科学,20(6):63~66
    廖小红.2009.异养硝化-好氧反硝化菌优选及脱氮产物研究[D].北京工商大学硕士论文
    刘玉珠,陈朱蕾.2003.粪便堆肥化优势菌株初步筛选[J].江苏环境科技,6(1):4~6
    蒋静艳,胡正华,黄耀.2009.异养硝化-好氧反硝化菌的分离鉴定及其在不同培养条件下产N2O研究[J].环境科学,30(7):2105~2109
    沈根祥,尉良,钱晓雍等.2009.微生物菌剂对农牧业废弃物堆肥快速腐熟的效果及其经济性评价[J].农业环境科学学报,28(5):1048~1052
    孙晓华.2004.养殖固废发酵菌剂研制及其应用效果研究[D].杭州:浙江大学硕士学位论文
    石春芝,蒲一涛,郑宗坤等.2002.垃圾堆肥接种固氮菌对堆肥含氮量的影响[J].应用与环境生物学报,8(4):419~421
    王弘宇,马放,杨开等.2009.两株异养硝化细菌的氨氮去除特性[J].中国环境科学,29(1):47~52
    王荫槐.土壤肥料学[M].2001.北京:中国农业出版社,227~234
    吴景贵,席时权,姜岩.1997.土壤腐殖质分析化学的研究进展[J].分析化学,25(10):1221~1227
    肖维伟.2008.禽粪便及废弃物好氧堆肥中氮转化细菌的研究[D].哈尔滨:东北农业大学硕士论文
    杨生玉,王刚,沈永红.2007.微生物生理学[M].北京:化学工业出版社,93~228
    张相锋,王洪涛,周辉宇等.2003.花卉废物和牛粪联合堆肥中的氮迁移[J].环境科学,24(3):126
    中国畜牧业信息网(http://www.caaa.cn/market/index.php)
    Arts P A M, Robertson L A, Bos P, et al. 1992. Growth of Thiosphaera pantotropha in a Continuous-flow Stirred Tank Reactor[J]. Water Science and Technology, 26(1): 2177~2180
    Barrington S, Choinière D, Trigui M, et al. 2002. Effect of Carbon Source on Compost Nitrogen and Carbon Losses [J]. Bioresource Technology, 83 (3): 189
    Berk F B, Smars S, Jonsson H, et al. 2001.Gaseous emissions carbon dioxide, ammonia and nitrous oxide from organic house-hold waste in a compost reactor under different temperature regimes[J]. Agric Energy Res, 78 (4): 423~430
    Eghball B, Lesoing G W. 2000. Viability of Seeds Following Manure Windrow Composting[J]. Compost Science & Utilization.8(1): 46~53
    Eklind Y, Kirchmann H. 2000. Composting and Storage of Organic Household Waste with Different Litter Amendments: II. Nitrogen Turnover and Losses. Bioresource Technology, 74: 125~133
    Eiland F, Leth M, Klamer M, Lind A M, et al. 2001. C and N Turnover and Lignocellulose Degradation during Composting of Miscanthus Straw and Liquid Pig Manure[J]. Compost Science & Utilization, 9(3):186~197
    Elkader N A, Robin P, Paillat J M, et al. 2007. Turning, compacting and the Addition of Water as Factors Affecting Gaseous Emissions in Farm Manure Composting. Bioresource Technology, 98: 2619~2628
    Elwell D L, Hong J H, Keener H M. 2002.Composting Hog Manure/Sawdust Mixtures Using Intermittent and Continuous Aeration:Ammonia Emissions[J].Compost Science & Utilization, 10(2): 142~150
    Elwell D L, Keener H M. 2001.Odorous Emissions and Odorcontrol in Composting Swinemanure/Sawdustmixes Using Continuous and Intermittent Aeration[J]. Transactions of the ASAE, 44(5): 1307~1316
    Eylar R J, SCHMIDT E L.1959.A Survey of Heterotrophic Microorganisms from Soil for Ability to Form Nitrite and Nitrate [J]. J. Gen. Microbiol., 20:473~481
    Huang G F, Wong J C, Wu Q T, et al. 2004. Effect of C/N on Composting of Pig Manure with Saw Dust[ J ]. Waste Management, 24: 805~813
    Jeony Y K, Kim J S. 2001.A New Method for Convervation of Nitrogen in Aerobic Composting Processes[J]. Bioresource Technology, 79
    Kichmhnan H, Witter E. 1989. Ammonia Volatilization during Aerobic and Anaerobic Manure Decomposition[J]. J. Plant and Soil, 115(l): 35
    Kithome M, Paul J W, Bomke A A. 1999. Reducing Nitrogen Losses during Simulated Composting of Poultry Manure Using Adsorbents or Chemical Amendments[J]. Environmental Quality, 28(1): 194
    Kuenen J G, Robertson L A. 1994. Combined Nitrification-denitrification Processes[J]. FEMS Microbiology Reviews, 15: 109~117
    Liang Y, Leonard J J,Feddes J J. 2004.A Simulation Model of Ammonia Volatilization in Composting[J].American Soeiety of Agricultural Engineers, 47(5):1667~1680
    Mahimairaja S, Bolan N S, Hedley M J , et al. 1994. Losses and Transformation of Nitrogen during Composting of Poultry Manure with Different Amendments: an Inculation Experiment[J]. Bioresource Technology, 47: 265
    Marshall K C, Alexander M. 1962. Nitrification by Aspergillus flavus[J]. J. Bacteriol., 83: 572~578.
    Martins O. 1992. Less of Nitrogenous Compounds during Composting of Animal Wastes[J]. Bioresource Technology, 42: 103.
    Mcgill W B, Leonard J J, Janzen R A, et al. 1998. Nitrogen Conservation during Industrial Scale Composting[R]. Edmonton, Canada: Department of Renewal Resources, University of Alberta
    Meunchang S, Panichsakpatana S, Weaver R W. 2005. Co-composting of Filter Cake and Bagasse , By-products from a Sugar Mill. Bioresource Technology, 96: 437~442
    Michael R, Shlomit M, Arkady K, et al. 2004. Organic Matter and Nitrogen Conservationin Manure Compost for Organic Agriculture[J]. Compost Science & Utilization, 12(1): 6~11
    Miller F C, Finstein M S. 1985. Materials Balance in the Composting of Wastewater Sludge as Affected by Process Control Strategy[J]. Journal Water Pollution Control Federation, 57(2): 127
    Moir J W B, Wehrfritz J M. The biochemical characterization of novel non-heam-iron hydroxylamine oxidase from Paracoccus denitrificans GB1. Biochem. J., 1996, 319:823~827
    Moore P A, Daniel J, Edwards T C, et al.1995. Effect of Chemical Amendments on Ammonia Volatilization from Poultry Litter[J]. J.Environ.Qual,24: 293~300
    Ono Y, Enokiya A, et al. 1999. Pyruvic Oxime Dioxygenase from Alaligenes faecalis: Purification, and Molecular and Enzymatic Properties[J].. Plant cell Physiol,40:47~52
    Parkinson R,Gibbs P,Burehett S. 2004. Effect of Turning Regime and Seasonal Weather Conditions on Nitrogen and Phosphorus Loss during Aerobic Composting of Cattle Manure[J]. Bioresource Technology,91:171~178
    Raviv M, Medina S, Karasnovsky A, et al. 2002. Conserving Nitrogen during Composting[J]. BioCycle,43 (9): 48
    Robertson L A, Kuenen J G, Kleijntjens R. 1985. Aerobic Denitrification and Heterotrophic Nitrification by Thiosphaera pantotropha[J]. Antonie Van Leeuwenhoek, 51(4): 445
    Sakaguchi, Wang. 1935. Studies on the Assimilation of Nitrites by Fungi[J]. Bull. Agr. Chem. Soc. Japan, 12:63~69
    Schmidt E L.1960.Cultural Conditions Influencing Nitrate Formation by Aspergillus flavus[J]. Journal of Bacteriology, 79: 553~557
    Shi W, Norton J M, Miller B E, et al. 1999. Effects of Aeration and Moisture during Windrow Composting on the Nitrogen Fertilization Values of Dairy Waste Composts[J]. Applied Soil Ecology, 11: 17
    Stevens R J, Laughlim R J, Froster P. 1989. Effect of Acidification with Sulfuric Acid on the Volatilization of Ammonia from Cow and Pig Slurries[J]. Journal of Agricultural Science, 113: 389~395
    Stouthamer A H,Boer A , Oost J V D, et al. Emerging Principles of Inorganic Nitrogen Metabolism in Paracoccus denitrficans and Related Bacteria[J]. Antonie van Leeuwenhoek, 1997, 71: 33~41
    Stroo H F, Klein T M, Alexander M. 1986. Heterotrophic Nitrification in an Acid Forest Soil and by an Acid-Tolerant Fungus [J]. Applied and Environmental Microbiology, 52(5): 1107-1111
    Tiquia S M, Tam N F Y. 2000. Fate of Nitrogen during Composting of Chicken Litter[J]. Environmental Pollution, 110(3): 535
    Tiwari V N. 1989. Composting of Dairy Farm Wastes and Evaluation of Its Manunial Value [J]. Proc National Academy of Science, India, 59: 109
    Wehrfritz J M, Carter J P, Spiro S, et al. 1997. Hydroxylamine Oxidation in Heterotrophic Nitrate-reducing Soil Bacteria and Purification of a Hydroxylamine Cytochrome c Oxido-reductase from a Pseudomonas species[J]. Arch Microbiol., 166: 421~424
    Wehrfritz J M, Reilly A, Spiro S, et al. 1993. Purification of Hydroxylamine Oxidase from Thiosphaera pantotropha. Identification of Electron Acceptors that Couple Hererotrophic Nitrification to Aerobic Denitrification[J]. FEBS Letters, 335: 246~250
    Witter E, Kirchmann H. 1989. Effects of Addition of Calcium and Magnesium Salts on Ammonia Volatization during Manure Decomposition[J]. Plant and Soil, 115: 53
    Wong J W C, Mak K F, Chan N W, et al. 2001.Co-composting of Soybean Residues and Leaves in Hong Kong . Bioresource Technology, 76: 99~106
    Zhao Q, Zhang M Y, Liu Y, et al. 2008. Study on the Nitrogen Transforming Regulation during the Pig Dung Compost[J]. Heilongjiang Agricultural Sciences, (2): 58~60

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700