直流故障电流限制器的理论与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
故障短路严重威胁了电网和大电源的安全与稳定运行,装备故障电流限制器是解决该问题的主要技术手段之一,这在交流系统中已成功应用。高压直流的发展同样需要抑制直流故障短路电流,因此,研究限制直流故障短路电流的关键理论与方法已成为当前直流电力系统研究的前沿课题之一。
     本文旨在研究具有直流故障电流限制功能的高压缓冲器(snubber),研究其限流机理、拓扑结构、涡流损耗、磁滞损耗,研制出微型缓冲器模型并对3.5nF/100kV高压缓冲器进行了仿真与测试验证。本文的主要研究工作包括以下几个方面:
     给出了考虑高压缓冲器内层铁心完全饱和时等效电阻的分析方法:利用安培环路定律,在Fink-Baker高压缓冲器分析方法的基础上,推出不同铁心叠片中涡流大小与饱和深度的关系,导出整个高压缓冲器随铁心饱和深度变化的等效涡流电阻。根据高压缓冲器的等效涡流电阻及NBI系统的杂散电容,建立杂散电容的放电模型。采用变量替换法,给出了详细求解过程,得到了铁心叠片饱和深度的指数时间常数、电弧电流及峰值等。在此基础上给出饱和至某层铁心叠片时的等效时变电阻与弧流衰减时间的表达式。
     优选出高压缓冲器的铁磁材料:从分析铁磁材料的基本理论出发,对几种铁磁材料进行了对比分析,优选出适于制造高压缓冲器的铁磁材料。分析了弧流控制参数与高压缓冲器的尺寸关系,得到高压缓冲器应为细长结构的结论。在确定传输线方案的基础上,进一步明确高压缓冲器的内径、外径尺寸,以确定高压缓冲器的总长度。
     提出并建立了包含高压缓冲器等效电阻与并接电感的仿真模型:该仿真模型的参数仅与高压缓冲器的工况、尺寸及材料特性有关,并进行了仿真研究。研究结果表明:二次侧接入负载电阻能提高高压缓冲器的饱和阈值电压,同时也提高其限流与吸能能力。该研究为微型高压缓冲器的研制及大容量高压缓冲器的研究提供了理论依据。
     参照高压缓冲器的仿真设计方案,研制出微型缓冲器并进行试验测试。试验证明本文研究的高压缓冲器能较好地限制直流故障电流。测试得到的弧流放电时间常数、电流峰值与相应理论值基本吻合,验证了前述高压缓冲器理论分析的正确性。
     参加研制了3.5nF/100kV高压缓冲器和在EAST NBI试验平台的测试,测试结果与理论值基本吻合。但由于NBI测试平台的杂散电容超过预期值,东方超环EAST NBI系统建议采用两台3.5nF/100kV高压缓冲器。
     本文提出的高压缓冲器具稳态电压损耗小、限流阻抗大、响应速度快、限制电流效果好、吸收能量能力强等优点,是NBI高压系统中有应用前景的保护设备。所研制的微型缓冲器模型验证了本文理论分析和模型的正确性,这些为设计和建设用于EAST和ITER的高压缓冲器提供了依据。
At present, the short-circuit fault seriously threatens the security and stability of power system & large-scale power supply. The fault current limiter (FCL) installed in these systems is one of main measures. And this technology is already successful application in AC power system. Development of high voltage DC power system requires DC FCL also. As a consequence, research on key theory and measure of high voltage DC power system has become the leading edge for power system research.
     A snubber with function of DC FCL is proposed in this paper. The theory, topology, eddy current loss and magnetic hystersis loss of the snubber have been studied, and a minitype sunbber has been manufactured. Then, 3.5nF/100kV snubber has been simulated and tested. The conclusions are as follows:
     The analysis of the equivalent resistance for snubber considering magnetic saturation is presented in this paper. Using Ampere’s law, the eddy current and the thickness of saturated regions can be deduced in each core tape referring to Fink-Baker method. The equivalent resistance of the snubber is obtained. The transient eddy current model based on the stray capacitance and the equivalent resistance is analyzed. The solving process is listed in detail with variable substitution. Parameters, which are exponential time constant and arc current and peak current of the arc current, are obtained. The equivalent resistance of snubber and the decay time of arc are been obtained when some core tape just fully saturated.
     The core material of the snubber has been confirmed. From analytical method of ferromagnetic material, several kinds of ferromagnetic material have been compared, and suitable one has been chosen. The relation between the controlling parameter and the dimension of the snubber has been analysed. And results show that the snubber should be slightness. The inside radius and outer radius are determined referring to the dimensions of transmission line, and the length of snubber is confirmed.
     A simulation model consisting of a parallel resistance and inductance is been presented and set up. The two parameters can be directly calculated according to the work condition, dimensions and material characteristics of the snubber. And simulation study has been researched. The simulation results show that saturation threshold voltage of snubber can be enhanced with secondary resistor, and also show that the capacity of limitting current and absorbing stored energy can be improved. The theoretic analysis laid theory base for snubber test model manufacture and high voltage, high capacity snubber research.
     Minisnubber was constructed for Experimental Advanced Superconducting Tokamak (EAST) neutral beam injector (NBI) referring to the simulation design scheme. A sequence of experiments has been completed. And results show that snubbers have good ability of current-limiting function. Exponential time constant and peak current of the arc current are approximately the same as measured ones. The validity of the analytical method is validated.
     The 3.5nF/100kV snubber of EAST NBI has been manufactured. We conducted a sequence of tests on the EAST NBI experimental system. And the results show that a very good agreement between the experimental test results and the simulated ones. Because the stray capacitance of test stand is much larger than its expectation value, EAST NBI system should introduce two 3.5nF/100kV snubber prestnted in this paper.
     A snubber proposed in this paper has the advantages of low voltage loss under steady state, high limiting resistance, fast dynamic response, satisfied current limiting effect and powerful ability of absorption stored energy. It is a promising apparatus as the NBI system protection. Experimental study on the minisnubber validated the theory analysis and proposed simulation model are validity in this paper, which make a ready for research and designing International Thermonuclear Experimental Reactor (ITER) snubber.
引文
[1]钱家骊,刘卫东,关永刚.非超导型故障电流限制器的技术经济分析.电网技术. 2004, 28(9):42-43.
    [2]周坚,胡宏.华东500 kV电网短路电流分析及其限制措施探讨.华东电力, 2006, 34(7):55-59.
    [3]武守远,荆平,戴朝波,等.故障电流限制技术及其新进展.电网技术, 2008, 32(24):23-32.
    [4]孙树敏,刘洪顺,李庆民,等.电力系统故障限流器研究综述.电网技术.2008, 32(21):75-79.
    [5]叶林,林良真.超导故障限流器在电力系统中的应用研究.中国电机工程学报, 2002, 22(10):81-84.
    [6] Shimizu H, Yokomizu Y, Goto M, et al.A study on required volume of superconducting element for flux flow resistance type fault current limiter. IEEE Transactions on Applied Superconductivity. 2003, 13(2):2052-2055.
    [7]庄劲武,张晓锋,王晨,等.基于YBa_2Cu_3O_7块材的高温超导限流器的限流特性研究.中国电机工程学报. 2006, 26(8):45-49.
    [8] Ren L, Tang Y, Li Z, et al. Techno-economic evaluation of a novel flux-coupling type superconducting fault current limiter. IEEE Transactions on Applied Superconductivity. 2010, 20(3):1242-1245.
    [9] Aleksandr M K, Oleg L K. Dynamics Modeling of Fast Transformer Type Fault Current Limiter Loaded With HTSC. IEEE Transactions on Applied Superconductivity. 2007, 17(4):3853-3856.
    [10] Vilathgamuwa M, Perera R A, Choi S S. Performance improvement of the dynamic voltage restorer with closed-loop load voltage and current-mode control. IEEE Transactions on Power Electronics. 2002, 17(5):824-834.
    [11]喻劲松,荆平,戴朝波,等.华东500 kV电网串联谐振型故障电流限制器的保护配置.电网技术. 2009, 33(18):191-197.
    [12]穆建国,王莉,胡杰.直流固态断路器拓扑结构的设计与分析.中国电机工程学报. 2010, 30(18):109-114.
    [13] ITER technical basis, IAEA, Vienna 2002, ITER EDA, Doc. Series N. 24, Plant Description Document, Sec. 2.5.1.
    [14] Gaio E, Toigo V, De Lorenzi A, et al. The alternative design concept for the ion source power supply of the ITER neutral beam injector. Fusion Engineering and Design. 2008, 83(1): 21-29.
    [15] Winje R. The TFTR neutral beam power system. Fusion Science and Technology. 1982, 1: 475-480.
    [16] Deitz A, Winje R, Murray H, TFTR neutral beam power system. Proceedings of the 8th Symposium on Engineering Problems of Fusion Research, San Francisco, CA, Nov. 13–16, 1979, 329-332.
    [17] Nerem A, Beal J W, Colleraine A P, et al. The Doublet III Neutral Beam Power System, in: Proceedings of the 9th Symposium on Engineering Problems of Fusion Research, Chicago, 1981, 815-818.
    [18] Claesen R, Mondino P L, Neutral beam injection and radio-frequency power supplies, Fusion Technology 11 (Jan. 1987).
    [19] Hrabal D, Kunze R C, Weigand W, et al. HV-Power Supply for Neutral Injector Experiments Weldenstein VII and Asdex. Proceedings of the 8th Symposium on Engineering Problems of Fusion Research, San Francisco, CA, 1979, 1005-1009.
    [20] Stabler A, Vollmer O, Baumler J, et al. Performance of the Asdex Neutral Beam Injector, in: Proceedings of the 9th Symposium on Engineering Problems of Fusion Research, Chicago, 1981, 767-769.
    [21] Stabler A, Feist J H, Speth E, et al. Design of the neutral beam injection system for Asdex-Upgrade. Fusion Science and Technology. 1988, 2:620-624.
    [22] Vollmer O, Stabler A, Feist J H, et al. Commissioning and first operation of the Asdex-Upgrade neutral beam system. Proceedings of the 15th Symposium on Fusion Engineering, vol. 1, Hyannis, MA, 1993, 451-454.
    [23] Matsuoka M, Akiba M, Kawai M, et al. The JT-60 NBI power supply system. Fusion Science and Technology. 1984, 2:911-916.
    [24] Schwarz U, Braunsberger U, Furre A, et al. The high voltage power supply for the acceleration grids of the Textor neutral injectors. Fusion Science and Technology. 1984, 2:823-828.
    [25] Ganuza D, Del Rio J M, Garcia I, et al. 130 kV, 130A High voltage switching mode power supply for neutral beam plasma heating: Design issues, Fusion Engineering and Design. 2003, 66(8):615-620.
    [26] Basile G L, Ciscato D, Dobbing J A, et al. The neutral injector auxiliary power supply system in JET: Design, manufacture and tests, Fusion Science and Technology. 1984, 2:835-842.
    [27] Schwarz U, Pfister U, Goll O, et al. The design of the auxiliary power supplies for the Textor Neutral injectors. Proceedings of the 12th Symposium on Fusion Engineering, vol. 1, Austin, TE, 1985, 685-688.
    [28] Stork D. Neutral beam heating and current drive systems. Fusion Engineering and Design. 1991, 14(1–2):111-133.
    [29] Kuriyama M, Akino N, Araki M, et al. Design high energy negative-ion based neutral beam injection system for JT-60U. Fusion Engineering and Design. 1995, 26(1-4):445-453.
    [30] Ohga T, Usui K, Ohmori K, et al. High voltage power supply of negative-ion based NBI for JT-60U, in: Proceedings of the 17th IEEE/NPSS Symposium, vol. 2, San Diego, CA, 1997, 1091-1094.
    [31] Watanabe K, Yamamoto M, Takemoto J, et al. -1 MV DC UHV Power Supply for ITER NBI. 22th IAEA Fusion Energy Conference. Geneva, Switzerland. 13-18 October 2008, IT/P7-5.
    [32] Watanabe K, Yamamoto M, Takemoto J, et al. Design of a -1MV dc UHV power supply for ITER NBI, Nuclear Fusion. 2009, 49:055022(5pp).
    [33] Hemsworth R S, Long pulse neutral beam injection. Nuclear Fusion. 2003, 43(9):851-861.
    [34] Ohga T, Usui K, Ohmori K, et al. High voltage power supply of negative ion based NBI for JT-60U. Proc. 17th IEEE/NPSS Symposium of Fusion Engineering, San Diego, 1997, 1091-1094.
    [35] Watanabe K, Kashiwagi M, Kawashima S, et al. Development of a dc 1 MV power supply technology for NB injectors. Nuclear Fusion. 2006, 46:S332-S339.
    [36] Watanabe K, Kashiwagi M, Kawashima S, et al. Design of ITER NBI power supply system. Japan Atomic Energy Research Institute Report JAERI-Tech 97-034(1997).
    [37] Manitoba HVDC Research Centre, Electromagnetic transients and controls simulation code“PSCAD/EMTDC”, http://pscad.com/
    [38] Hemsworth R, Feist J H, Hanada M, et al. Neutral beams for ITER. Review of Scientific Instruments. 1996, 67:1120.
    [39] Inoue T, Di Pietro E, Hanada M, et al. Design of neutral beam system for ITER-FEAT. Fusion Engineering and Design. 2001, 56(7):517-521.
    [40] Mondino P L. The ITER pulsed power supply system, Fusion Science and Technology. 1998, 491-496.
    [41] Toigo V. RFX private communication, feasibility assessment of the step-up transformer for the accelerator power supply, April, 2006.
    [42] Esch H P L, Hemsworth R S, Massmann P. Singap: the European concept for negative ionacceleration in the ITER neutral injectors, Review of Scientific Instruments. 2002, 73(2):1045-1047.
    [43]李伟. EAST-NBI系统高压电源传输线及缓冲器(snubber)的研究与设计[博士论文].合肥:中国科学院等离子体物理研究所, 2009.
    [44] Schwarz U, Haltrich S. The operating behavior of the power supplies for the TEXTOR neutral injectors. The 15th symposium on Fusion Technology. Utrecht, Netherlands, 1988:5-8.
    [45] Matsuoka M, Matsuda S, Nagamura H, et al. A new method of protecting ion source accelerators against deterioration due to source breakdown. IEEE Transactions on Plasma Science. 1984, 12(3):231-232.
    [46] Bottigilioni F, Bussac J P. Energetic breakdown and voltage hold-off between copper electrodes in vacuum. Physica C: Superconductivity. 1981, 104(1-2): 248-255.
    [47] Baker W R, Hopkins D B, Dexter WL, et al. Saturable reactor-controlled power supply system for TCT/TFTR neutral beam sources. Proceedings of 6th Symposium on Engineering Problems of Fusion Research. San Diego CA. November 1975, 440-444.
    [48] Owren H M, Baker W R, Berkner K H, et al. The effect of capacitive stored energy on neutral beam accelerator performance. Proceedings of the 12th Symposium on Fusion Technology. Jülich, Germany 1982, 455-460.
    [49] Baker W R. Stored energy and the LBL neutral beam source. Lawrence Berkeley Laboratory, Internal Memo UCID-3871 (May 1976).
    [50] Meister R, Braunsberger U,Schwarz U, et al. Test and design of a passive core snubber for the protection of neutral beam injectors. The 13th Symposium on Fusion Technology. Varese, Italy. 1984, 817-822.
    [51] Kunze R C, Lohnert H. Damping elements in the high-voltage circuits of the ASDEX neutral injectors. The 9th Symposium on Engineering Problems of Fusion Research. Chicago, October 1981, 811-814.
    [52] Pesce A, De Lorenzi A, Grando L. A new approach to passive protection against high energy and high current breakdowns in the ITER NBI accelerator, Fusion Engineering and Design. 2009, 84:1499-1504.
    [53] Mizuno M, Dairaku M, OharaY, et al. Inverter type high voltage dc power supply for negative-ion-based neutral beam injectors. Proceedings 13th IEEE Symposium on Fusion Engineering. Knoxville, USA. 2-6 October 1989, 574-577.
    [54] Watanabe K, Akino N, Aoyagi T, et al. Recent progress of high-power negative ion beamdevelopment for fusion plasma heating Radiat. Radiation Physics and Chemistry. 1997, 49(6):631-639.
    [55] Omori K. Improvement of the ion source power supply for JT-60 negative-ion based NBI. Proceedings 20th Symposium on Fusion Technology. Marseille, France. 7-11 September 1998, 395-398.
    [56] Watanabe K, Mizuno M, Nakajima S, et al. Development of a high performance core snubber for high power neutral beam injectors. Review of Scientific Instruments. 1998, 68(12):4136-4141.
    [57] Fink J H, Baker W R, Owren H M. Analysis and application of a transformer core that acts as an arc snubber. IEEE Transactions on Plasma Science, 1980, 8(1): 33-38.
    [58]詹琼华,王双红,肖楚成.开关磁阻电动机电容式位置检测技术.电工技术学报. 1999 (6):1-5.
    [59]樊小明,经亚枝,张焕春,等.开关磁阻电机的一种无位置检测器方案的研究.电工技术学报. 1997, 12(6):27-37.
    [60] Choi H S, Hyun O B, Kim H R. Quench characteristics of resistive superconducting fault current limiters based on YBa2Cu3O7 films. Physical C: Superconductivity. 2001, 351(4):415-420.
    [61]王付胜,刘小宁.饱和铁心型高温超导故障限流器数学模型的分析与参数设计.中国电机工程学报. 2003, 23(8):136-139.
    [62]张永,牛潇晔,王洋,等.超导故障限流器.中国电力,2005, 9(2):57-60.
    [63] Paul W, Baumann T, Rhyner J. Tests of 100 kW High-Tc Superconducting Fault Current Limiter. IEEE Transactions on Applied Superconductivity, 1995, 5(2): 1059-1062.
    [64] Larbalestier D, Blaugher R D, Schwall R E, et al. WTEC panel report on power applications of superconductivity in Japan and Germany. Loyola, (10/97) PB98-103 161; [Online]. Available: http://itri.loyola.edu/scpa/toc.htm.
    [65] Salasoo L, Boenig H J. Superconducting fault current limiters, in Wiley Enc. of Electr. and Electronics Eng., J. G. Webster, Ed. New York: Wiley, 1999, 20: 710–717.1995, 16: 1059-1062.
    [66] Paul W, Baumann T, Rhyner J, et a1.Tests of 100 kW high-Tc superconducting fault current limiter.IEEE Transactions on Applied Superconductivity. l995, 5(2): 1059-1062.
    [67] Keilin V, Kovaalev I, Kruglov S, et al. Model of HTS three-phrase core fault current limiter. IEEE Transactions on Applied Superconductivity, 2000, 10(1): 836-839.
    [68] Mukhopadhyay S C, Dawson F P, Iwahara M, et al. Analysis, design and experimental results for a passive current limiting device, IEE Proceedings -Electrical Power Application. 1999, 146(3):309-316.
    [69] Verhaege T, Cottevieille C, Estop P, et a1. Experiments with a high voltage (40kV) superconducting fault limiter. Cryogenics. 1996, 36(7):521- 526.
    [70]邱毓昌,超导故障电流限制器.高压电器. 1998, 34(5):45-48.
    [71] Salasoo L, Imece A F, Delmerico R W, et al. Comparison of superconducting fault limiter concepts in electric utility applications.IEEE Trans actions on Applied Superconductivity. 1995, 5(2):1079-1082.
    [72] Zhang J, Gao Z, Song N, et al. Dynamic simulation and tests of a three-phase high tc superconducting fault current limiter. IEEE Transactions on Applied Superconductivity. 2002, 12(1): 896-899.
    [73]叶莺,肖立业.超导故障限流器的应用研究新进展.电力系统自动化. 2005, 29(13): 92-96.
    [74] Winter S D, Kuenning R W, Berg G G. Pulse properties of large 50-50 Ni Fe tape cores [J]. IEEE Transactions on Magnetics. 1970, 6 (1):41-45.
    [75] Ganz A G. Applications of thin Permalloy tape in wide-band telephone and pulse transformers. AIEE Trans. 1946, 65:177-183.
    [76] Voelker F. Analysis of iron cores driven with fast pulses and high voltages per turn. Lawrence Radiation Laboratory, Berkeley, Calif., Rept. UCID-827, 1958.
    [77] Kuenning R W. Eddy current analysis extended for non- constant applied voltage. Lawrence Radiation Laboratory, Livermore, Calif., Rept. UCID-15030, 1966.
    [78] Kuenning R W. Eddy current analysis extended for times after the inner wrap completely saturates with non-constant applied voltage. Lawrence Radiation Laboratory, Livermore, Calif., Rept. UCID-15030, 1966.
    [79] Winter S D. Magnetization of tape assuming uniform distribution of nucleating centers throughout the tape. Lawrence Radiation Labxatory, Livermore, Calif., Rept. UCID-15042, 1966.
    [80] Bishop J E L. Eddy-current-limited growth of ferromagnetic domains on the surface of square-loop alloy tapes. Journal of Physics D: Applied Physics. 1976, 9: 2095-2110.
    [81] Williams H J, Schockley W, Kittle C. Studies of the propagation velocity of a ferromagnetic domain boundary. Physical Review. 1950, 80(6):1090-1094.
    [82] Pry R H and Bean C P. Calculation of energy loss in magnetic sheet materials using a domain model. J. Appl. Phys. 1958, 29(3): 532-533.
    [83] Praeag W F. Overcurrent protection for the TFTR neutral beam sources during spark down, 8th Symposiumon Engineering Problems on Fusion Research, IEEE, San Francisco, California. November, 1979.
    [84] Huang Yiyun, Li Wei, Wang Junjia, et al. Analysis and design of the iron core as the arc snubber in the EAST NBI system. Plasma Science and Technology. 2010, 12(3):330-334.
    [85] Choi J, Namihira T, Sakugawa T, et al. Loss characteristics of a magnetic core for pulsed power applications. IEEE Transactions on Plasma Science. 2007, 35(6): 1791-1796.
    [86] Cao L, Li G. Complete parallelogram hysteresis model for electric machines. IEEE Transactions on Energy conversion. 2010, 25(3): 626-632.
    [87]曹亮.基于Tesla变压器的高频高压电源及缓冲器的研究[博士论文].上海:上海交通大学, 2010.
    [88] Copeland M A, Slemon G R. An analysis of the hysteresis motors: I-analysis of the idealized machine. IEEE Transactions on Power Apparatus and Systems. 1963, 82 (2): 34 - 42.
    [89] Burdt R, Curry R D. Magnetic core test stand for energy loss and permeability measurements at a high constant magnetization rate and test results for nanocrystalline and ferrite materials. Review of Scientific Instruments. 2008, 79(9): 094703-1: 094703-5.
    [90] Goodenough J B. Summary of losses in magnetic materials. IEEE Transactions on Magnetics. 2002, 38(5):3398-3408.
    [91] Willard M A, Francavilla T, Harris V G. Core-loss analysis of an (Fe, Co, Ni)-based nanocrystalline soft magnetic alloy. Journal of Applied Physics. 2005, 97(10): 10F502.
    [92] Chen C W. Magnetism and metallurgy of soft magnetic materials. Dover, New York, 1986, 143-162 and 109-115.
    [93] Bertotti G. General Properties of Power Losses in Soft Ferromagnetic Materials. IEEE Transactions on Magnetics. 1988, 24(1):621-630.
    [94] Pry R H, Bean C P. Calculation of the Energy Loss in Magnetic Sheet Materials Using a Domain Model. Journal of Applied Physics. 1958, 29(3):532-533.
    [95] Paul D. Agarwal and L. Rabins. Rigorous solution of eddy current losses in rectangular bar for single plane domain wall model. Journal of Applied Physics. 1960, 31(5):246S-248S.
    [96] Young F, Bhate S, Swift W. Theory of eddy current losses in finite width sheet exhibiting simple bar-like domain structures. IEEE Transactions on Magnetics. 1974, 10(3): 814-816.
    [97] Matsuoka M, Kawai M, Komata M, et al. Japan Atomic Energy Research Institute Report JAERI-M 84-112, 1984.
    [98] Yamauchi K, Yoshizawa Y. Recent development of nanocrystalline soft magnetic alloys [J]. Nanostructured Materials. 1995, 6(2):247-254.
    [99] Yoshizawa Y, Oguma S, Yamauchi K. New Fe-based soft magnetic alloy composed of ultrafinegrain structure. Journal of Applied Physics. 1988, 64(10):6044- 6046.
    [100]荀伟,胡勇,林涛,等.制备条件对Finemet纳米晶软磁材料组织的影响.铸造. 2008, 57(6):604-607.
    [101] Misu T, Miyahara N, Sugiura A, et al. Broadband“in-series multistation”rf cavity with low voltage standing wave ratio. Review of Scientific Instruments. 2005, 76: 053306.
    [102] http://www.linkjoin.com/GB/Sys/Pages/PagesClass.asp?ClassName=%B2%E2%CA%D4%B1%A8%B8%E6&LocationUrl=ShowCurveImg.asp&MenuName=%B2%E2%CA%D4%B1%A8%B8%E6
    [103] Watanabe K, Mizuno M, Ohara Y, et al. dc voltage holding experiments of vacuum gap for high-energy ion sources.1992, J. Appl. Phys. 72(9): 3949-3956.
    [104] Euringer H, Lochter M, Pfister U, et al. Neutral injection for TEXTOR. IEEE 13th Symposium on Fusion Engineering. 1989, vol.2: 991-995.
    [105] Ramakrishnan S, Bowen O N, O'Connor T, et al. Neutral beam power system for TPX. 15th IEEE/NPSS Symposium on Fusion Engineering. 1993, vol.2:913-916.
    [106] Kato Y, Watanabe A, Konishi H, et al. Neutral Line Protection System for HVDC Transmission. IEEE Transactions on Power Delivery. 1986, 1(3):326-331.
    [107] Claesen R, Baur U,Bertolini E, et al. The JET neutral injection 160kv transmission lines, the associated snubbers and the SF6 tower for the termination of the transmission lines housing of the snubbers and voltage breaks. IEEE 14th Symposium on Fusion Technology, 1986, 941-947.
    [108] Baruah U K, Patel P J, Bandyopadhyay M, et al. Power Supply System for 1000s Neutral Beam Injector. 17th IEEE/NPSS Symposium on Fusion Engineering. 1997, 2:1133-1136.
    [109] Wheeler H A. Formulas for the skin effect. Proceedings of the Institute of the Radio Eng. 1942, 30(9): 412-424.
    [110] Raju G R G, Liu J. Simulation of electrical discharges in gases-Nonuniform electric fields. IEEE Transactions on Dielectrics and Electrical Insulation. 1995, 2(5): 1016-1041.
    [111] Nikonov V, Bartnikas R, Wertheimer M R. The influence of dielectric surface charge distribution upon the partial discharge behavior in short air gaps. IEEE Transactions on Plasma Science. 2001, 29(6):866-874.
    [112] Govinda raju G R. Some Aspects of the Sparkover Time of a Low-Pressure Magnetic Switch. IEEE Transactions on Electrical Insulation. 1987, 22(3): 287-296.
    [113] Biblarz O, Bell W J. Thermionic arc breakdown in small discharge gaps: model and applications. IEEE Transactions on Industry Applications. 1998, 34(2): 325-331.
    [114]徐学基,诸定昌.气体放电物理.上海:复旦大学出版社. 1994, p. 195.
    [115]马忠梅,籍顺心,张凯,等.单片机的C语言应用程序设计(第4版).北京:北京航天航空大学出版社. 2007.
    [116]姜志海,赵艳雷.单片机的C语言程序设计与应用.北京:电子工业出版社. 2008.
    [117]林卓然. VB语言程序设计.北京:电子工业出版社. 2009.
    [118] II.JI.卡兰塔罗夫,JI.A.采伊特林(苏)著,陈汤铭,刘保安,罗应立等译.电感计算手册.北京:机械工业出版社. 1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700