利用重组自交系群体研究大豆产量与生物量动态特征、茎叶性状间的关系和产量相关性状的QTL分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
产量是大豆育种最重要的性状。大豆产量是一个综合性状,其遗传基础复杂。研究产量密切相关的性状或产量因素,是揭示产量性状遗传基础的有效途径。大豆产量主要影响因素可归为3类:(1)光合生理有关性状:生物量累积与分配、叶部性状等;(2)产量因子:收获指数、百粒重、荚数、节数以及分枝性状等;(3)倒伏性。前2者是产量决定因素,后者是高产限制因素。目前对这3类产量主要影响因素的遗传研究还比较薄弱。因此,本文以科丰1号和南农1138-2组建的大豆重组自交家系NJRIKY为材料,在遗传背景相对控制下,通过2年田间试验的表型评价,研究高产家系生物量累积与分配动态特征;产量与这3类性状之间的关系,并定位相关性状的QTL。与美国Florida大学合作发展出2套新的遗传统计模型,分别用于大豆株高生长QTL与环境互作、茎杆和全株生物量异速生长性状QTL的检测。本研究结果为分子标记改良大豆产量性状,较全面地揭示NJRIKY群体产量遗传基础,提供分子标记信息。
     1.通过测定出苗后25 d至鼓粒期生物量累积和分配数据,获得大豆高、中、低产家系生物量积累与分配的动态特征:
     (1)地下部、地上部生物量与产量具极显著的相关动态,随生长进程,相关系数逐渐增加,至鼓粒期(R5~R6期)相关系数达到最大;
     (2)大田条件2500~2800kg hm~(-2)以上的高产家系,在约19万株/ha的情况下,地下部、地上部生物量累积显著高于中、低产家系,其地下部累积量为300-330kghm~(-2)(R1)、500 kg hm~(-2)(R3)和650 kg hm~(-2)(R5),最大值660-700kg hm~(-2),地上部累积量为1500~1600 kg hm~(-2)(R1)、3100~3400 kg hm~(-2)(R3)和5500~6500 kg hm~(-2)(R5),最高值7200~7800 kg hm~(-2),最大累积值均出现在鼓粒期;
     (3)高产家系各器官生物量分配动态特征是,茎秆、叶柄占同时期全生物量的比例两年平均分别为29.4%(R1),32.0%(R3),30.8%(R5)、27.1%(R6)和10.5%(R1)、11.7%(R3)、10.6%(R5)8.2%(R6),显著高于中、低产家系;叶、根比例分别为46.0(R1)、41.2%(R3)、34.1%(R5)、25.4%(R6)和7.1%(R1)、12.6%(R3)、9.7%(R5)、7.9%(R6),显著低于中、低产家系。
     2.在NJRIKY群体目标性状较宽的变异范围内,进一步研究了R5期生物量、收获期生物量、收获指数、R1和R5期叶面积指数与产量,以及收获指数与生物量的回归关系。结果表明,R5期生物量与产量呈指数回归关系,R5期生物量累积在5500~6500kg hm~(-2)时,产量不再随生物量增加而增加,进一步验证了上述高产家系R5期生物量累积标准具有普适性;
     收获期生物量与产量具直线关系,试验范围内未发现生物量上限;R1、R5期叶面积指数与产量具直线关系,但同一产量水平对应的叶面积指数变幅较宽;
     表观收获指数与产量呈指数曲线相关,小于0.42时与产量具正变关系,大于0.42时与产量具负变关系。收获期生物量与表观收获指数呈负向的指数曲线相关,说明当生物量累积不再是高产品种的限制因素时,产量的进一步突破途径是提高收获指数。
     产量因子与产量的相关研究结果是,除有效分枝和分枝荚数外,产量与根重、冠层宽和冠层高、荚数、荚粒数、百粒重、主茎荚数,分枝荚数、主茎节数等均呈极显著相关;其中,根重、冠层宽和冠层高与产量的相关系数相对较高。
     3.NJRIKY群体产量及产量相关性状QTL的检测结果:(1)检测到9个产量QTL,贡献率6%~17%。其中qYDB1-1和qYDD1a-2是两年均能稳定表达的产量QTL,累积解释产量变异的29%;另外2个产量QTL,qYDD2-1和qYDD2-2,贡献率分别是13%和16%,也归为主效产量QTL;其余的5个产量QTL贡献率均在10%以下。说明产量性状存在主效QTL控制的同时,也受效应较小的QTL位点的影响,表现出主效基因和微效基因共同决定的遗传体系。
     (2)检测到R1、R3和R5期生物量累积有关的QTL分别有6、9和6个,其中C2连锁群的2个标记区间,GMKF059a~satt319和O连锁群GMKF082b~satt3313,同时检测到这3个时期的生物量QTL,且相应QTL贡献率均较大,是控制生物量累积的主效QTL。检测到10个收获期生物量QTL,其中,qBMB1-2、qBMC2-1和qBMO-1,是主效QTL。
     (3)两年共检测到10个表观收获指数QTL,贡献率6%~22%。其中qHIB1-2、qHIO-1和qHIO-2贡献率较大且具有年份稳定性,是控制表观收获指数的主效QTL。
     (4)发现9个根重QTL,贡献率在5.1%~21.1%之间。B1连锁群的qRTB1-1两年能稳定表达,贡献率在10%以上,是根重有关的主效QTL。
     (5)检测到5个R1期叶面积指数QTL,贡献率在6.4%~17.2%之间,2年未检测到稳定表达的QTL。R5期检测到6个叶面积指数QTL,贡献率7.3%~26.2%。位于B1连锁群的qLAIR3B1-1具有年份稳定性,且贡献率较大,是叶面积指数主效QTL;两年共检测到4个冠层宽有关的QTL,贡献率在6.3%~13.1%之间。冠层高有关的QTL两年共检测到12个,贡献率为5.2%~9.2%。其中的O连锁群标记区间satt262-satt173,是冠层高和宽共同的QTL位点。
     (6)百粒重、荚粒数和单株荚数分别被检出6、2和1个QTL,解释相应的表型变异在6.9~15.7%之间。主效QTL是qSWB1-1、qSNPPO-2和qPPB1。发现分枝荚数、主茎荚数、主茎节数和有效分枝QTL分别为5、3、8和3个,贡献率6.3%~13.7%。
     (7)比较产量及产量相关的性状QTL定位结果发现,(1)在9个产量QTL中,有5个QTL位点,同时发现有多个产量相关性状QTL,以产量主效QTL之一的qYDB1-1所在的B1连锁群上分布的各性状QTL最多。(2)产量及产量相关性状,多数QTL成簇分布在B1、C2和O连锁群。这一方面解释了这些性状间相关的遗传原因,也说明产量与其相关的性状既存在共同的遗传基础,也有各自自身遗传控制体系。将产量主效QTL和产量密切相关性状QTL位点结合起来,共同作为产量的遗传控制体系,对深入揭示产量的遗传控制基础将是有意义的。
     4.对倒伏性评价指标的遴选研究结果是:在设计的4种倒伏性评价指标中,根据指标与倒伏程度的相关程度、物理意义、测度简便性和环境稳定性等4个判断标准,遴选出鲜重力矩(PF)的综合表现最优,并对PF和倒伏程度进行QTL分析。在NJRIKY群体共检测到7个倒伏程度相关的QTL,2年未检测到相同的QTL;检测出7个倒伏势有关的QTL,分别解释表型变异的5%~12%,其中qPFC2-2,2年均能稳定表达,贡献值较大,是倒伏势主效QTL。
     5.在原有功能作图的框架下,扩展建立了2套遗传模型,分别用于检测株高生长QTL与环境互作效应和控制茎杆和全株生物量异速生长QTL的定位。结果,在C2和O连锁群发现2个控制株高生长的QTL。通过互作检验,发现这些QTL具有显著的基因型-环境互作效应,并估计了株高QTL在整个生长和发育阶段的时间序列效应,测验了不同环境下特定QTL基因型生长曲线的区别。利用异速生长模型,成功检测到4个控制茎杆和全株生物量异速生长的QTL。这2套模型,为破译任何生物性状的表达以适应生境和非生境中的遗传控制结构,研究复杂表型的遗传网络结构,以获得与性状的发育模式和进程的调节机制有关的重要信息,奠定了初步的遗产学研究思路和方法。
Yield is the most important trait for soybean breeding.It is a valuable strategy to study yield related traits or yield components for revealing genetic basis of yield since yield is believed a composite trait by many researchers.There are many traits relating yield including morphological,photosynthesis,physiological traits and yield components et al, all which can be summed uo to three kinds of trats,i.e.,biomass accumulation and partition, leaf-related traits and lodging in terms of the reports published.The two former determine size of yield and the latter can restrict a high yield.It is clear only for relation of yield with maturity time and growth habit in QTL locations.There is no report for QTL mapping for biomass,harest index and leaf area index.Although study on QTL mapping for lodging of soybean has been conducted for many years,there is absent of an affective method for precisely evaluating lodging due to demand to corresponging field environment.Crop breeders need a method for detecting lodging pential of plant.This paper employed a RIL population from a cross of Kefeng 1 and Nannong 1138-2 and tested phenotypic values of traits across two years to study dynamic characteristics of biomass accumulation and partition and relationships and QTL mapping for yield,biomass accumulation,harvest index,leaf area index canopy related traits and yield components.We work together with departent of statistics,university of Florida,to develop two genetic models for detecting genotype environment interactions for growth curves of plant height and QTL regulating ontogenetic allometry of stem with whole biomass.The aim of this paper is to supply molecular marker information and to study genetic basis of yield for yield enhancement of soybean.
     Through testing data of biomass accumulation and partition from 25 d after emergence to seed filling time,dynamic characteristics showed that(1) yield was positively and significantly correlated with under and above ground biomass accumulation and their correlation increased in the process of growth with the peak correlation coefficients during R5(start of seed filling) to R6(medium of seed filling).(2)The lines with yield at above 2500~2800 kg ha~(-1) and stand plants at 190 000 ha~(-1),had a significant higher biomass accumulation than medium yield and low yield lines.Biomass accumulation of the high yield lines was 300~330 kg ha~(-1)(R1),500 kg ha~(-1)(R3),650 kg ha~(-1)(R5) and 700 kg ha~(-1) (the peak) for under ground part,and 1500~1600 kg ha~(-1)(R1),3100-3400 kg ha~(-1)(R3), 5500~6500 kg ha~(-1)(R5) and 7200~7800 kg ha~(-1)(the peak) for above ground part.Both of under and above ground biomass accumulation reached to peak at R5~R6.(3)Comprising with the medium and low yield lines,the high yield ones had significantly higher mean proportions of petiole and stem biomass to the whole biomass across the two years with 10.5%(at R1)、11.7%(at R3)、10.6%(at R5) and 8.2%(at R6) for petiole and 29.4%(R1), 32.0%(R3),30.8%(R5)和27.1%(R6)for stem,and significant lower proportions of leaf and root with 46.0%(R1)、41.2%(R3)、34.1%(R5) and 25.4%(R6) for leaf and 17.1%(R1)、12.6%(R3)、9.7%(R5)and 7.9%(R6) for root.
     Biomass in harvest time had the biggest correlation coefficient with yield followed by leaf area index,root,canopy width and canopy height and the lowest ones were yield components including pod number,seed weight,seed number per pod.The regression for traits obtained was as following.There appeared some negative exponential correlation between yield and biomass at R5,with the biomass of 5 500~6500 kg ha~(-1) as the highest turning point.A linear correlation of yield with biomass at harvest stage was detected,but without upper limit of the biomass found in the present experiment.Leaf area index had a linear relation with yield and there did not occur the upper limit for size of biomass.There was an exponential correlation between yield and apparent harvest index,with 0.42 as the turning point,positive relationship as less than 0.42 and negative relationship as larger than 0.42.Biomass in harvest negatively related with harvet index which shows that harvest index will become a restricting factor as biomass accumulation to some high size.
     Analizing results using method of Pearson simple correlation showed that yield was closely and significantly related with root weight,canopy width,canopy height,seed weight,pod number,seed number per pod,pod number per node,pod number in branch and node number in main stem excluding effective branch and pod number in branch.
     Result of QTL mapping in the NJRIKY population showed that,(1)Nine yield QTLs were detected in NJRIKY population distributing with explaining ratios from 6%to 17%. Of those yield QTLs there are two major ones,qYDB1-1 and qYDD1a-2,which could been detected across the two years and other two QTL,qYDD2-1 and qYDD2-2 were also major yield QTLs for their biger axplaning retios(13%and 16%).The other five yield QTL appeared effects less than 10%.All the information showed the genetic basis of yield were composited of major genes and less efects' genes.(2) 6,9 and 6 QTLs for biomass at R1, R3 and R5 were identified in the population,respectively,with 2 of them being detected across R1 through R5 in both years.9 QTLs for root weight were found in five lingage groups with R~2 from 5.1%to 21.1%.The major QTL for root weight was qRTB1-1.Ten biomass QTLs were found with three QTLs,qBMB1-2、qBMC2-1 and qBMO-1,as major QTLs for biomass.(3)Ten apparent harcest indexes QTL have been detected with explain ration from 2%to 22%.qHIB1-2、qHIO-1 and qHIO-2 were major QTLs for this trait.(4) 9 QTLs for root weight were dected and the major QTL was qRTB1-1 with a explaining effect more than 10%.(5) 5 and 6 QTLs for LAI at R1 and R5 were detected in the population with R~2 from 6.4 to 26.2%.qLAIR3B1-1 was the major QTL for LM.4 and 12 QTLs for canopy width and canopy height.The marker interval,satt262-satt173,was the same for the two traits.QTLs for seed weight,seed number per pod and pod number were 6, 2 and 1 respectively with R~2 from 6.9%to 15.7%and corresponding major QTL was qSWB1-1,qSNPPO-2 and qPPB1.5,3,8 and 3 QTL were found for pod number at branch, pod number at main stem,node number of main stem and effective branch.
     Most of QTLs for yield and yield related traits were distributed in B1,C2 and O linkage groups.Among the marker intervals of yield QTLs,were found to have QTLs conferring biomass and apparent harvest index,leaf area index which implied a partial same genetic basis among the three traits.We can integrate linkage groups of QTLs of yield with yield closely related traits as gentic component of yield,which will benefit for revealing genetic basis of yield.
     Results of studying on lodging resistance indices and related QTLs showed that fresh matter moment(PF) had the best representation among the four indices studied which denoted lodging potential.QTL analysis was performed also for lodging score and lodging potential.Seven QTLs for lodging score were found but no common one between the two years.There were seven QTLs for lodging potential with explaining 5%~12%phenotypic variation,with the same QTL qPFC2-2 in two years as major QTL.
     We have mapped dynamic traits with university of Florida together.Two genetic models were developed by extending composite functional mapping for estimating the effects of QTL-environment interactions on growth curves of plant height and allometry of stem with whole biomass respectively.Three QTL for plant height wer detected locating B1, C2 and O linkage groups,we have characterized the dynamic patterns of the genetic effects of the QTLs governing growth curves of plant height and estimated the global effects of the underlying QTLs during the course of growth and development,and test the differentiation in the shapes of QTL genotype-specific growth curves between different environments.Employed allometry gentic model,four QTLs controlling allometry of stem with whole biomass were found.The two models have successfully detected several QTLs that cause significant genotype-environment interactions for plant height growth processes. The model provides a basis for deciphering the genetic architecture of trait expression adjusted to different biotic and abiotic environments for any organism and will help to study the genetic architecture of complex phenotypes and,therefore,gain better insights into the mechanistic regulation for developmental pattems and processes in organisms.
引文
1. Adler FR, Chase K, Cregan PB, et al. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations[J]. Crop Sci, 1999, 39(6): 1642-1651
    
    2. Adler FR, Chase K, Lark KG, et al. Interactions between quantitative trait loci in soybean in which trait variation at one locus is conditional upon a specific allele at another[J]. Proceedings of the National Academy of Sciences, 1995,92:46564660
    
    3. Adler FR, Chase K, Lark KG, Mansur, et al. Genetics of soybean agronomic traits: II. Interactions between yield quantitative trait loci in soybean[J]. Crop Sci, 1999, 39: (6) 1652-1657
    
    4. Allen FL, Chapman A, Gresshoff PM, et al. Quantitative trait loci for agronomic and seed quality traits in an F-2 and F-4 : 6 soybean population[J]. Euphytica, 2003,129 (3):387-393
    
    5. Ambros V. Control of developmental timing in Caenorhabditis elegans[J]. Curr Opin Genet, 2000,10:428-33
    
    6. Anholt RR, Mackay TFC. Quantitative genetic analyses of complex behaviours in Drosophila[J].Nature Rev Genet, 2004, 5: 838-849
    
    7. Arthur W. The emerging conceptual framework of evolutionary developmental biology[J]. Nature 2002,415, 757-764
    
    8. Ashley DA, Bailey MA, Boerma HR, et al. Identification of quantitative trait loci for plant height,lodging, and maturity in a soybean population segregating for growth habit[J]. Theor Appl Genet,1996b, 92:516-523
    
    9. Ashley DA, Bailey MA, Boerma HR, et al. Molecular markers associated with seed weight in two soybean populations[J]. Theor Appl Genet, 1996,93:1011-1016
    
    10. Ashley DA, Bailey MA, Boerma HR, et al. Molecular markers associated with soybean plant height, lodging, and maturity across locations[J]. Crop Sci, 1996a, 36(3): 728-735
    
    11. Ashley DA, Boerma HR, Mian MAR, et al. QTLs conditioning early growth in a soybean population segregating for growth habit[J]. Theor appl genet, 1998,97(8):1210-1216
    
    12. Ashley DA, Boerma HR. Canopy photosynthesis and its association with seed yield in advanced generations of a soybean cross. Crop Sci, 1989, 29:1042-1045.
    
    13. Babka HL, Chung J, Cregan PB, et al.The seed protein, oil, and yield QTL on soybean linkage group I. Crop Sci, 2003,43 (3): 1053-1067,
    
    14. Baianu IC, Diers BW, Fehr WR, et al. Putative Alleles for Increased Yield from Soybean Plant Introduction[J]. Crop Sci, 2004, 44: 784-791
    
    15. Banavar JR, Damuth J, Maritan A, et al. Supply-demand balance and metabolic scaling[J]. Proc Natl Acad Sci USA, 2002, 99: 10506-10509.
    
    16. Banavar JR, Maritan A, Rinaldo A. Size and form in efficient transportation networks[J]. Nature, 1999,399:130-132.
    
    17. Bertalanffy von L. Quantitative laws for metabolism and growth[J]. Quart Rev Biol, 1957, 32:217-231
    
    18. Bhardwaj HL, Bhagsari AS. Harvest index and related characteristics of small and large seeded soybean genotypes[J]. Soybean Genet Newslett, 1990,17: 109-113
    
    19. Board JE, Kang M S, Bodrero M . Yield components as indirect selection criteria for late-planted soybean cultivars. Agronomy Journal, 2003,95(2): 420-429
    
    20. Board JE, Modali H. Dry matter accumulation predictors for optimal yield in soybean[J]. Crop Sci,2005,45(5): 1790-1799
    
    21. Boerma HR, Lee HS, Lee SH, et al. Genetic mapping of QTLs conditioning soybean sprout yield and quality[J]. Theor Appl Genet, 2001,103 (5): 702-709
    
    22. Boerma HR, Specht JE. Soybeans: improvement, production, and uses, third edition[M].Madison,Wisconsin, USA, 2001, p562
    
    23. Bookstein FL. Morphometric Tools for Landmark Data: Geometry and Biology[M]. NY:Cambridge University Press, 1991
    
    24. Breuker C, Debat V, Klingenberg CP. Functional evo-devo[J]. Trends Ecol Syst, 2006, 21: 488-492
    
    25. Brody S. Bioenergetics and Growth[M]. Reinhold, New York, 1945
    
    26. Broman KW, Speed TP. A model selection approach for the identification of quantitative trait loci in experimental crosses (with discussion)[J]. J Roy Stat Soc B, 2002, 64: 641-656
    
    27. Brucker E, Diers BW, Kopisch-Obuch F, et al. The Effect of rhgl on Reproduction of Heterodera glycines in the Field and Greenhouse and Associated Effects on Agronomic TraitsfJ]. Crop Sci.2005,45: 1721-1727
    
    28. Burias N, Planchon C. Divergent selection for dinitrogen fixation and yield in soybean. Theor Appl Genet, 1992, 83:543-548.
    
    29. Burias N, Planchon C. Increasing soybean productivity through selection for nitrogen fixation[J].Agron J, 1999, 82:1031-1034
    
    30. Burkey KO, Wells R. Response of soybean photosynthesis and chloroplast membrane function to canopy development and mutual shading[J]. Plant Physiol, 1991, 97: 245-252
    
    31. Buss GR, Maughan PJ, Saghai-Maroof MA. Molecular-marker analysis of seed-weight: genomic locations, gene action, and evidence for orthologous evolution among three legume species[J]. Theor appl genet, 1996,93:574- 579
    
    32. Buzzell RI, Buttery BR. Soybean harvest index in hill-plots [J]. Crop Sci, 1977,17: 968-970
    
    33. Calder WA. Size function, and life history[M].Cambridge, MA: Harvard University Press, 1984
    
    34. Carlborg O, Haley CS. Epsitasis: too often neglected in complex trait studies[J]. Nature Rev Genet, 2004, 5: 618-625
    
    35. Carroll RJ, Ruppert D. Power-transformations when fitting theoretical models to data[J]. J Am Stat Assoc, 1984,79:321-328.
    
    36. Chang SJC, Doubler TW, Gibson PT, et al. Genetic mapping of loci underlying field resistance to soybean sudden death syndrome (SDS)[J]. Crop sci, 1996, 36:393-400
    
    37. Chase K, Chung J, Germann M, et al. Soybean Response to Water: A QTL analysis of drought tolerance[J]. Crop Sci, 2001,41:493-509
    
    38. Chase K, Cregan PB, Jarvik T, et al. Genetic mapping of agronomic traits using recombinant inbred lines of soybean[J].Crop Sci.1996, 36(5): 1327-1336
    
    39. Chase K, Jung HG, Lark KG, et al. Quantitative Trait Loci Associated with Cell Wall Polysaccharides in Soybean Seed[J]. Crop Sci, 2004,44:2101-2106
    
    40. Churchill AG, Doerge RW. Empirical threshold values for quantitative trait mapping[J]. Genetics,1994, 138(3): 963-971
    
    41. Cianzio SR, Fehr WR, Hoeck JA, et al. Molecular Marker Analysis of Seed Size in Soybean[J].Crop Sci, 2003,43:68-74
    
    42. Cregan PB, Yaklich RW. Dry matter and nitrogen accumulation and partitioning in selected soybean genotypes of different derivation [J]. Theor Appl Genet, 1986, 72: 782-786
    
    43. Csanadi G, Lelley T, Stift G, et al. Seed quality QTLs identified in a molecular map of early maturing soybean[J]. Theor Appl Genet, 2001,103 (6/7): 912-919
    
    44. Cui YH, Zhu J, Wu RL. Functional mapping for genetic control of programmed cell death[J].Physiol Genom, 2006, 25: 458469
    
    45. Darlington RB. Multiple Regression in Psychological Research and Practice[J]. Psychological Bulletin, 1968, 69,161-182.
    
    46. Davis GT, Iqbal MJ, Kassem MA, et al. Quantitative trait loci in two soybean recombinant inbred line populations segregating for yield and disease resistance[J]. Crop Sci, 2002,42: 271-277
    
    47. Dekkers JCM, Hospital F. The use of molecular genetics in the improvement of agricultural populations. Nat Rev Genet, 2002, 3:22-32.
    
    48. Diers BW, Graef GL, Procopiuk AM, et al. Identification of putative QTL that underlie yield in interspecific soybean backcross populations[J].Theor Appl Genet, 2003,108:3 pgs 458-467
    
    49. Diers BW, Keim P, Olson TC, et al. RFLP mapping in soybean: association between marker loci and variation in quantative traits[J]. Genetics, 1990,126:735-742
    
    50. Diers BW, Sebolt AM, Shoemaker RC. Analysis of a quantitative trait locus allele from wild soybean that increases seed protein concentration in soybean[J]. Crop Sci, 2000,40(5): 1438-1444
    
    51. Diggle PJ, Heagerty P, Liang KY, et al. Analysis of Longitudinal Data [M]. Oxford, UK:Oxford University Press, 2002
    
    52. Diggle, PJ, Liang KY, Zeger SL. Analysis of longitudinal data. Oxford Univ. Press, Oxford, 1994
    
    53. Dodds PS, Rothman DH, Weitz JS. Re-examination of the 3/4-law of metabolism[J]. J Theor Biol,2001, 209: 9-27.
    
    54. Doerge RW, Churchill GA. Permutation tests for multiple loci affecting a quantitative character[J].Genetics, 1996,142: 285-294.
    
    55. Dusheck, J.It's the ecology, stupid! Nature , 2002,418:578-579
    
    56. Egli DB, Guffy RD, Heitholt JJ. Factors associated with reduced yields of decayed plantings of soybean [J]. J Agron Crop Sci, 1987,159: 176-185
    
    57. Egli DB. Cultivar maturity and response of soybean to shade stress during seed filling[J]. Field Crops Res, 1997,52: 1-8
    
    58. Eizenga GC, Agrama HA, Lee FN, et al. Identifying novel resistance genes in newly introduced blast resistant rice germplasm[J]. Crop Sci, 2006,46:1870-1878
    
    59. Elston RC, Steward J. The analysis of quantitative traits forsimple genetic models fromparental, Fland backcross data[J].Genetics,1973,73:695-711
    
    60. Enquist BJ, Niklas KJ. Global allocation rules for patterns of biomass partitioning across seed plants[J]. Science, 2002, 295: 1517-1520.
    
    61. Enquist BJ, Niklas KJ. Invariant scaling relations across tree-dominated communities[J]. Nature,2001,410:655-660.
    
    62. Faluyi MA. Implications of selecting improved strains of soybeans for dry-matter accumulation and grain seed [J]. Euphytica, 1990, 50:197-201
    
    63. Flint-Garcia SA, Thornsberry JM, Buckler ES. Structure of linkage disequilibrium in plants[J].Annu. Rev Plant Biol, 2003,54:357-374
    
    64. Flint-Garcia SA, Thuillet A, Yu J,et al. Maize association population: A high resolution platform for QTL dissection[J]. Plant Journal, 2005,44:1054-1064
    
    65. Frankino WA, Zwaan BJ, Stern DL, et al. Natural selection and developmental constraints in the evolution of allometries [J]. Science, 2005, 307: 718-720.
    
    66. Frary A, Nesbitt TC, Frary A, et al. fw2.2: A quantitative trait locus key to the evolution of tomato fruit size[J]. Science, 2000,289: 85-88.
    
    67. Funatsuki H, Ishimoto M, Kawaguchi K, et al. Mapping of QTL associated with chilling tolerance during reproductive growth in soybean[J]. Theor Appl Genet, 2005,142(1-2):137-142
    
    68. Gao HJ, Yang RQ. Composite interval mapping of QTL for dynamic traits[J]. Chin Sci Bull, 2006,51: 1857-1862.
    69. Gaut BS, Long AD.The lowdown on linkage disequilibrium[J]. Plant Cell. 2003,15:1502-1506
    
    70. Gillooly JF, Brown JH, West GB, et al. Effects of Size and Temperature on Metabolic Rate[J].Science, 2001,293:2248-2251.
    
    71. Guzman PS, Diers BW, Neece DJ, et al. QTL Associated with Yield in Three Backcross-Derived Populations of Soybean [J]. Crop Sci, 2007,47:111-122
    
    72. Herridge DF, Brockwell J. Contributions of fixed nitrogen and soil nitrate to the nitrogen economy of irrigated soybean. Soil Biol.Biochem, 1998,20:711-717.
    
    73. Hill AP. Quantitative linkage: A statistical procedure forits detection and estimation[J].Ann Hum Genet Lond, 1975, 38:439-449
    
    74. Hua JP, Xing YZ, Wu WR, et al. Single-locus heterotic effects and dominance by dominance interaction can adequately explain the genetic basis of heterosis in an elite rice hybrid [J]. Proc Natl Acad Sci USA, 2003,100(5):2574-2579.
    
    75. Hyten DL, Landau-Ellis D, Pantalone VR, et al. Seed quality QTL in a prominent soybean population[J]. Theor Appl Genet, 2004,109: 552-561
    
    76. Jansen RC, Stam P. High resolution mapping of quantitative traits into multiple loci via interval mapping [J]. Genetics, 1994,136:1447-1455.
    
    77. Jeppson RG, Johnson RR, Hadley HH. Variation in mobilization of plant nitrogen to the grain in nodulating and non-nodulating soybean genotypes[J]. Crop Sci, 1978,18: 1058-1062
    
    78. Jiang CJ,Zeng ZB . Multiple trait analysis of genetic mapping for quantitative traitloci[J]. Genetics, 1995,140:1111-1127
    
    79. Jin CF, Fine JP, Yandell BS. A unified semiparametric framework for quantitative trait loci analyses, with application to spike phenotypes[J]. J Am Stat Assoc, 2007,102: 56-67.
    
    80. Kao CH, Zeng ZB, Teasdale RD.Multiple interval mapping for quantitative trait loci[J].Genetics, 1999,152: 1203-1216.
    
    81. Kao CH, Zeng ZB. Modeling epistasis of quantitative trait loci using Cocker-ham's model[J].Genetics, 2002,160: 1243-1261.
    
    82. Kao CH, Zeng ZB . General formulas for obtaining the MLEs and the asymptotic variance-covariance matrixin mapping quantitative trait loci when using the EM algorithm[J]. Biometrics, 1997,53:653-665
    
    83. Kao CH,Zeng ZB,Teasdale RD. Multiple interval mapping for quantitative loci[J]. Genetics, 1999,152:1203-1216
    
    84. Kirkpatrick M, Heckman N. A quantitative genetic model for growth, shape,reaction norms, and other infinite-dimensional characters[J]. J Math Biol, 1989,27: 429-450.
    85. Kleiber M. Body size and metabolism[J]. Hilgardia, 1932, 6: 315-353.
    
    86. Klingenberg CP, Zimmermann M. Static, ontogenetic, and evolutionary allometry: A multivariate comparison in nine species of water striders [J]. Am Nat, 1992,140: 601-620.
    
    87. Knott SA, Haley CS. Multitrait least squares for quantitative trait loci detection[J]. Genetics, 2000,156:899-911.
    
    88. Korol AB, Ronin YI, Itskovich AM, et al. Enhanced efficiency of quantitative trait loci mapping analysis based on multivariate complexes of quantitative traits[J]. Genetics, 2001,157: 1789-1803.
    
    89. Kross H, Lark KG, Mansur LM, et al. Interval mapping of quantitative trait loci for reproductive,morphological, and seed traits of soybean (Glycine max L.)[J]. Theor Appl Genet, 1993,86:907-913
    
    90. Lander ES, Botstein S. Mapping Mendelian factors underlying quantitative traits using TFLP linkage maps[J] .Genetics, 1989,121:185-199
    
    91. Lark KG, Mansur LM, Orf JH. Determining the linkage of quantitative trait loci to RFLP markers using extreme phenotypes of recombinant inbreds of soybean(Glycine max L. Merr.)[J]. Theor Appl Genet, 1993, 86:914-918
    
    92. Lee M. DNA markers and plant breeding programs. Adv Agron, 1995, 35:265-344
    
    93. Leips J, Mackay TFC. Quantitative trait loci for life span in Drosophila melanogaster: Interactions with genetic background and larval density [J]. Genetics, 2000,155: 1773-1788
    
    94. Li CB, Zhou AL, Sang T. Rice domestication by reducing shattering [J]. Science, 2006, 311:1936-1939
    
    95. Li DD, Pfeiffer, Cornelius. Soybean QTL for yield and yield components associated with Glycine soja alleles. Crop Sci, 2008,48:571-581
    
    96. Li HY, Kim BR, Wu RL. Identification of quantitative trait nucleotides that regulate cancer growth: A simulation approach [J]. J Theor Biol, 2006, 242: 426-439.
    
    97. Lin M, Aquilante C, Johnson JA, et al. Sequencing drug response with HapMap[J].Pharmacogenomics J. 2005, 5:149-156
    
    98. Lin M, Wu RL. A joint model for nonparametric functional mapping of longitudinal trajectories and time-to-events[J]. BMC Bioinformatics, 2006, 7: 138.
    
    99. Liu T, Johnson JA., Casella G et al. Sequencing complex diseases with HapMap[J]. Genetics, 2004,168,503-511
    
    100. Liu XB, Jin J, Herbertb SJ, et al. Yield components, dry matter, LAI and LAD of soybeans in Northeast China[J]. Field Crops Res, 2005, 93: 85-93
    
    101. Long F, Chen YQ, Cheverud JM, et al. Genetic mapping of allometric scaling laws[J]. Genet Res, 2006, 87: 207-216.
    
    102. Louis TA. Finding the observed information matrix when using the EM algorithm[J]. J Roy Stat Soc B, 1982,44:226-233.
    
    103. Lugg DG, Sinclair. Sensonal changes in photosynthesis of field-grown soybean leaflets.1 relation to leaflet dimensions [J]. Photosynthtica, 1981,15: 129-137
    
    104. Lynch M, Walsh B. Genetics and analysis of quantitative traits[M]. Sunderland, MA: Sinauer.1998.
    
    105. Ma BL, Dwyer LM, Costa C, et al. Early prediction of soybean yield from canopy reflectance measurements[J]. Agron J, 2001, 93: 1227-1234
    
    106. Ma CX, Casella G, Littell RC, et al. Exponential mapping of quantitative traits governing allometric relationships in organisms[J]. J Math Biol, 2003,47: 313-324.
    
    107. Ma CX, Casella G, Wu RL. Functional mapping of quantitative trait loci underlying the character process: A theoretical framework[J]. Genetics,2002,161: 1751-1762.
    
    108. Maccaferri M, Sanguineti MC, Enrico N, et al. Population structure and long-range linkage disequilibrium in a durum wheat elite collection[J]. Molecular Breeding, 2005,15: 271-289
    
    109. Mackay I, Powel W. Methods for linkage disequilibrium mapping in crops[J]. Trend in plant science, 2006.
    
    110. Mackay TFC. Quantitative trait loci in Drosophila[J]. Nat Rev Genet, 2001, 2: 11-20.
    
    111. Mansur LM, Orf JH, Chase K, et al. Genetic mapping of agronomic trait using recombinant inbred lines of soybean[J]. Crop Sci, 1996, 36: 1327-1336
    
    112. Mauricio R. Ontogenetics of QTL: the genetic architecture of trichome density over time in Arabidopsis thaliana[J]. Genetica, 2004,123, 75-85
    
    113.Mcmillan I, Robertson A. The power of methods for the detection of major genes affecting quantitative traits[J].Heredity,1974,32:349-356
    
    114. Mehetre SS, Jamadagni BM.Biomass partitioning and growth characters in relation to plant architecture in soybean[J]. Soybean Genet Newslett, 1996, 23: 92-97
    
    115. Meyer K. Estimates of genetic covariance functions for growth of Angus cattle[J]. J Anim Breed Genet, 2005a, 122: 73-85.
    
    116. Meyer K. Random regression analyses using B-splines to model growth of Australian Angus cattle[J]. Genet Sel Evol, 2005b, 37:473-500.
    
    117. Mian MAR, D. A. Ashley DA, Vencill WK, Boerma HR. QTLs conditioning early growth in a soybean population segregating for growth habit. Theor Appl Genet, 1998, 97: 1210-1216
    
    118. Moore JH.The ubiquitous nature of epistasis in determining susceptibility to common human diseases[J]. Hum Hered, 2003, 56:73-82
    119. Muchow RC, Roberston MJ, Pengelly BC. Accumulation and partitioning of biomass and nitrogen by soybean, mungbean and cowpen under contrasting environmental conditions[J]. Field Crop Res,1993,33:13-36
    120.Niklas KJ, Enquist BJ. Invariant scaling relationships for interspecific plant biomass production rates and body size [J]. Proc Nat Acad Sci USA, 2001,98: 2922-2927
    121.Niklas KJ. A phyletic perspective on the allometry of plant Biomass Partitioning patterns and functionally equivalent organ-categories[J]. New Phytologist, 2006,171: 27-40.
    
    122. Niklas KJ. Plant Allometry: The Scaling of Form and Process[M]. Chicago, IL: University of Chicago Press, 1994.
    
    123. Nu'n~ez-Anto'n V, Zimmerman DL. Modeling nonstationary longitudinal data[J]. Biometrics, 2000,56: 699-705.
    
    124. Orf JH, Chase K, Alder FR, et al. Genetics of soybean agronomic traits: II. Interaction between yield quantitative trait loci in soybean[J]. Crop Sci, 1999, 39: 1652-1657
    
    125. Pantalone VR, Panthee DR, Sams CE, et al. Quantitative Trait Loci for Seed Protein and Oil Concentration, and Seed Size in Soybean[J]. Crop Sci, 2005,45: 2015-2022
    
    126. Pazdernik DL, Graham PH, Orf JH. Variation in the pattern of nitrogen accumulation and distribution in soybean .Crop Sci. 1997, 37:1482-1486.
    
    127. Pazdernik DL,. Graham PH, Vance CP, Orf JH. Host variation in traits affecting early nodulation and dinitrogen fixation in soybean. Crop Sci, 1996, 36:1102-1107.
    
    128. Peter RH. The Ecological Implications of Body Size[M]. Cambridge, MA: Cambridge University Press,1983
    
    129. Pletcher SD, Geyer CJ. The genetic analysis of age-dependent traits: Modeling the character process[J]. Genetics, 1999, 153: 825-835.
    
    130. Raff R A. Evo-devo: the evolution of a new discipline[J]. Nature Rev Gene,2000,l, 74-79
    
    131. Reis RE, ZelditchML, FinkWL Ontogenetic allometry of body shape in the Neotropical catfish Callichthys (Teleostei: Siluriformes) [J]. Copeia 1998:177-182.
    
    132. Rice SH. The analysis of ontogenetic trajectories: When a change in size or shape is not heterochrony[J]. Proc Natl Acad Sci USA, 1997,94: 907-912
    
    133. Richards FJ. A flexible growth function for empirical use[J]. J Exp Bot, 1959,10: 290-300
    
    134. Rigsby B, Board JE. Identification of soybean cultivars that yield well at low plant population[J].Crop Sci, 2003,42: 234-239
    
    135. Riisgard HU. No foundation of a "3/4 power scaling law" for respiration in biology[J]. Ecol Let, 1998,1:71-73.
    
    136. Rohlf FJ. On applications of geometric morphometrics to studies of ontogeny and phylogeny[J].Syst Biol,1998,47: 147-158.
    
    137. Rombough P. Development rate-Modelling developmental time and temperature[J]. Nature, 2003,424: 268-269.
    
    138. Ronis DH, Sammons DJ, Kenworthy WJ, Meisinger JJ. Heritability of total and fixed N content of the seed in two soybean populations. Crop Sci.1985,25:1-4.
    
    139. Rougvie AE. Control of developmental timing in animals[J]. Nature Rev Genet, 2001,2:690-701
    
    140. Savage VM, Gillooly JF, Woodruff WH, et al. The predominance of quarter-power scaling in biology[J]. FunEco, 2004,118: 257-282.
    
    141. Sax K.The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris[J].Genetics,1923,8:552-560
    
    142. Schaeffer LR. Application of random regression models in animal breeding[J]. Livestock Prod. Sci,2004, 86: 35-45.
    
    143. Schapaugh WR, Wilcox JR. Relationships between harvest indices and other plant characteristics in soybeans [J]. Crop Sci, 1980, 20: 529-533
    
    144. Scheiner SM, Lyman RF. The genetics of phenotypic plasticity[J]. Heritability J Evol Biol, 1989, 2:95-107
    
    145. Scheiner SM. Genetics and evolution of phenotypic plasticity[J]. Ann Rev Ecol Sys, 1993,24:35-68
    
    146. Schlichting CD, Pigliucci M. Phenotypic Evolution: A Reaction Norm Perspective[M]. Sinauer,Sunderland,Massachusetts, 1998
    
    147. Schwarz G. Estimating the dimension of a model[J]. Ann Stat, 1978, 6: 461-464.
    
    148. Sen S, Churchill GA. A statistical framework for quantitative trait mapping[J]. Genetics, 2001, 159:371-387.
    
    149. Shaw RG. Maximum-likelihood approaches applied to quantitative genetics of natural populations[J]. Evolution, 1987, 45: 143-151.
    
    150. Shibles R, Secor J, Ford DM. Carbon assimilation and metabolism[M]. In Soybeans:Improvement, production, and uses. 2nd ed. Agronomy Monogr. 16. ASA, CSSA, and SSSA.Madison. WI. 1987, p.535 -588.
    
    151. Shibles, R, and sundberg DN. Relation of leaf nitrogen content and other traits with seed yield in soybean. Plant Prod.Sci. 1998, 1:3-7.
    
    152. SollerM, Brody T, Genizi A. In the power of experimental designs for detection of linkage between marker loci and quantitative loci in crosses between inbred lines[J].Theor Appl Genet, 1976,47:35-39.
    
    153. Specht JE, Hume DJ, Kumudini SV. Soybean yield potential-A genetic and physiological perspective[J]. Crop Sci, 1999, 39:1560-1570
    
    154. Stern DL, Emlen DJ. The developmental basis for allometry in insects[J]. Development, 1999, 126:1091-1101
    
    155.Tanksley SD, Young ND, Paterson AH, Bonierbale MW. RFLP mapping in plant breeding: new tools for an old science. Biotechnology, 1889,7:257-264.
    
    156. The International HapMap Consortium. The International HapMap Project[J]. Nature, 2003, 426:789-794.
    
    157. Thoday J M. Location of polygenes[J].Nature,1961,191:368-370.
    
    158. Thompson JA, Nelson RL, Schweitzer LE. Relationships among specific leaf weight, photosynthetic rate, and seed yield in soybean .Crop Sci.1995, 35:1575-1581.
    
    159. Tucker CJ. Red and photographic infrared linear combinations for monitoring vegetation The International HapMap[J]. Remote Sens Environ, 1979, 8:127-150
    
    160. Varshney R K, Tuberosa R.(eds.), Genomics Assisted Crop Improvement: Vol. 2: Genomics Applications in Crops. Springer Press,2007,243-279.
    
    161.Verbeke G, Molenberghs G. Linear Mixed Models for Longitudinal Data The International HapMap[M]. NewYork: Springer-Verlag, 2000
    
    162. Via S, Gomulkievicz R, Jong G, et al. Adaptive phenotypic plasticity: Consensus and controversy.Trend Ecol Evol, 1995,10: 212-217.
    
    163. Via S, Lande R. Genotype-environment interactions and the evolution of phenotypic plasticity[J].Evolution 1985, 39: 505-522.
    
    164. Vieira C, Pasyukova EG, Zeng ZB, et al. Genotype environment interaction for quantitative trait loci affecting life span in Drosophila melanogaster[J]. Genetics, 2000,154:213-227.
    
    165. Vinicius L, Lahr M. M.Morphometric heterochrony and the evolution of growth. Evolution, 2003,57:2459-2468
    
    166. Von Bertalanffy L. Quantitative laws for metabolism and growth[J]. Quart Rev Biol, 1957,32,217-231
    
    167. Wang H, Zhang YM, Li XM, et al. Bayesian shrinkage estimation of QTL parameters[J]. Genetics,2005, 170: 465-480.
    
    168. Wang SC, Basten CJ, Zeng ZB. Cartographer V2.5 [20060220], http://statgen.ncsu.edu/qtlcart/WQTLCart.htm
    169. Weaver JE. Root development of field crops[M]. McGraw-HiBook Company, New York. 1926,286-291
    
    170. Weber SL, Scheiner SM. The genetics of phenotypic plasticity. 4. Chromosomal localization[J]. J Evol Biol, 1992, 5: 109-120.
    
    171. Weiss LA, Pan L, Abney M, et al. The sex-specific genetic architecture of quantitative traits in humans[J]. Nat Genet, 2006, 38: 218-222.
    
    172. West GB, Brown JH, Enquist BJ. A general model for ontogenetic growth[J]. Nature, 2001, 413:628-631.
    
    173. West GB, Brown JH, Enquist BJ. A general model for the origin of allometric scaling laws in biology[J]. Science , 1997,276:122-126.
    
    174. West GB, Brown JH, Enquist BJ. A general model for the structure, and allometry of plant vascular systems[J]. Nature, 1999,400: 664-667.
    
    175. West GB, Brown JH, Enquist BJ. The fourth dimension of life: Fractal geometry and allometric scaling of organisms[J]. Science, 1999, 284:1677-1679.
    
    176. West GB, Brown JH. The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization[J]. J Exp Biol,2005,208: 1575-1592.
    
    177. White CR, Seymour RS. Mammalian basal metabolic rate is proportional to body mass[J]. Proc Natl Acad Sci USA, 2003,100: 4046-4049.
    
    178. Whitlock MC, Phillips PC, Moore FB, et al. Multiple fitness peaks and epistasis[J]. Ann.Rev Ecol Syst, 1995,26, 601-629
    
    179. Wilcox J R, Tuneo S. Interrelationships among height , lodging and yield in determinate and indeterminate soybeans[J]. Euphytica,1981, 30(2) :323-326
    
    180. Wolf JB. Gene interactions from maternal effects[J]. Evolution, 2000, 54,1882-1898
    
    181. Wu RL, Hou W. A hyperspace model to decipher the genetic architecture of developmental processes: Allometry meets ontogeny[J]. Genetics, 2006,172: 627-637.
    
    182. Wu RL, Lin M, Zhao W, et al. Statistical models for studying the genetic architecture of dynamic complex traits[J]. J Nanjing Forestry Univ, 2006,30: 1-12.
    
    183. Wu RL, Lin M. Functional mapping-how to map and study the genetic architecture of dynamic complex traits [J]. Nature Rev Genet, 2006,7: 229-237
    
    184. Wu RL, Ma CX, Casella G. Statistical Genetics of Quantitative Traits: Linkage, Maps, and QTL[M]. NY: Springer-Verlag, 2007
    
    185. Wu RL, Ma CX, Hou W, et al. Functional mapping of quantitative trait loci that interact with the hg gene to regulategrowth trajectories in mice[J]. Genetics, 2005,171, 239-249
    
    186. Wu RL, Ma CX, Lin M, Casella G. A general framework for analyzing the genetic architecture of developmental characteristics[J]. Genetics, 2004,166:1541-1551
    
    187. Wu RL, Ma CX, Lin M, et al. A general framework for analyzing the genetic architecture of developmental characteristics. Genetics, 2004a, 166:1541-1551
    
    188. Wu RL, Ma CX, Lin M, et al. Functional mapping of growth QTL using a transform-both-sides logistic model[J]. Biometrics,2004b, 60: 729-738.
    
    189. Wu RL, Ma CX, Littell RC, et al. A statistical model for the genetic origin of allometric scaling laws in biology[J]. J Theor Biol, 2002,217: 275-287
    
    190. Wu RL, Ma CX, Lou YX, et al. Molecular dissection of allometry, ontogeny and plasticity: A genomic view of developmental biology. BioScience, 2003b, 53:1041-1047
    
    191. Wu RL, Ma CX, Zhao W, et al. Functional mapping of quantitative trait loci underlying growth rates: A parametric model[J]. Physiol Genomics, 2003a, 14:241-249
    
    192. Wu RL, Wang ZH, Zhao W, et al. A mechanistic model for genetic machinery of ontogenetic growth[J]. Genetics, 2004c, 168: 2383-2394.
    
    193. Wu RL. The detection of plasticity genes in heterogeneous environments[J]. Evolution, 1998, 52:967-977
    
    194. Yang RQ, Gao HJ, Wang X, et al. A semiparametric model for composite functional mapping of dynamic quantitative traits[J]. Genetics, 2007,177 (3):1859-1870
    
    195. Yang RQ, Tian Q, Xu S. Mapping quantitative trait loci for longitudinal traits in line crosses[J].Genetics, 2006,173: 2339-2356
    
    196. Yi NJ, Shriner D, Banerjee S, et al. An efficient Bayesian model selection approach for interacting quantitative trait loci models with many effects[J]. Genetics, 2007,176: 1865-1877
    
    197. Yi NJ, Yandell B, Churchill G, et al. Bayesian model selection for genome-wide epistatic analysis[J]. Genetics, 2005,170:1333-1344.
    
    198. Yu J, Edward S B. Genetic association mapping and genome organization of maize[J]. Current Opinion in Biotechnology, 2006, 17:155-160
    
    199. Zeinali-khanghah, Green HDE, Shibles RM. Use of morphological, developmental, and plant nitrogen traits in a selection scheme in soybean. Crop Sci. 1993, 33:1121-1127.
    
    200. Zelditch ML, Fink WL. Allometry and developmental integration of body growth in a piranha,Pygocentrus nattereri (Teleostei: Ostariophysi) [J]. J Morphol, 1995, 223:341-355.
    
    201. Zelditch ML, Swiderski DL, Lundrigan BL. On applications of geometric morphometrics to studies of ontogeny and phylogeny: a reply to Rohlf[J]. Syst Biol, 1998,47: 159-167
    202.Zeng ZB,Liu J,Stam LF,et al.Genetic architecture of a morphological shape difference between two Drosophila species[J].Genetics,2000,154:299-310
    203.Zeng ZB.Precision mapping of quantitative trait loci[J].Genetics,1994,136:1457-1468
    204.Zeng ZB.QTL mapping and the genetic basis of adaptation:recent developments[J].Genetica,2005,123:25-37
    205.Zeng ZB.Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci[J].Proc Natl Acad Sci USA,1993,90:10972-10976
    206.Zhang WK,Wang Y J,Luo GZ,et al.QTL mapping of ten agronomic traits on the soybean (Glycine)[J].Theor Appl Genet,2004,108:1131-1139.
    207.Zhao W,Chen YQ,Casella G,et al.A non-stationary model for functional mapping of longitudinal quantitative traits[J].Bioinformatics,2005,21:2469-2477.
    208.Zhao W,Ma CX,Cheverud JM,et al.A unifying statistical model for QTL mapping of genotype-sex interaction for developmental trajectories[J].Physiol Genom,2004a,19:218-227.
    209.Zhao W,Wu RL,Ma CX,et al.A fast algorithm for functional mapping of complex traits[J].Genetics,2004,167:2133-2137.
    210.Zhao W,Zhu J,Gallo-Meagher M,et al.A unified statistical model for functional mapping of genotype×environment interactions for ontogenetic development[J].Genetics,2004b,168:1751-1762.
    211.Zhou Y,Li W,Wu W,et al.Genetic dissection of heading time and its components in rice.Theor Appl Genet,2001,102:1236-1242.
    212.Zhu J,Weir BS.Mixed model approaches for genetic analysis of quantitative traits[A].In:Chen LS,Ruan S G,and Zhu J(eds) Advanced Topics in Biomathematics:Procceedings of International Conference on Mathematical Biology(C).Singapore:World Scientific Publishing Co,1998,321-330
    213.Zhu J.Analysis of conditional genetic effects and variance components in developmental genetics[J].Genetics,1995,141:1633-1639
    214.Zhuang JY,Lin HX,Lu J,et al.Analysis of QTL X environment interaction for yield components and plant height in rice[J].Theor Appl Genet,1997,95(5-6):799-808
    215.Zimmerman DL,Nunez-Anton V.Parametric modeling of growth curve data:An overview(with discussion)[J].Test,2001,10:1-73.
    216.Zou F,Fine JP,Hu J,et al.An efficient resampling method for assessing genome-wide statistical significance in mapping quantitative trait loci[J].Genetics,2004,168:2307-2316.
    217.常耀中等 大豆高产栽培的叶面积问题[J].黑龙江农业科学,1981,(3):22-25
    218.陈恒鹤,李楠.大豆株型性状的相对遗传进度与配合力[J].大豆科学,1984,(4):268-280
    219.陈庆山,张忠臣,刘春燕等大豆主要农艺性状的QTL分析[J].中国农业科学,2007,40(1):41-47
    220.崔世友,喻德跃.大豆产量改良中生物量、收获指数的研究及展望[J].大豆科学,2006,25(1):67-72
    221.戴瓯和.大豆籽粒产量主要构成因素之间的相关分析[J].安徽农业科学,1981,(2)58-61
    222.董钻.大豆产量生理[M].北京:中国农业出版社.2000
    223.董钻等 大豆亩产450斤的生理参数及栽培措施初探[J].大豆科学1982,1(2):131-140
    224.郭午,等大豆合理群体结构的探讨[J].吉林农业科学,1964,(2):9-18
    225.郝欣先蒋惠兰李星华.北方夏大豆高产结构剖析[J].大豆科学,1987,6(1):11-19
    226.胡明祥等大豆高产株型育种研究[J].吉林农业科学,1980,(3):1-14
    227.惠大丰,姜长鉴,莫惠栋.数量性状基因图谱构建方法的比较[J].作物学报,1997,23(2):129-136
    228.姜恭好,徐才玉,李香花,等利用双单信体群体剖析水稻产量其相关性状的遗传基础[J].遗传学报,2004,31(1):63-72
    229.李莹.大豆产量构成因素的研究[J].大豆科学,1984,3(3):209-214
    230.李远明,刘丽君,祖伟,等不同基因型大豆品种干物质积累与产量形成的关系[J].东北农业大学学报,1999,30(4):324-328
    231.马英斌等 吉林省中部地区大豆品种主要农艺性状的相关与通径分析[J].吉林农业大学学报,1985,7(4)9-13
    232.马育华,盖钧镒.江淮下游地区大豆地方品种的初步研究(三)数量性状的表型、遗传相关,选择指数,及其育种意义[J].作物学报,1979,6(4):1-11
    233.马育华等 江淮下游地区大豆地方品种的初步研究(三)数量性状的表型、遗传型相关,选择指数,及其育种意义[J].作物学报,1979,5(4):1-10
    234.美国SAS软件研究所上海办事处.SAS基础教程[M].上海:上海科技出版社,1997
    235.宋启建,盖钧镒,马育华.长江中游夏大豆地方品种品质与产量等性状的典型相关与通径分析[J].大豆科学,1996,(2):22-16
    236.王宏林,喻德跃,王永军,陈受宜,盖钧镒.应用重组自交系群体定位大豆根重QTL,遗传,2004,2(3):333-336
    237.王金陵.大豆[M].哈尔滨:黑龙江科学技术出版社.1982
    238.王连铮,王金陵.大豆遗传育种学[M].北京:科学出版社.1992
    239.王贤智,张晓娟,周蓉,等大豆重组自交系群体荚粒性状的QTL分析[J].作物学报,2007,33(3):441-448
    240.吴晓雷,王永军,贺超英,等大豆重要农艺性状的QTL分析[J].遗传学报,2001,28(10):947-955
    241.杨秀红,吴宗璞,张国栋.大豆品种根系性状与地上部性状的相关性研究[J].作物学报,2001,28(1):72-75
    242.张瑞忠,田岚.大豆植株密度试验研究[J].东北农学院学报,1964,(3):1-13
    243.周丰锁.大豆杂交亲本主要农艺性状的通径分析[J].遗传,1983,5(2):7-9
    244.朱洪德,朱桂英.大豆超高产及品质改良理论与实践研究进展[J].中国农业科学,2005,26(12):154-158
    245.朱军.复杂数量性状基因定位的混合线性模型方法[A].王连铮,戴景瑞(主编):全国作物育种学术讨论会论文集[C].北京:中国农业科技出版社,1998,11-20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700