聚醚醚酮基电磁屏蔽复合材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚醚醚酮(PEEK)树脂以其优异的综合性能在航空航天、电子信息、交通运输、能源化工等领域得到了广泛的应用。电磁屏蔽材料的需求促进相应科学技术的发展,更引起了科学工作者们的广泛关注,在本论文中尝试将不同的导电填料加入到聚醚醚酮树脂中制备高性能聚合物复合材料。碳纳米管(CNTs)、碳纤维(CF),石墨(Graphene)等碳系材料,因其独特的结构,优异的性能成为制备屏蔽复合材料的理想选择。本论文以聚醚醚酮树脂为基体,以上述碳系材料为功能性填料,围绕聚醚醚酮基电磁屏蔽防护材料的设计、制备和性能表征展开了一系列的研究工作。
     首先通过熔融共混的方法制备了聚醚醚酮基碳系填料复合材料,并对复合材料的电磁波屏蔽性能、力学性能和热性能等进行了综合的分析和比较。发现不同碳系填料的屏蔽电磁波的波段不尽相同,镀镍石墨(Ni-G)/PEEK复合材料在K波段(18-27GHz)的屏蔽性能与纯PEEK相比提高10dB,镀镍炭纤维(Ni-CF)/PEEK复合材料除K波段内屏蔽性能提高5dB外,在X波段和Ku波段的屏蔽性能也有10dB的提高。聚醚醚酮/导电石墨(D-G)复合材料在频率范围8GHz-18GHz,也即X波段到Ku波段内的屏蔽性能都有显著提高,最高可以达到40dB,可以根据对材料的电磁波段屏蔽性能的具体要求而应用不同的复合材料。CNTs/PEEK复合材料在更宽的频率范围内(8GHz-30GHz)有着更高的屏蔽效能,最高可以达到70dB,并且添加量相对更低,这是由于碳纳米管具有的高比表面积、大长径比、大量悬挂键的存在、电子能级分裂以及层状螺旋结构所造成的。碳纳米管复合材料的屏蔽作用主要依靠材料的吸收损耗,反射损耗很小,特别是8-18GHz频率范围内,碳纳米管对该波长范围内电磁波磁感应强度最为明显,吸收损耗显著。CNTs/PEEK复合材料可以作为一种具有宽频、轻质、高效的新型屏蔽材料应用。
     然后通过改变碳纳米管处理方式和聚醚醚酮基体的熔融指数对PEEK/CNTs复合材料进行研究:采用分散型CNTs、云母型CNTs和钛白型CNTs可以使CNTs在树脂基体中更好的分散,提高复合材料的力学性能,特别是改善了原CNTs复合材料断裂伸长率明显降低的问题,同时屏蔽性能并没有提升;高熔融指数的聚醚醚酮基复合材料在相同含量下的屏蔽性能有所提高,并且可以改善材料加工过程的流动性,降低生产中的能耗;添加高温润滑剂的方法明显降低了聚合物的加工粘度,提高了加工过程中熔体流动性,进而有利于碳纳米管在低熔融指数聚醚醚酮基体中的分散,添加质量分数0.5%的润滑剂就能对复合材料的流动性产生明显的促进作用,并且复合材料在40MHz-30GHz的频率范围内的屏蔽效能提高5-10dB。可以根据对复合材料性能的具体要求而恰当的选择不同处理方式的碳纳米管、不同熔融指数的聚醚醚酮基体以及是否添加高温润滑剂。
     通过对复合材料的力学性能、热力学性能等的分析,可以得出聚醚醚酮基碳系填料复合材料具有优良的机械性能、热稳定性能、低密度、低成型收缩等性能,是一类具备优良综合性能的屏蔽复合材料。
Poly (ether ether ketone)(PEEK)resin has been widely applied in the field ofaerospace, electronics, transportation, energy and chemical for its good performance.The needs of the electromagnetic shielding material has promoted the development ofcorrelative science and technology, and attracted extensive attention of scientists. Inthis paper, the different conductive fillers were incorporated into the Poly (ether etherketone) resin to prepare high-performance electromagnetic shielding compositematerial. Carbon nanotubes (CNTs), carbon fiber (CF), Graphite (Graphene) and othercarbon materials become the ideal choice for preparation shielding compositebecause of their unique structure, excellent performance and so on. In this thesis, theresearch had been carried out for design, fabrication and characterization of the highperformance electromagnetic shielding composites based on PEEK resin and theabove mentioned carbon materials.
     Firstly, poly (ether ether ketone)/carbon materials composites were prepared bymelt blending method and electromagnetic shielding properties, mechanical propertiesand thermal properties of composites were synthetically analyzed and compared.We found that the shielding properties of the composites with different carbon fillerwere different. The PEEK/Ni-G composites improved shielding efficiency of10dB inthe K-band (18-27GHz), the PEEK/Ni-CF composites improved shielding efficiencyof5dB in the K-band and10dB in the X-band and Ku-band., the shieldingefficiency of PEEK/D-G composites has been significantly improved in thefrequency range of8GHz-18GHz and reached up to40dB. The composites withdifferent component and properties could be designed and prepared on the specificrequirements of the electromagnetic shielding performance materials. PEEK/CNTscomposites showed a higher shielding effectiveness in a wider frequency range(8GHz-30GHz) and the maximum shielding performance of the composites couldreach70dB, at the same time, the dosage amount of the CNTs in the composites wasrelatively lower. The results were due to the high specific surface area, the long diameter ratio and layered spiral structure of carbon nanotubes. The shieldingeffect of PEEK/CNTs composites mainly depend on the absorption loss and thereflection loss is very little, especially in the frequency range of8-18GHz, themagnetic induction of the electromagnetic wave is the most obvious and theabsorption loss is significant. The PEEK/CNTs composites can be used as abroadband, lightweight and efficient shielding material.
     And then, we studied that the effect of the different melt index of PEEK matrixand the different modified carbon nanotubes on the properties of PEEK/CNTscomposites. The distributed CNTs, mica-type CNTs and titanium dioxide-type CNTscould disperse well in the PEEK matrix to improve the mechanical properties ofcomposites; especially the elongation at break but the shielding performance didn’tincrease remarkably. The shielding performance of the composites based on the PEEKwith the high melting index was heightened than that of the composites based on thePEEK with the low melting index when the content of CNTs in the composites werethe same. Moreover, the melting fluid of PEEK was improved in compositesprocessing and reduce the energy consumption of production. We also addedhigh-temperature lubricant into the composites to reduce the processing viscosity ofthe polymer, i.e. improved the melt flow during composites processing, which couldpromote the dispersion of carbon nanotubes in the PEEK matrix of the low meltingindex. The shielding properties of compositecould be increased by5-10dB in thefrequency range of40MHz-30GHz by introducing the high-temperature lubricant. Wecan design the composites based on the properties of the shielding materials bychoosing the different modified carbon nanotubes, different PEEK resin of the meltingindex or adding high-temperature lubricant.
     The research results indicated that PEEK/carbon material composites are theexcellent electromagnetic shielding materials with the excellent mechanical properties,high thermal stability, low density and low molding shrinkage, etc.
引文
[1] Enomoto K, Kitakata S, Yasuhara T, Ohtake N, Kuzumaki T, Mitsuda Y.,Measurement of Young’s modulus of carbon nanotubes by nanoprobe manipulation ina transmission electron microscope,[J] Appl Phys Lett.,2006,88(15):15315–7.
    [2] Li N, Huang Y, Du F, He XB, Chen YS, Peter C, et al., ElectromagneticInterference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy Composites,[J] Nano Lett.,2006,6(6):1141-5.
    [3] Liu ZF, Bai G, Huang Y, Ma YF, Du F, Chen YS, et al., Reflection and absorptioncontributions to the electromagnetic interference shielding of single-walled carbonnanotube/polyurethane composites,[J] Carbon,2007,45:821–7.
    [4] Chung DDL., Electromagnetic interference shielding efectiveness of carbonmaterials,[J] Carbon,2001,39(2):279–85.
    [5] Akif Kaynak.Electromagnetic shielding effectiveness of galvanostaticallysynthesized conducting polypyrrole films in the300~2000MHz frequencyrange[J].Mater.Res.Bull.1996.31(7):845~860
    [6]蔡任钢.电磁兼容原理、设计和预测技术[M].北京:北京航空航天大学出版社.1997128
    [7] Bang One Lee,Won Jun Woo,Myung-Soo Kim.EMI shielding effectiveness ofcarbon nanofiber filled poly(vinyl alcohol)coating materials[J].Macromol MaterEng.,2001,286:114~118.
    [8]徐鹏根,等.电磁兼容性原理及应用[D].北京:国防工业出版社,1996
    [9]管登高.防电磁信息泄密宽频电磁波屏蔽集成复合材料研究[D].博士学位论文.成都:四川大学,2004
    [10]0.01KHz-1GHz频段镍基电磁屏蔽涂料制备基础问题研究[D].博士后研究工作报告.成豆:四川大学,2000
    [11](日)加藤顺主编功能性高分子材料[M].北京:烃加工出版社,1990.
    [12] Díez-Pascual AM, Naffakh M, Gómez MA, Marco C, Ellis G,Gónzalez-Domínguez JM, et al. Influence of a compatibilizer on the thermal anddynamic mechanical properties of PEEK/carbon nanotube composites.[J]Nanotechnology2009;20:315707–20.
    [13] Schadler LS, Giannaris SC, Ajayan PM. Load transfer in carbon nanotube epoxycomposites.[J] Appl Phys Lett1998;73(26):3842–4.
    [14] Qian D, Dickey EC, Andrews R, Rantell T. Load transfer and deformationmechanisms in carbon nanotube–polystyrene composites.[J] Appl Phys Lett2000;76(20):2868–70.
    [15] Jonas A, kegras R. Thermal stability and crystallization of poly(aryl ether etherketone).[J]Polymer1991;32(15):2691–706.
    [16] McGrail PT. Polyaromatics.[J]Polym Int1996;41(2):103–21.
    [17] Yang YL, Gupta MC, Dudley KL, Lawrence RW. Novel carbonnanotube–polystyrene foam composites for electromagnetic interference shielding.[J]Nano Lett2005;5(11):2131–4.
    [18] Cao MS, Shi XL, Fang XY, Jin HB, Hou ZL, Zhou W, et al.Microwaveabsorption properties and mechanism of cagelike ZnO/SiO2nanocomposites.[J]ApplPhys Lett2007;91(20):203110:1–3.
    [19] Song WL, Cao MS, Hou ZL, Fang XY, Shi XL, Yuan J. High dielectric loss andits monotonic dependence of conducting-dominated multiwalled carbonnanotubes/silica nanocomposite on temperature ranging from373to873K in X-band.[J]Appl Phys Lett2009;94(23):233110:1–3.
    [20] Liu SH, Liu JM, Dong XL. Electromagnetic interference shielding andmicrowave absorption materials.[M] Chemical Industrial Press;2007.
    [21] Hashisho Z, Rood MJ, Barot S, Bernhard J. Role of functional groups on themicrowave attenuation and electric resistivity of activated carbon fiber cloth.[J]Carbon2009;47(7):1814–23.
    [22] Im JS, Kim JG, Lee YS. Fluorination effects of carbon black additives forelectrical properties and EMI shielding efficiency by improved dispersion andadhesion.[J]Carbon2009;47(11):2640–7.
    [23] Kaiser AB. Systematic conductivity behavior in conducting polymers: effects ofheterogeneous disorder.[J] Adv Mater2001;13(12/13):927–41.
    [24] Kaiser AB, Liu CJ, Gilberd PW, Chapman B, Kemp NT,Wessling B, et al.Comparison of electronic transport in polyaniline blends, polyaniline and polypyrrole.[J] Synth Met1997;84(1–3):699–702.
    [25] Nadir I, Yannick W, Jean-Jacques F. Skin effect and dielectric loss models ofpower cables.[J] IEEE Trans Dielectr Electr Insul2009;16(1):147–54.
    [26] Luo X, Chung DDL. Electromagnetic interference shielding using continuouscarbon fiber carbon–matrix and polymer–matrix composites.[J] Compos Part B1999;30(3):227–31.
    [27] Truong VT, Riddell SZ, Muscat RF. Polypyrrole based microwave absorbers.[J]J Mater Sci1998;33(20):4971–6.
    [28] Cao MS, Qin RR, Qiu C, Zhu J. Matching design and mismatching analysistowards radar absorbing coatings based on conducting plate.[J] Mater Des2003;24(5):391–6.
    [29] Cao MS, Yuan J, Liu HT, Fang XY, Zhu J. A simulation of the quasi-standingwave and generalized half-wave loss of electromagnetic wave in non-ideal media.[J]Mater Des2003;24(1):31–5.
    [30]Talbott MF, Springer GS, Berglund LA. The effect of crystallinity on themechanical properties of PEEK polymer and graphite fiber reinforced PEEK.[J]Compos Mater1987;21:1056–81.
    [31]Bonner W H.[P]USA patent3065205,1962
    [32]Rose J B.[P]USA patent4320224,1976.
    [33]Rose J B.[P]Britian patent1558671,1976.
    [34]Rose J B.[P]Britian patent1414422,1975.
    [35]Rose J B.[P]Britian patent1414423,1975.
    [36]Rose J B.[P]Britian patent1414424,1975.
    [37] Sarasua JR, Remiro PM, Pouyet J. The mechanical behaviour of PEEK shortfibre composites.[J]J Mater Sci1995;30:3501–8.
    [38] Kuo MC, Tsai CM, Huang JC, Chen M. PEEK composites reinforced bynano-sized SiO2and Al2O3particulates.[J] Mater Chem Phys2005;90:185–95.
    [39] Lai YH, Kuo MC, Huang JC, Chen M. On the PEEK composites reinforced bysurface-modified nano-silica.[J] Mater Sci Eng A2007;458:158–69.
    [40] Goyal RK, Tiwari AN, Negi YS. High performance nanocomposites fortribological applications: preparation and characterization.[J] Mater Sci Eng A2008;486:602–10.
    [41] Wang QH, Xue QJ, Liu WM, Chen JM. Effect of nanometer SiC filler on thetribological behavior of PEEK under distilled water lubrication.[J] Appl Polym Sci2000;78:609–14.
    [42] Sandler J, Werner P, Shaffer MSP, Demchuk V, Altst dt V.Carbon-nanofibre-reinforced poly(ether ether ketone) composites.[J] Composites:Part A2002;33:1033–9.
    [43] Sandler J, Windle AH, Werner P, Altst dt V, MV ES, Shaffer MSP.Carbon-nanofibre-reinforced poly(ether ether ketone) fibres.[J] Mater Sci2003;38:2135–41.
    [44] Werner P, Verdejo R, W llecke F, Altst dt V, Sandler JKW, Shaffer MSP. Carbonnanofibers allow foaming of semicrystalline poly(ether ether ketone).[J] Adv Mater2005;17:2864–9.
    [45] Moniruzzaman M, Winey KI. Polymer nanocomposites containing carbonnanotubes.[J]Macromolecules2006;39(16):5194–205.
    [46] Coleman JN, Khan U, Blau WJ, Guńko YK. Small but strong: a review of themechanical properties of carbon nanotube-polymer composites.[J] Carbon2006;44(9):1624–52.
    [47] Du F, Ma Y, Lv X, Huang Y, Li F, Chen Y. The synthesis of single-walled carbonnanotubes with controlled length and bundle size using the electric arc method.[J]Carbon2006;44(7):1327–30.
    [48]Jin Yeol Kim,Yang-Kyoo Han,Eung Ryul Kim,Kwang Suck Suh.Two-layerhybridanti-reflection film prepared on the plastic substrates[J].Current AppliedPhysics.2002,2(2):123~127
    [49]Y.K.Hong,C.Y.Lee,C.K.Jeong,J.H.Sim,K.Kim,J.Joo,M.S.Kim,J.Y.Lee,S.H.Jeong,S.W.Byun.Electromagnetic interference shielding characteristics of fabriccomplexescoated with conductive polypyrrole and thermally evaporatedAg[J].Current AppliedPhysics.2001,1(6):439~442
    [50]C.K.Chiang,C.R.FincherJr.,Y.W.Park,A.J.Heeger,H.Shirakawa,E.J.Louis,S.c.Gan,A.G.MacDiarmid.Phys.Rev.Lett.1977,(39):1098
    [51]Jinqing Qu,Ritsuya Kawasaki,Masashi Shiotsuki,Fumio Sanda,ToshioMasuda.129Synthesis and properties of polyacetylenes carrying N-phenylcarbazoleandtriphenylamine moieties[J].Polymer,2006,47(19):6551-6559
    [52]L.Olmeda,P.Hourqueble,F.Jousse.Microwave properties of conductivepolymers[J].Synthetic metals,1995,69:205~208
    [53]T.Mkel,S.Pienimaa,T.Taka,S.Jussila,H.Isotalo.Thin polyaniline films inEMIshielding[J].Synthetic Metals,1997,85:1335~1336
    [54]S.Koul,R.Chandra,S.K.Dhawan.Conducting polyaniline composite for ESD andEMI at101GHz[J].Polymer,2000(41):9305~9310
    [55] Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS. Strength andbreaking mechanism of multiwalled carbon nanotubes under tensile load.[J] Science2000;287(5453):637–40.
    [56] Das NC, Chaki TK, Khastgir D, Chakraborty A. Electromagnetic interferenceshielding effectiveness of ethylene vinyl acetate based conductive compositescontaining carbon fillers.[J] Appl Polym Sci2001;80:1601–8.
    [57] Chou KS, Huang KC, Shih ZH. Effect of mixing process on electromagneticinterference shielding effectiveness of nickel/acrylonitrile–butadiene–styrenecomposites.[J]Appl Polym Sci2005;97:128–35.
    [58] Yang S, Lozano K, Lomeli A, Foltz HD, Jones R. Electromagnetic interferenceshielding effectiveness of carbon nanofiber/LCP composites.[J]Compos A2005;36:691–7.
    [59] Luo XC, Chung DDL. Electromagnetic interference shielding using continuouscarbon-fiber carbon-matrix and polymer-matrix composites.[J]Composites Part B1999;30(3):227–31.
    [60] Salvetat JP, Bonard JM, Thomson NH, Kulik AJ, Forro F, Benoit W, et al.Mechanical properties of carbon nanotubes.[J]Appl Phys A1999;69:255–60.
    [61] Thostenson ET, Ren Z, Chou TW. Advances in the science and technology ofcarbon nanotubes and their composites: a review.[J]Compos Sci Technol2001;61:1899–912.
    [62] Thostenson ET, Li C, Chou TW. Nanocomposites in context.[J] Compos SciTechnol2005;65:491–516.
    [63] Potschke P, Dudkin SM, Alig I. Dielectric spectroscopy on melt processedpolycarbonate-multiwalled carbon nanotube composites.[J] Polymer2003;44:5023–30
    [64] Ajayan PM, Stephan O, Colliex C, Trauth D. Aligned carbon nanotube arraysformed by cutting a polymer resin–nanotube composite.[J] Science1994;265:1212–4.
    [65] Zhuangjun Fan, Guohua Luo, Zengfu Zhang, Li Zhou, Fei Wei. Electromagneticand microwave absorbing properties of multi-walled carbon nanotubes/polymercomposites.[J]Materials Science and Engineering B132(2006)85–89
    [66]Xuebin Feng, Gongxiong Liao, Jinhong Du, Liming Dong,Kejia Jin,XigaoJian.Electrical Conductivity and Microwave Absorbing Properties of Nickel-CoatedMultiwalled Carbon Nanotubes/Poly(phthalazinone ether sulfone ketone)sComposites.[J] POLYMER ENGINEERING AND SCIENCE.2008
    [67]M.Paligová,J.Vilákova,P.Sáhaet.al.Electromagnetic shielding of epoxy resinomposites containing carbon fibers coated with polyaniline base[J].PhysicaA,2004,332:421~429
    [68] Yongqing Yang, Shuhua Qi, Xinxin Zhang, Yunchuan Qin. Preparation andmicrowave absorbing property of silver-coated graphite nanosheetNanoG withPyrrole.[J]Materials Letters66(2012)229–232
    [69] Varij Panwar,Jong-Oh Park,Suk-Ho Park,Sanjeev Kumar,R. M. Mehra.Electrical,Dielectric, and Electromagnetic ShieldingProperties of Polypropylene-GraphiteComposites [J].Journal ofAppliedPolymer Science,Vol.115,1306–1314(2010)
    [70] Mao-Sheng Cao,Wei-Li Song, Zhi-Ling Hou,BoWen, Jie Yuan.The effects oftemperature and frequency on the dielectric properties, electromagnetic interferenceshielding and microwave-absorption of short carbon fiber/silica composites.[J]CARBON48(2010)788–796
    [71]Chi-Yuan Huang,, Wen-Wei Mo, Ming-Lih Roan.Studies on the influence ofdouble-layer electroless metal deposition on the electromagnetic interferenceshielding effectiveness of carbon fiber/ABS composites.Surface and Coatings[J]Technology.Volume184, Issues2–3,22June2004, Pages163–169
    [72]Ho Chang,, Yun-Min Yehand Kouhsiu-David Huang.Electromagnetic Shieldingby Composite Films Prepared with Carbon Fiber, Ni Nanoparticles,and Multi-WalledCarbon Nanotubes in Polyurethane.[J]Materials Transactions, Vol.51, No.6(2010)pp.1145to1149
    [73]掺杂剂和含有其导电聚合物材料.中国发明专利[P].CN.1462299A
    [74]导电聚合物组合物.中国发明专利[P].CN.1149882A
    [75]电磁屏蔽.中国发明专利[P].CN.1277798A
    [76]一种电磁屏蔽外壳.中国发明专利[P].CN.201352894Y.
    [77]屏蔽电磁辐射的复合塑料及其用途.中国发明专利[P]CN.101155504A
    [78]赵择卿,陈小立,高分子材料导电和抗静电技术及应用[M],中国纺织出版社,2006,391
    [1] B Wessling,H Volk.Post-polymerization processing of conductive polymers:a wayof converting conductive polymers to conductive materials[J].SynthMet,1986,15,183-193.
    [2]喻冬秀,包覆型短碳纤维的制备的电磁屏蔽性能的研究,华南理工大学博士论文[D],2007.
    [3] K.Miyasaka.Electrical conductivity of carbon-polymer composites as a function ofcarbon content[J].J Mater Sci,1982,17,1610-1616.
    [4]M Sumita,K Sakata,S Asai,et.al.Dispersion of fillers and the electrical conductivityof polymer blends filled with carbon black[J].Polym Bull,1991,25,265-271.
    [5]吕霞娟,含碳纳米管新型宽频轻质电磁屏蔽材料的研制,上海交通大学硕士论文2008.
    [6]荣常如,聚芳醚/纳米碳复合材料的制备与性能研究,吉林大学博士论文
    [D],2010..
    [7]马刚,聚醚醚酮/硅灰石复合材料的制备与性能研究,吉林大学博士论文
    [D],2011.
    [8]N.C.Das,T.K.Chaki,D.Khastgir.Electromagnetic interference shieldingeffectiveness of onductive carbon black and carbon fiber-filled composites based onrubber and rubber blends[J].Advances in Polymer Technology,2001,20(3):226~236
    [9] Yang YL, Gupta MC, Dudley KL, Lawrence RW. A Comparative Study of EMIShielding Properties of Carbon Nanofiber and Multi-Walled Carbon Nanotube FilledPolymer Composites.[J] Nanosci. Nanotechnol.2005;5:927-31.
    [10] Saleem A, Frormann L, Iqbal A. High performance thermoplastic composites:study on the mechanical, thermal and electrical resistivity properties of carbonfiber-reinforced poly (ether ether ketone) and polyethersulphone.[J] Polym Compos2007;28(6):785–96.
    [1]Jinghui Yang,Tao Xu,Ai Lu,Qin Zhang,Hong Tan,Qiang Fu,Preparation andproperties of poly(p-phenylene sulfide)/multiwall carbon nanotube compositesobtained by melt compounding[J],Compos.Sci.Technol,2009,69,147–153
    [2]熊佳,导电复合材料的制备及其性能的研究,西北工业大学博士学位论文[D],2005,3
    [3]C.Rajagopal,M.Satyam.Studies on electrical conductivity of insulator-conductorcomposites[J]J Appl.Phys.,1978,49,5536
    [4]Keun Soo Kim,Yue Zhao,Houk Jang,Sang Yoon Lee,Jong Min Kim,KwangS.Kim,Jong-Hyun Ahn,Philip Kim,Jae-Young Choi,Byung Hee,Hong,Large-scalepattern growth of graphene films for stretchable transparentelectrodes[J].Nature,2009,457,706-710
    [5]Ma C M.,Huang Y L,Kuan H C,et al.Preparation and Electromagnetic Interferenceshielding characteristics of novel carbon-nantubes/siloxane (ureaurethane)nanocomposites[J],J.Polym.Sci.,Part B:Polym.Phys.,2005,43,345–358
    [6]. Higginbotham, A. L.; Moloney, P. G.;Waid, M. C.; Duque, J. G.; Kittrell,C.;Schmidt, H. K.; Stephenson, J. J.;Arepalli, S.; Yowell, L. L.; Tour, J. M.CarbonNanotube CompositeCuring through Absorption of Microwave Radiation.[J] Compos.Sci.Technol.2008,68,3087–3092.
    [7]Jun’ichi Masuda,John M.Torkelson,Dispersion and Major Property Enhancementsin Polymer/Multiwall Carbon Nanotube Nanocomposites via Solid-State ShearPulverization Followed by Melt Mixing[J],Macromolecules2008,41,5974-5977
    [8]Potschke P,Fornes TD,;Paul DR.Dielectric spectroscopy on melt processedpolycarbonate-multiwalled carbon nanotubecomposites[J],Polymer,2002,43,3247-3255
    [9]G.Jiang,M.Gilbert,D.J.Hitt,G.D.Wilcox,K.Balasubramanian.Preparation of nickelcoated mica as a conductive filler[J].Composites:Part A,2002,33:745~751
    [10] Luo XC, Chung DDL. Electromagnetic interference shielding using continuouscarbon-fiber carbon-matrix and polymer-matrix composites.[J] Composites Part B1999;30(3):227–31.
    [11] Fangming Du,John.E.Fischer,Karen I.Winey,Coagulation Method for PreparingSingle-Walled Carbon Nanotube/Poly(methyl methacrylate) Composites and TheirModulus,Electrical Conductivity,and Thermal Stability[J],J.Polym.Sci.,PartB:Polym.Phys.,2003,41,3333–3338
    [12]Endo M,Takeuchi K,KoboriK,Takahashi K,Kroto HW,Sarkar A.Pyrolytic Carbonnanotubes from vapor-grow carbon fibers[J].Carbon,1995,33,873-881
    [13]贺福,王茂章著.碳纤维及其复合材料[M].北京:科学出版社,1995.
    [14]G.Jiang,M.Gilbert,D.J.Hitt,et al.Preparation of nickel coated mica as aconductivefiller[J].Composites Part A:Applied Science andManufacturing,2002,33(5):745–751
    [15]Akif Kaynak,Andan Polat,Ulku Yilmazer.Some microwave and mechanicalproperties of carbon fiber polupropylene and carbon black-polypropylenecomposites[J].MeterialsResearch Bulletin.1996,31(10):1195~1206
    [16]S.K.Dhawan,N.Singh,S.Venkatachalam.Shielding behavior of conductingpolymer-coated fabrics in X-band,W-band and radio frequency range[J].SyntheticMetals.2002,129:261–267.
    [17] Yang YL, Gupta MC, Dudley KL, Lawrence RW. Novel CarbonNanotube Polystyrene Foam Composites for Electromagnetic Interference Shielding.[J]Nano Lett.2005;5:2131-4.
    [18] ShinnShyong Tzeng,FaYen Chang.EMI shielding effectiveness of metal-coatedcarbonfiber-reinforced ABS composites[J].Materials Science and EngineeringA,2001,302:258–267
    [19] ChiYuan Huang,Juifen Pai.Optimum conductions of electroless nickel plating onarbon fibers for EMI shielding effectiveness of ENCF/ABScomposites[J].Eur.Polym.J.,1998,34(2):261~267
    [20] ChiYuan Huang,WenWei Mo.The effect of attached fragments on dense layer oflectroless Ni/P deposition on the electromagnetic interference shielding effectivenessof arbon fiber/acrylonitrile-butadiene-styrene composites[J].Surface and Coatingsechnology,2002,154(1):55-62
    [21] Guanghong Lu,Xiaotian Li&Hancheng Jiang.Electrical and shielding propertiesof ABSresin filled with nickel-coated carbon fibers[J].Composites andTechnology.1996,(56):193~200.
    [22] Montes-Moran MA, Young RJ. Raman spectroscopy study of high-moduluscarbon fibres: effect of plasma-treatment on the interfacial properties ofsingle-fibre-epoxy composites–part II: characterisation of the fibre–matrix interface.[J] Carbon2002;40(6):857–75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700