钛合金的显微组织与动态性能的关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对TC4合金、TB10合金、TB8合金进行了分离式Hopkinson压杆(SHPB)实验,采用光学显微镜、SEM、TEM和XRD等技术对回收试样进行显微观察与分析,探讨了合金类型、典型组织状态、组织细节、织构特征及棒材尺寸规格对钛合金动态力学性能及绝热剪切敏感性的影响规律,并分析了冲击诱发相变对TB10合金的绝热剪切敏感性影响。主要研究结果如下:
     合金类型及典型组织状态对钛合金的动态力学性能影响较大。本实验选择的六组试样的绝热剪切敏感性的不敏感到敏感顺序依次为:TC4合金双态组织、TC4合金等轴组织、TB10合金两相区固溶+双级时效组织、TB10合金两相区固溶+时效组织、TB10合金β相区固溶组织、TC4合金魏氏组织。
     随TC4合金双态组织初生α相含量的增加,动态流变应力稍有降低,但其发生剪切失效前的均匀动态塑性应变增加幅度较大,在相变点以下50℃左右固溶(初生α相含量为38%左右)时,达到动态流变应力和均匀动态塑性应变的较好匹配,此时试样在剪切失效前所能吸收的能量较多。
     TC4合金相变点以下50℃固溶后炉冷获得的等轴α+晶间β组织,由于等轴α相彼此之间以及与基体之间取向任意,变形协调性好,可以通过自身的大变形有效协调塑性变形过程中的不均匀性,从而具有较低的绝热剪切敏感性和较好的抗绝热剪切失效能力。
     φ30 mm小规格棒材、φ165 mm中等规格棒材、φ350 mm大规格棒材的TC4试样在高应变率下的破坏规律大体相一致。但是,在加载条件相同的情况下,随着棒材尺寸规格的增大,试样的剪切变形和破坏程度相对较严重。
     两相区固溶+时效处理的TB10合金在剪切部位形成的绝热剪切带的过渡区由具有高位错密度的沿着剪切方向的宽度为20~50 nm的拉长组织构成,剪切带中心部位由大量低位错密度的直径为50~100 nm的晶粒组成,具有典型的再结晶组织特征,再结晶过程是晶粒机械碎化及晶界迁移、亚晶粗化共同作用的结果。
     β固溶状态的TB10合金在高应变率条件下,发生了冲击诱发相变,经标定为斜方马氏体α″;由于冲击相变过程吸收了一部分冲击功,使其未能达到材料本构失稳形成绝热剪切带的临界条件,且冲击诱发的斜方马氏体相具有相对较高的均匀伸长率和较大的塑性,因此晶粒在高应变率条件下能保持较好的均匀变形而不发生绝热剪切变形局域化。
     950℃轧制的TC4板材,无明显织构,其RD、TD、ND方向的动态力学性能及绝热剪切敏感性差别不明显。900℃轧制的TC4板材的主织构为{1219}<12 391>±30°RD,1050℃轧制板材的主织构为{1219}<1010>,由于织构强度较高,轧板存在明显的各向异性:TD方向的动态流变应力最大,ND次之,RD最低;RD方向发生绝热剪切失效前所吸收的能量最多,ND次之,TD最小,说明RD方向具有相对较低的绝热剪切敏感性和较好的抗绝热剪切失效能力。
In this paper, a series of experiments on TC4, TB10 and TB8 alloys were carried out by split Hopkinson pressure bar(SHPB) in different strain rates. Microscope observation and analysis were carried out on samples by optical microscopy, SEM, TEM and XRD techniques, etc. The effect of microstructures and texture property on dynamic mechanical property and adiabatic shear sensitivity of titanium alloy was discussed. And the effect of impact-induced phase transformation on the adiabatic shear sensitivity of TB10 alloy was analyzed. The main results are as follows:
     The effect of microstructures of titanium alloy on dynamic mechanical property is lager. The energy absorbed by bimodal microstructure of TC4 alloy before adiabatic shear failure happening is the most, which of equiaxial microstructure of TC4 alloy, solution treated and aging microstructure of TB10 alloy and solution treated and diplex aging microstructure of TB10 alloy is less, and widmanstatten microstructure of TC4 alloy is more sensitive to the adiabatic shearing。
     With the increasing of primary a-phase in bimodal microstructure of TC4 alloy, the dynamic strength is slightly lower, and uniform dynamic plastic strain is enlarge. The dynamic plastic strain matches the uniform dynamic plastic strain better when solution treated below the phase transformation 50℃(the content of primary a-phase is about 38%). At this moment the energy absorbed before failure by the TC4 sample is the most, the adiabatic shear sensitivity is weaker and the ability to resist adiabatic shear failure is stronger.
     Exuiaxal a and intergranular (3 microstructure of TC4 alloy solution treated below the phase transformation 50℃and furnace cooling has excellent compatibility of deformation because the orientation between exuiaxal a-phase and matrix is random, which can compatibility the inhomogeneity effectively in the process of plastic deformation, and then has low adiabatic shear sensitivity and excellent ability to resist adiabatic shear failure.
     The failure law of TC4 bars ofΦ30 mm,Φ165 mm andΦ350 mm at high strain rate is generally consistent. However on the same loading condition the shear deformation and destruction of the samples were relatively more serious with the increase in bar size.
     With high strain rate, the transition zone between shear band and matrix of TB10 alloy by solution treated and aging is composed of grains of 20~50 nm in width with high dislocation density, and the grains were elongated along the shear direction. The center of shear band consists of a number of recrystallized grains with diameters of 50~100 nm and low dislocation density. The recrystallization is the result of grain mechanical fragmentation, crystal boundary migration and subgrain coarsening.
     With high strain rate loading, impact-induced phase transformation happened to the TB10 alloy treated ofβsolution, which calibrated to be martensite phase a". Because some shock energy was absorbed in the process of impact-induced phase transformation, it didn't reach the critical condition of constitutive destabilization to formation adiabatic shear band. Therefore the deformation of grain is uniform at 3500 s-1 and there is no adiabatic shear localization phenomenon.
     The TC4 plate rolled in 950℃has no remarkable texture, and the difference of adiabatic shear sensitivity in rolling direction(RD), transverse direction(TD) and normal direction(ND) is obscure. The main texture of TC4 plate rolled at 900℃is {1219} <12 3 9 1>±30°RD whose intensity value is 10.577. And the main texture of plate rolled at 1050℃is {T219}(1010) whose intensity value is 15.333. TC4 rolled plate shows significantly anisotropic when texture intensity is high:The dynamic strength of TD is the highest, which of ND is lower and which of RD is the lowest. The energy absorbed before adiabatic shear failure occurring of RD is the biggest, which of ND is smaller, and which of TD is the least. And this indicates that the direction of RD has the lowest adiabatic shear sensitivity and excellent ability to resist adiabatic shear failure.
引文
[1]C莱茵斯,M皮特尔斯.钛与钛合金[M].北京:化学工业出版社,2005.
    [2]刘再华,解德,王元汉等.工程断裂动力学[M].武汉:华中理工大学出版社,1996.
    [3]史巨元.钢的动态力学性能及应用[M].北京:冶金工业出版社,1993.
    [4]Meyers M. A. Dynamic Behavior of Materials[M]. New York:John Wiley & Sons Inc, 1994.
    [5]汪冰峰.钛及钛合金中绝热剪切带微观结构演化及其集体行为研究[D].长沙:中南大学,2006.
    [6]徐永波,白以龙.动态载荷下剪切变形局部化、微结构演化与剪切断裂研究进展[J].力学进展,2007,37(4):496-516.
    [7]Liao S. C., Duffy J.. Adiabatic Shear Bands in a Ti-6A1-4V Titanium Alloy[J]. Journal of the Mechanics and Physics of Solids,1998,46 (11):2201-2231.
    [8]Shahan A. R., Taheri A. K.. Adiabatic Shear Bands in Titanium and Titanium Alloys:a Critical Review[J].Materials & Design,1993,14 (4):243-250.
    [9]杨扬,程信林.绝热剪切的研究现状及发展趋势[J].中国有色金属学报,2002,12(3):401-408.
    [10]刘新芹,谭成文,张静,et al.应力状态对Ti-6Al-4V绝热剪切敏感性的影响[J].稀有金属材料与工程,2008,37(9):1522-1525.
    [11]Hines J. A., Veccohio K. S.. Recrystallization Kinetics within Adiabaitc Shear Bands[J]. Acta Materialia,1997,45 (2):635-649.
    [12]Wang B. F., Yang Y.. Distribution and Dynamic Propagation of Adiabatic Shear Bands on the Titanium Side in the Titanium/mild Steel Explosive Cladding Plate[J]. Materials Science and Engineering A,2006,452-453:273-277.
    [13]姜风春,刘瑞堂,张晓欣.船用945钢的动态力学性能研究[J].兵工学报,2000,21(3):257-260.
    [14]Yang Y., Wang B. F.. Dynamic Recrystallization in Adiabatic Shear Band in a-titanium [J]. Materials Letters,2006,60:2198-2202.
    [15]王力军,曾建民,顾红等.高韧性铝合金LD2的冲击试验的动态分析[J].兵器材料科学与工程,2005,28(4):13-16.
    [16]Anderson D. D., Rosakis A. J.. Comparison of Three Real Time Techniques for the Measurement of Dynamic Fracture Initiation Toughness in Metals[J]. Engineering Fracture Mechanics,2005,72:535-555.
    [17]Chichili D. R., Ramesh K. T., Hemker K. J.. Adiabatic Shear Localization in α-titanium:Experiments, Modeling and Microstructural Evolution[J], Journal of the Mechanics and Physics of Solids,2004,52(8):1889-1909.
    [18]Molinari A., Musquar C., Sutter G.. Adiabatic Shear Banding in High Speed Machining of Ti-6Al-AV:Experiments and Modeling[J]. International Journal of Plasticity,2002,18 (4):443-459.
    [19]Roessig K. M, Mason J. J.. Adiabatic Shear Localization in the Dynamic Punch Test, part I:Experimental Investigation[J]. International Journal of Plasticity,1999,15(3): 241-262.
    [20]杨扬,程信林,安宇龙.TB2钛合金绝热剪切行为的数值模拟[J].中国有色金属学报,2004,14(5):718-724.
    [21]Li Q., Xu Y. B., Bassim M. N.. Dynamic Mechanical Properties in Relation to Adiabatic Shear Band Formation in Titanium Alloy-Ti17[J]. Materials Science and Engineering A,2003,358:128-133.
    [22]Lee W. S., Lin M. T.. The Effects of Strain Rate and Temperature on the Compressive Deformation Behavior of Ti-6Al-4V Alloy [J]. Journal of Meterials Processing Technology,1997,71 (2):235-246.
    [23]Sia N. N., Guo W. G., Vitali F. N., et al. Dynamic Response of Conventional and Hot Isostatically Pressed Ti-6A1-4V Alloys:Experiments and Modeling[J]. Mechanics of Materials,2001,33 (8):425-439.
    [24]Xue Q., Meyers M. A., Nesterenko V. F.. Self-organization of Shear Bands in Titanium and Ti-6A1-4V Alloy [J]. Acta Materialia,2002,50 (3):575-596.
    [25]Martinez F., Murr L. E., Ramirez A., Lopez M. I., Gaytan S. M.. Dynamic Deformation and Ddiabatic Shear Microstructures Associated with Ballistic Plug Formation and Fracture in Ti-6Al-4V Targets[J]. Materials Science and Engineering A, 2007,454-455:581-589.
    [26]Molinari A.. Collective Behavior and Spacing of Adiabatic Shear Bands[J]. Journal of the Mechanics and Physics of Solids,1997,22 (177):463-482.
    [27]Jiang F., Rohatgi A., Kenneth S., et al. Analysis of the Dynamic Responses for a Pre-cracked Three-point Bend Specimen[J]. International Journal of Fracture,2004, 127:147-165.
    [28]Li D. H., Yang Y., Xu T., et al. Observation of the Microstructure in the Adiabatic Shear Band of 7075 Aluminum Alloy[J]. Meterials Science and Engineering:A,2010, 527(15):3529-3535.
    [29]李强,徐永波,沈天乐,白以龙.钛合金(Ti-17)的动态力学性能和损伤特性[J].金属学报.1999,35(5):491-494
    [30]常亚喆.高应变率下纯钛TA2动态力学性能各向异性和微观组织观察[D].长沙:中南大学,2008.
    [31]Meyers M. A., PakHan-Rong. Observation of an Adiabatic Shear Band in Titanium by High-Voltage Transmission Eleetron Microscopy. Acta Metallurgica,1986,34(12): 2493-2499
    [32]BAO G.. High Strain Rate Deformation in Particle Reinforced Metal Matrix Composites [J]. Acta Mater,1995,44(3):1011-1019.
    [33]Meyers M. A., Nesterenko V. F., Lasalvia J. C., et al. Shear Localization in Dynamic Deformation of Materials:Micro structural Evolution and Self-organization[J]. Materials Science and Engineering A,2001, V317(1-2):204-225.
    [34]Nesterenko V. F., Meyers M. A., Wright T. W.. Self-organization in the Initiation of Adiabatic Shear Bands[J]. Acta Mater,1997, V46(1):327-340.
    [35]程信林.Ti-6Al-4V绝热剪切形变中热/力学参量的数值模拟及其剪切带内微观组织演化机制的探讨[D].中南大学硕士学位论文,2002.
    [36]刘瑞堂,姜风春,喻杰奎.907A钢绝热剪切行为研究[J].哈尔滨工程大学学报,2000,21(2):28-32.
    [37]Bodner S. R., Partom Y.. Constitutive Equations for Elastic-viscoplastic Strain-hardening Materials [J]. J Appl Mech,1975,42:385-389.
    [38]Johnson G. R., Cook W. H.. High Velocity Oblique Impact and Ricochet Mainly of Long Rod Projectiles:An overview [J]. International Journal of Mechanical Sicences, 24(7):425-436.
    [39]Zerilli Z. F., Armstrong R. W.. Dislocation-mechanics-based Constitutive Relations for Material Dynamics Calculations [J]. J Appl Phys,1987,61:1816-1825.
    [40]Klepaczko J. R., Chiem C. Y.. On the Sensitivity of FCC Metals and Instantaneous Rate Sensitivity of Strain Hardening [J]. J Mech Phys, Solids,1986,34:29-54.
    [41]Follansbee P. S., Kocks U. F.. A Constitutive Description of the Deformation of Copper Based on the use of the Mechanical Threshold Stress as an Internal State Variable[J]. Acta Metallurgica,1988,36(1):81-93.
    [42]Tanner A. B., McGiny R. D., McDowell D. L.. Modeling Temperature and Strain Rate History Effects in OFHC Cu [J]. Internation Journal of Plasticity,1999,15:575-603.
    [43]Bammann D.. Modeling the Temperature and Strain Rate Dependent Large Deformation of Metals [J]. Appl Mech Rev,1990,43:312.
    [44]Bammann D., Chiesa M. L., Johnson G. C. A Strain Rate Dependent Flow Surface Model of Plasticity [J]. Sandia National Laboratory Report,1990,90:8227-8230.
    [45]Bammann D., Chiesa M. L., McDonald A., et al. Prediction of Ductile Failure in Metal Structures. In:Failure Criteria and Analysis in Dynamic Response[J], ASME, Metal Park,1990,7:277-281.
    [46]曾毅.两种动态加载条件对7075铝合金中剪切带自组织与损伤的影响[D].长沙: 中南大学,2008.
    [47]李淑华,王富耻,张朝晖,许保才,程兴旺.几种变形方式对钨合金组织性能及绝热剪切敏感性的影响[J].粉末冶金技术,2006,1:113-116.
    [48]李淑华,王富耻,谭成文,许保才.变形对钨合金微观组织性能及绝热剪切敏感性的影响[J].特种铸造及有色合金,2005,11:36-40.
    [49]安宇龙.T2/QBe_2爆炸复合界面结合层内形变特征的研究[D].长沙:中南大学,2004.
    [50]朱德智.铝基复合材料在高速粒子撞击作用下的损伤行为[D].哈尔滨:哈尔滨工业大学,2009.
    [51]李金泉.穿甲侵彻机理及绝热剪切带特性研究[D].南京:南京理工大学,2005.
    [52]Wright T. W., Ockendon H.. Research Note:A Scaling Law for the Effect of Inertia on the Formation of Adiabatic Shear Bands [J]. International Journal of Plasticity,1990, V12 (7):927-934.
    [53]Sikka S.K., Vohra Y.K., Chidambaram R.. Omega Phase in Materails[J]. Materials Science,1999, Vol.27,245-310.
    [54]李强,徐永波,赖祖涵.Monel合金高速塑性剪切变形与动态再结晶[J].金属学报,1999,35(1):49-52.
    [55]Nemat N. S., Isaaes J. B., Liu M.. Microstructure of High-strain, High-strain Rate Deformed Tantalum[J]. Acta Mater,1998,46(4):1307-1325.
    [56]Meyers M. A., Chen Y. J, Marquis F. D. S, et al. High-strain, High-strain-rate Behavior of Tantalum[J]. Metallurgical and Materials Transactions A,1995,26(10):2494-2501.
    [57]Qiu H., Manabu E., Kawaguchi Y.. A Model for the Dynamic Fracture Toughness of Ductile Structural Steel [J]. Engineering Fracture Mechanics,2002, V70 (5):589-598.
    [58]Bai Y.L.. Adiabatic Shear Banding[J]. Res Mechanica,1990,31:133-203.
    [59]Kansal U., Kassner M. E., Hiatt D. R., et al. Microstructural Banding in Thermally and Mechanically Processed Titanium 6242[J]. Journal of Materials Engineering and Performance,1992,1 (3):393-398.
    [60]Wei Q., Kecskes L., Jiao T., et al. Adiabatic Shear Banding in Ultrafine-grained Fe Processed by Severe Plastic Deformation[J]. Acta Materialia,2004,52 (7):1859-1869.
    [61]Sabih A., Wanjara P., Nemes J.. Characterization of Internal Voids and Cracks in Cold Heading of Dual Phase Steel[J]. ISIJ International,2005,45(8):1179-1186.
    [62]Davies M. A., Burns T. J.. On Repeated Adiabatic Shear Band Formation During High-speed Machining[J]. International Journal of Plasticity,2002,18(4):487-506.
    [63]Li H. Q., Fan C., Tao K. X., et al. Compressive Behavior of a Zr-based Metallic Glass at Cryogenic Temperatures[J]. Advanced Materials,2006,18(6):752-754.
    [64]Xue Q., Liao Z., Yuntian T., et al. Deformation Twinning in Nanocrystalline Stainless Steel within Adiabatic Shear Band[J]s. JOM,2004,56(11):157-161.
    [65]Anderson D. D., Rosakis A. J.. Dynamic Fracture Properties of Titanium Alloys[J]. Experimental Mechanics[J],2006,46:399-406.
    [66]Zhang B. F., Liu Y. J., Shen W. C., et al. Study on the Behavior of Adiabatic Shear Bands in Impact Wear[J]. Wear,1996,198(1-2):287-292.
    [67]Murr L. E., Trillo E. A., PappuS., et al. Adiabatic Shear Bands and Examples of their Role in Severe Plastic Deformation[J], Journal of Materials Science,2002,37(16): 3337-3360.
    [68]Xue Q.. Spatial Evolution of Adiabatic Shear Localization in Stainless Steel, Titanium and Titanium-aluminum-vanadium Alloy:the Dissertation of the Degree Doctor of Philosophy in Materials Science and Engineering[M]. San Diego:University of California,2001.
    [69]王礼立,余希同,李永池.冲击动力学进展[M].合肥:中国科学技术大学出版社,1992.3-33.
    [70]徐天平,王礼立.高应变率下钛合金Ti-6Al-4V的热粘塑性特性和绝热剪切变形[J].爆炸与冲击,1987,7(1):1-7.
    [71]包合胜,王礼立.钛合金在低温下的高速变形特性和绝热剪切[J].爆炸与冲击,1989,9(2):109-119.
    [72]徐永波,白以龙,沈乐天.钢中剪切变形局部化的形成与发展.金属学报,1995,31(11):485-491.
    [73]Baekman M. E., Finnegan S. A.. Propagation of Adiabatic Shear. In:Rohde R. W., et al., eds. Metallurgical Effects at High Strain Rates[M]. New York:Plenum Press,1973.
    [74]Kyung M. C., Sunghak L., Nutt S. R., et al.. Adiabatic Shear Band Formation During Dynamic Torsional Deformation of an HY-100 steel[J]. Acta Metallurgica Materialia, 1993,41(3):923-932.
    [75]卢维娴,王礼立,陆在庆.β-钛合金在高应变率下的绝热剪切现象[J].金属学报,1986,22(4):317-320.
    [76]Andrade U., Meyers M.A.. Dynamic Recrystallization in High-strain, High-strain-rate Plastic Deformation of CoPPer[J].Acta Mater,1994,42(8):3183-3195.
    [77]Chen R.W.. Microstructural Characterization of Shear Band Formation in Al2Li Alloys: [The Dissertation of the Degree Doctor of Dhilosophy in Materials Science and Engineering] [M]. San Diego:University of California,1993.
    [78]杨卓越,赵家萍.金属材料中绝热剪切带微观结构综述[J].华北工学院学报,1995,16(4):327-333.
    [79]Kad B. K., Gebert J. M., Perez M. T., et al.. Ultrafine-grain-sized Zirconium by Dynamic Deformation[J]. Acta Materialia,2006,54 (16):4111-4127.
    [80]Batra R. C., Stevens J. B.. Adiabatic Shear Bands in Axisymmetric Impact and Penetration Problems[J]. ComPuter Methods in APPlied Mechanics and Engineering, 1998,151 (3-4):325-342.
    [81]Chen Y. J., Lasalvia J. C., Nesterenko V. F., et al.. High-strain, high-strain Rate Deformation, Shear Localization and Recrystallization in Rantalum[J], Journal De Physique. IV,1997,7(3):435-440.
    [82]Culver R. S.. Metallurgical Effects at High Strain Rates [M]. New York:Plenum Press, 1973.
    [83]Batra R. C., Kim C. H.. Analysis of Shear Banding in Twelve Materials[J]. International Journal of Plasticity,1992, V8 (4):425-452.
    [84]Recht R. F.. Catastrophic Thermoplastic Shear[J], Journal of Applied Mechanics:1964, V31 (2):189-193.
    [85]Meyers M. A., Wittman C. L.. Effect of Metallurgical Parameters on Shear Band Formation in Low-carbon (0.2 wt pct) Steels[J]. Metallurgical Transaction A,1990, V21 (12):3153-3164.
    [86]Mazeau C., Beylat L., Longere P., et al. On the Quantitative Evaluation of Adiabatic Shear Banding Sensitivity of Various Titanium Alloys[J]. Journal De Physique IV France,1997, V7 (3):429-434.
    [87]Grady D. E.. Properties of an Adiabatic Shear Band Process Zone[J]. Journal of the Mechanics and Physics of Solids,1992, V40 (6):1197-1215.
    [88]Peters J. O., Lutjering G.. Comparison of the Fatigue and Fracture of Alpha+Beta and Beta Titanium Alloys[J]. Metallurgical and materials transactions,2001,32A:2085-2818.
    [89]Sinha V., Soboyejo W. O.. An Investigation of the Effects of Colony Micro structure on Fatigue Crack Growth in Ti-6Al-4V[J]. Materials science and engineering,2001, A319-321,607-612.
    [90]Williams J. C., Chesnutt J.C., Thompson A. W.. The Effect of Microstructure on Ductility and Fracture Toughness of α+β Titanium Alloys[J].Proceeding of the 1987 TMS-AIME Annual Symposia on "Effect of Microstructure on Fracture Toughness and Fatigue Crack Growth Rate in Titanium Alloys", USA,1987,255-271.
    [91]Filip R., Kubiak K., Ziaja W.. The Effect of Microstructure on the Mechanical Properties of Two-phase Titanium Alloys[J]. Journal of materials processing technology,2003,133:84-89.
    [92]Knipling K. E., Fonda R. W.. Texture Development in the Stir Zone of Near-α Titanium Friction Stir Welds[J]. Scripta Materialia,2009, V60(12):1097-1100.
    [93]Bozzolo N., Dewobroto N., Grosdidier T., et, al. Texture Evolution during Grain Growth in Recrystallized Commercially Pure[J], Materials Science and Engineering A, 2005, V397(1-2):346-355.
    [94]Zeng Z. P., Zhang Y. S, Jonsson S.. Microstructure and Texture Evolution of Commercial Pure Titanium Deformed at Elevated Temperatures[J]. Materials Science and Engineering A,2009, V513-514:83-90.
    [95]Said N., Terence D. Texture Formation and Transition in Cold-Rolled Titanium[J]. Materials Science and Engineering,1988, V100:109-114.
    [96]Majid H., Arash S., Sasha O., et al. Comparative Effect of Grain Size and Texture on the Corrlsion Behaviour of Commercially Pure Titanium Processed by Euqal Channel Angular Pressing[J]. Corrosion Science,2009, V51(12):3064-3067.
    [97]Bache M. R.. A Review of Dwell Sensitive Fatigue in Titanium Alloys:the Role of Microstructure, Texture and Operating Conditions[J]. International Journal of Fatigue, 2003, V25(9-11):1079-1087.
    [98]Zaefferer S.. A Study of Active Deformation systems in Titanium Alloys:Dependence on Alloy Composition and Correlation with Deformation Texture[J]. Materials Science and Engineering:A,2003,V233(1-2):20-30.
    [99]Bache M. R., Evans W. J., Suddell B., et al. The Effects of Texture in Titanium Alloys for Engineering Components under Fatigue[J]. International Journal of Fatigue,2001, V(23)1:153-159.
    [100]Singh A. K., Bhattacharjee A., Gogia A. K.. Microstructure and Texture of Rolled and Annealed β Titanium Alloy Ti-10V-4.5Fe-1.5Al[J].Materials Science and Engineering A,1999, V270(2):225-230.
    [101]Shang S., Shen J. Y., Wang X. Z.. Transformation Textures in an α+β Titanium Alloy Thin Sheet [J]. Materials Science and Engineering A,2002, V326(2):249-254.
    [102]Evans W. J., Jones J. P., Whittaker M. T.. Texture Effects under Tension and Torsion Loading Conditions in Titanium Alloys[J]. International Journal of Fatigue, 2005, V27(10-12):1244-1250.
    [103]Lonardelli I., Gey. N., Wenk H. R., et al. In Situ Obserbation of Texture Evolution during α→β and β→α Phase Transformation in Titanium Alloys Investigated by Neutron Diffraction[J]. Acta Materialia,2007, V55(17):5718-2727.
    [104]Glavicic M. G., Miller J. D., Semiatin S. L.. A Method to Measure the Texture of Secondary Alpha in Bimodal Titanium-Alloy Microstructures[J]. Scripta Materialia, 2006, V54(2):281-286.
    [105]Nilesh P. G., Ashkar A. A., Satyam S.. Study of Texture Evolution in Metastable P-Ti Alloy as a Function of Strain Path and its Effect on a TransformationTexture[J]. Materials Science and Engineering:A,2009, V504(1-2):24-35.
    [106]Gey N., Humbert M.. Characterization of the Variant Selection Occurring during the α→β→α Phase Transformations of a Cold Rolled Titanium Sheet[J]. Acta Materialia,2002, V50(2):277-287.
    [107]Gey N., Humbert M., Moustahfid H.. Study of the α→β Phase Transformation of a Ti-6Al-4V Sheet by Means of Texture Change[J]. Scripta Materialia,2000, V42(6): 525-530.
    [108]鲍利索娃E.A.,陈石卿.钛合金金相学[M].北京:国防工业出版社,1986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700