正交切削高强度钢绝热剪切行为的微观机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,高速切削加工技术在制造业中得到了广泛应用,高速切削条件下产生的锯齿形切屑可能会影响到工件的加工精度、表面粗糙度和刀具寿命。绝热剪切带的产生和发展对于锯齿形切屑形成起到了关键作用,研究锯齿形切屑形成过程中绝热剪切行为的微观机理有助于进一步认识高速切削过程中的切屑形成。本文采用材料显微观察和微观理论分析相结合的方法,对正交切削30CrNi_3MoV高强度合金钢绝热剪切行为的微观机理进行了研究,主要研究内容如下:
     1.正交切削高强度钢切屑形态演变过程的实验研究。随着切削速度的提高,当切削速度达到某一临界切削速度时,带状屑转变为锯齿形切屑。锯齿形切屑产生的原因是第一变形区内因热软化超过应变和应变率强化而发生了绝热剪切局部化。对于带状屑和锯齿形切屑的切削力和切屑变形参数的测量和分析表明,锯齿形切屑与带状屑在形成机理上存在明显区别。
     2.锯齿形切屑内绝热剪切带变形和温度的计算。通过对锯齿形切屑形成过程中绝热剪切各个阶段的分析,提出了一种计算绝热剪切带内材料变形和温度的方法。
     3.通过对高应变速率一维剪切变形理论模型的分析,提出了绝热剪切带宽度和间距与切削速度的关系式。随着绝热剪切带的产生和发展,切屑形态发生了一系列转变,切削速度和工件材料回火硬度是影响这一转变过程的主要因素。随着切削速度的提高,绝热剪切带的显微组织发生了由形变带向转变带的演变。形变带硬度与加工硬化有关,而转变带的硬度则受到相变硬化的影响。
     4.使用电子探针对绝热剪切带附近微区进行的成分分析表明,绝热剪切带内发生了C原子的短程扩散和碳化物析出。使用一种新的制样方法,获得了可用于观察锯齿形切屑内绝热剪切带及其附近区域的微细组织形貌的TEM薄膜试样。通过使用TEM对钢中转变带微细组织的观察和分析,确认绝热剪切带中心区的等轴晶粒为再结晶组织,提出了高强度钢锯齿形切屑内绝热剪切带微结构演化过程的微观模型。通过对再结晶机制的探讨,确定了高强度钢锯齿形切屑绝热剪切带内材料的再结晶机制为旋转式动态再结晶。
     5.基于对锯齿形切屑断裂面的显微观察和微观断裂机理分析,提出了一种锯齿形切屑形成过程中由微孔洞形核、长大和聚合机制控制的绝热剪切韧性断裂的微观模型。
In recent years, the technology for high speed machining is applied widely in manufacture companies. The formation of sawtooth chips in high speed machining can influence on machining precision, surface roughness and tool life. The occurrence and development of adiabatic shear bands of materials may play a key role during sawtooth chip formation. To investigate the microcosmic mechanism of adiabatic shear during sawtooth chip formation have important meaning to more know chip formation during high speed machining. In this paper, by microstructure observation and microcosmic theoretic analysis, the microcosmic mechanism of adiabatic shear behavior during orthogonal cutting of 30CrNi3MoV high strength alloy steel is investigated, the main investigation contents are listed as following:1. Experimental investigation of evolvement process for chip morphology during orthogonal cutting of high strength alloy steel. As the cutting speed increases, the ribbon chips transform into the sawtooth chips when a critical cutting speed is reached. The reason for the sawtooth chips is that the adiabatic shear localization occurs in the primary deformation zones when thermal softening exceeds strain and strain rate hardening. For the ribbon and sawtooth chips, the measurement and analysis results of the cutting forces and parameters of chip deformation indicate that the formation mechanism of sawtooth chips is distinctly differ from ribbon chips.2. Calculation of deformation and temperature in the adiabatic shear bands within the sawtooth chips. Based on analyzing various stages of adiabatic shear during sawtooth chip formation, a calculational method of the deformation and temperature in adiabatic shear bands is proposed.3. Based on the theoretic model of one-dimensional shear deformation under high rate loading, a relation of width and spacing for adiabatic shear band to cutting speed is proposed. As the adiabatic shear bands form and develop, a series of changes in chip morphology occur which is mainly influenced by the cutting speed and the tempering hardness of workpiece material. The deformation bands change into the transformation bands in microstructure as the cutting speed increases. The microhardness deformation bands results from work hardening, but the microhardness in the transformation bands is influenced by phase transition hardening.
    
    4. The results of composition analysis near the adiabatic shear bands by electron probe indicate that the short distance diffusion of carbon and the precipitation of carbide may occur within the adiabatic shear bands. The TEM film samples used to observe the microstructure of the adiabatic shear bands in the sawtooth chips are attained by a new sample preparation method. The observation and analysis of microstructure of transformed band by TEM indicate that the equiaxed grains in the band center are considered to be a recrystallization structure, a microstructure evolvement model in the adiabatic shear bands of high strength alloy steel is proposed,. The rotational dynamic recrystallization model based on mechanical mechanism is analyzed, the results indicate that the rotational dynamic recrystallization mechanism may rationally explain the recrystallization process occurred in the adiabatic shear bands within the sawtooth chips.5. Based on the observations of the surface of adiabatic shear fracture and the analysis of microcosmic fracture mechanism, a microcosmic model of adiabatic shear ductile fracture controlled by nucleation, growth and coalescence of microvoids during sawtooth chip formation is proposed.
引文
[1] 艾兴等.高速切削加工技术.北京:国防工业出版社,2003:1-25
    [2] Molinari A, Musquar C, Sutter G. Adiabatic Shear Banding in High Speed Machining of Ti-6Al-4V: Experiments and Modeling. Int. J. Plasticity, 2002,18: 443-459
    [3] Schulz H, Abele E, Sahm A. Material aspects of chip formation in HSC machining. Annals of CIRP, 2001, 50(1): 45-48
    [4] Barry J, Byrne G. The mechanisms of chip formation in machining hardened steels. J. Manu. Sci. Eng., 2002, 124:528-535
    [5] Bakkal M, Shih A J, et al. Chip formation, cutting forces, and tool wear in turning of Zr-based bulk metallic glass. Intl. J. Mach. Tools and Manufacture, 2004, 44:915-925
    [6] Shih A J, Luo J, et al. Chip morphology and forces in end milling of elastomers. J. of Manu. Sci. Eng., 2004, 126:124-130
    [7] Ohbuchi Y, Obikawa T. Evalution of grindability of materials based on abrasive cutting simulation. Transaction of the Japan Society of Mechanical Engineers, 2002, 68:315-322
    [8] 王礼立,余同希,李永池.冲击动力学进展.合肥:中国科学技术大学出版社,1992:3-33
    [9] Bai Y L. Adiabatic shear banding. Res Mechanica, 1990,31: 133-203
    [10] Anand L, Spitzig W A. Initiation of localized shear bands in plane strain, J. Mech. Phys. Solids. 1980,28:113-128
    [11] Timothy S P. Structure of adiabatic shear bands in metals: A critical review. Acta Metall., 1987, 35(2): 301-306
    [12] Rogers H C, Shastry C V. in Shock Waves and High-SWain-Rate Phenomena in Metals. M A Meyers and L E Murr(eds), Plenum Press, New York,1981,285-298
    [13] Wingrove A L, Wulf G L. Some aspects of target and projectile properties on penetration. J. Aust. Inst. Met., 1973,18:167-172
    [14] Bedford A J, Wingrove A L, Thompson K R L. The phenomenon of adiabatic shear deformation. J. Aust. Inst. Met., 1974,19:61-73
    [15] Rogers H C. Adiabatic Plastic Deformation. Ann. Rev. Mat. Sci., 1979, 9 : 283-311
    [16] Stelly M, Dormeval R. in Metallurgical Applications of Shock-Wave and High-Swain-Rate Phenomena. L E Murr, K P Staudhammer and M A Meyers (eds), Marcel Dekker, New York and Basle, 1986, 607-632
    
    [17] Rogers H C. in material behaviour under high stress and ultra-high-laoding rates. 29th Sagamore Army Materials Research Conf., J, Mescall and V. Weiss(eds),Plenum Press, New York,1983,101-108
    [18] Pak H R, Wittman C L, Meyers M A. Metallurgical applications of shock-waves and high-strain-rate phenomena, ed. Murr L E, Staudhammer K P and Meyers M A, Marcel Dekker, New York, 1986:749-760
    [19] Meyers M A, Pak H R. Observation of an adianatic shear band in titanium by high-voltage transmission electron microscope. Acta Metall., 1986, 34:2493-2499
    [20] Mc-Bar Y, Shechtman D. On the adiabatic shear of Ti-6Al-4V ballistic targets. Mater. Sci. Eng., 1983, 58:181-188
    [21] Grebe H A, Pak H R. Adiabatic shear localization in titanium and Ti-6 Pct Al-4 Pct V alloy. Metali. Trans. A,1985,16 A:761-769
    [22] YANG Y, ZHANG X M, LI Z H, et al. Localized superplastic behavior in α-Ti At high strain rate, Scripta Metali. Mater., 1995, 33(2): 219-224
    [23] YANG Y, ZHANG X M, LI Z H, et al. Adiabatic shear band on Ti Side in the titanium/mild explosive cladding interface. Acta Metall. Mater., 1996, 44(2): 561-565
    [24] Bai Y L, Xue Q, Xu Y B, Shen L. Characteristics and microstructure in the evolution of shear localization in Ti-6Al-4V Alloy. Mech. Mater., 1994,17:155-164
    [25] 胡八一,董庆东,韩长生,张海平.TC4钛合金及40Cr钢破片中绝热剪切带的TEM分析.高压物理学报,1996,10(3):37-42
    [26] Xu Y B, Meyers M A. Microstructural evolution of localized shear bands induced during explosion in Ti-6Al-4V alloy. J. Mater. Sci. Technol., 2003, 19(5): 385-387
    [27] Andrade U, Meyers M A, Vecchio K S. Dynamic recrystallization in high-strain-rate plastic deformation of copper. Acta Metall. Mater., 1994, 42:3183-3195
    [28] Li Q, Xu Y B, Lai Z H, Shen LT, Bai Y L. Dynamic recrystallization induced by plastic deformation at high strain rate in a Monel alloy. Mater. Sci. Eng., 2000, A276:250-256
    [29] 李强,徐永波,赖祖涵,沈乐天,白以龙.Monel合金高速塑性剪切变形和动态再结晶.金属学报,1999,35(1):49-52
    [30] Chen R W. Microstructural characterization of shear band formation in Al-Li Alloys. University of California, San Diego, La Jolla, CA, 1993
    [31] Xu Y B, Wang L, Wang Z G, Zhang Y, Hu Z Q. Locallized shear deformation of an Aluminum-Lithium 8090 alloy during low cycle fatigue. Scripta Metall.Mater., 1991,25:1149-1154
    [32] Xu Y B, Zhong W L, Chen Y J, Shen L T, et al. Shear localization and recrystallization in dynamic deformation of 8090 Al-Li alloy. Mater. Sci. Eng., 2001, A299:287-295
    [33] 钟万里,张匀,徐永波,沈乐天,白以龙.动态载荷下Al-Li合金剪切变形局部化.金属学报,1999.35:384-386
    
    [34] Xu Y B, Zhong L, Wu X., Bai Y L. Evolution of thermoplastic shear localization and related microstructures in Al/SiC_p composites under dynamic compressio. J. Mater. Sci. Technol., 2002, 18(6): 504-508
    [35] Dai L H, Liu L F, Bai Y L. Effect of particale size on the formation of adiabatic shear band in particale reinforced metal matrix composites. Materials Letters, 2004,58:1773-1776
    [36] 魏志刚,李永池,李剑容,等.冲击载荷作用下钨合金材料绝热剪切带形成机理.金属学报,2000, 36(12):1263-1268
    [37] 焦彤,张宝坪,张海涛,等.钨合金模拟弹侵彻钢板的实验与细观响应分析.有色金属,2000,52(4):87-91
    [38] 魏志刚,胡时胜,李永池,等.微细观结构对预扭转钨合金材料绝热剪切的影响.弹道学报,1999,11(1):15-18
    [39] 魏志刚,胡时胜,李永池,等.粉末烧结钨合金材料的绝热剪切行为研究.爆炸与冲击,1999,19 (2):158-163
    [40] Nemar-Nasser S, Isaaacs J B, Liu M Q. Microstructure of high-strain, high-strain-rate deformed tantalum. Acta Mater.,1998,46(4): 1307-1325
    [41] Perez-Prado M T, Hines J A, Vecchio K S. Microstructural evolution in adiabatic shear bands in Ta and Ta-Walloys. Acta Mater., 2001,49:2905-2915
    [42] Nesterenko V F, Meyers M A, Shear localization and recrystallization in high-strain, high-strain-rate deformation of tantalum. Mater. Sci. Eng., 1997, A229:23-41
    [43] Mayers M A, Chen Y L. High-strain and high-strain-rate behavior of tantalum. Metali Mater. Trans. A, 1995,26:2493-2501
    [44] Derep J L. Microstructure transformation induced by adiabatic shearing in armour steel. Acta Metall., 1987, 35:1245-1249
    [45] Wittman C L, MeyersM A. Observation of an adiabatic shear band in AISI 4340 steel by high-voltage transmission electron microscopy. Metall. Trans. A, 1990, 21A: 707-716
    [46] Meunier Y, Roux R., Moureaud J. Shock Waves and High Strain Rate Phenomena in Metals. Meyers M A, Murr L E and Staudhammer K P., eds, Marcel Dekker, Inc., New York, NY, 1992, 637-644
    [47] Beatty J H, Meyers L W, Meyers M A. Shock Waves and High Strain Rate Phenomena in Metals. Meyers M A, Murr L E and Staudhammer K P., eds, Marcel Dekker, Inc., New York, NY, 1992, 645-656
    [48] Cho K M, Lee S, Nutt S R. Adiabatic shear band formation during dynamic torsional deformation of an HY-100 Steel. Acta Metall. Mater., 1993,41:923-932
    [49] Lee S, Cho K M. Microstructural study of adiabatic shear band formed by ballistic impact in an HY-100 steel. Metali. Trans. A, 1993, 24A: 2217-2224
    [50] Xu Y B, Wang X, Wang Z G. Formation and microstructure of localized shear band in a low carbon steel. Scripta Metall. Mater., 1990, 24:571-576
    
    [51] Xu Y B, Wang Z G. Microstructure of shear localization in low carbon ferrite-pearlite steel. Mater. Sci Eng., 1989, A114:81-87
    [52] Xu Y B, Bai Y L, Xue Q, et al. Formation microstructure and development of the localized shear deformation in low-carbon steels. Acta Mater., 1996, 44:1917-1926
    [53] Meyers M A, Xu Y B, Xue Q, Perez-Prado Y R, et al. Microstructural evolution in adiabatic shear localization in stainless steel. Acta Mater., 2003, 51:1307-1325
    [54] 杨扬,张新明,李正华,等.α-Ti-低碳钢爆炸复合结合层的组织.材料研究学报,1995,9(2): 186-189
    [55] 董瀚,李桂芬,陈南平.高强度钢绝热剪切带的组织和硬度.金属学报,1996,32:599-604
    [56] 时捷,董瀚,王琪,田亮.装甲钢板中绝热剪切带的特征.金属学报,2000,36:1045-1049
    [57] 李强,马常祥,赖祖涵,张凯.30MnCrNiMoB钢绝热剪切带的显微观察和微结构分析.东北大学学报,1994,15(5):534-537
    [58] 李强,马常祥,赖祖涵,等.30MnCrNiMoB钢绝热剪切和动态再结晶.材料研究学报,1997,11(1):42-46
    [59] 刘瑞堂,喻杰奎,姜凤春.高应变率下907A钢绝热剪切带的微结构.机械工程材料,2002,26(8):17-20
    [60] 杨卓越,赵家萍.硅锰装甲钢破甲弹坑损伤与微观结构关系的研究,兵器材料科学与工程,1995,18(3):29-32
    [61] 杨卓越,王富耻,王鲁,王树奎.钢管爆炸条件下绝热剪切带的作用和精细结构.北京理工大学学报,2001,21(4):424-428
    [62] 张保法,沈万慈,刘英杰.高能冲击磨损中自层组织对材料磨损性能的影响.中国机械工程,1998,9(2):45-47
    [63] 张保法,刘英杰,沈万慈,等.冲击磨损中合金结构钢的组织结构变化.钢铁研究学报,1996,8(4):34-36
    [64] Zhang B F, Shen W C, Liu Y J, et al. Microstructures of surface white layer and internal white adiabatic shear band. Wear, 1997,211:164-168
    [65] Zhang B F, Liu Y J, Shen W C, et al. A study on the behavior of adiabatic bands in impact wear. Wear, 1996,198:287-292
    [66] 杨扬,程信林.绝热剪切的研究现状及发展趋势.中国有色金属,2002,12(3):401-408
    [67] Zener C, Hollomon J H. Thermal plastic instability in ballistic impact. J. Appl. Phys., 1944, 15: 22-32
    [68] Recht R F. Catastrophic thermoplastic shear. Trans. ASME, J. Appl. Mech,, 1964,31:189-193
    [69] Culver R S. In metallurical effect at high strain-rates, ed. R W Rhode, B M Butcher, J R Holland and C. H Karnes, New York: Plenum Press,1973:519-530
    
    [70] 徐天平,王礼立,卢维娴.高应变速率下钛合金Ti-6Al-4V的热-粘塑性特性和绝热剪切变形.爆炸与冲击,1987,7(1):1-7
    [71] 包合胜,王礼立,卢维娴.钛合金在低温下的高速变形特性和绝热剪切.爆炸与冲击,1989,9(2):109-119
    [72] Komanduri R, Brown R H. On the mechanics of chip segmentation in machining. J. of Eng. For Ind., 1981, 103:33-51
    [73] Komanduri R, Schroeder T, Hazra J, et al. On the catastrophic shear instability in high-speed machining of an AISI 4340. J. of Eng. For Ind., 1982, 104:121-131
    [74] Recht R F. A dynamic analysis of high speed machining. J. of Eng. For Ind., 1985, 107:309-315
    [75] Davies M A, Chou Y, Evans C J. On chip morphology, tool wear and cutting mechanics in finish hard turing. Annals of the CIRP, 1996, 45(1): 77-82
    [76] Davies M A, Bums T J, Evans C J. On the dynamics of chip formation in machining hard metals. Annals of the CIRP, 1997, 46(1): 25-30
    [77] Xie J Q, Bayoumi A E, Zbib H M. A Study on shear banding in chip formation of orthogonal machining. Int. J. Mach. Tools. Manufact., 1996(7): 835-847
    [78] Sheikh-Ahmad J, Bailey J A. Flow instability in the orthogonal machining of CP titanium. J. Manufact. Sci. Eng., 1997, 119:307-313
    [79] Barry J, Byme G, Lennon D. Observation on chip formation and acoustic emisson in machining Ti-6Al-4V alloy, Intl. J. Mach. Tools and Manufacture, 2001, 41:1055-1070
    [80] Gente A, Hoffmesiter H W. Chip formation in machining Ti6Al4V at extremely high cutting speeds. Annals of the CIRP, 2001, 50(1): 49-52
    [81] Hou Zhen-Bin, Komanduri R. On thermoplastic shear instability in the machining of a titanium alloy Ti-6Al-4V). Metall. Mater. Trans., 2002, 32A: 2995-3010
    [82] Komanduri R, Schroeder T. On hear instability in machining a nickel-iron base superalloy. J. of Eng. For Ind., 1986, 108:93-100
    [83] Manyindo B M, Oxley P L B. Modeling of the catastrophic shear type of chip when machining stainless steel. Proc. Instn. Mech. Engrs., 1986, 200:349-355
    [84] Hou Zhen-Bin, Komanduri R. On a thermomechanical model of shear instability in machining. Annals of the CIRP, 1995, 44(1): 69-73
    [85] Koeing WA, Momanduri R, ToenshoffH K, et al. Machining of hard metals. Annals of CIRP, 1984, 33(2): 417-427
    [86] 王敏杰.金属动态力学性能与热塑剪切失稳的正交切削实验方法.博士学位论文,大连理工大学,1989
    
    [87] Komanduri R, Von-Turkovich B F. New observation on the mechanism of chip formation when machining titanium alloys. Wear, 1981, 69:179-188
    [88] Lemaire J C, Backofen W A. Adiabaitic instability in the orthogonal cutting of steel. Metall. Trans., 1972, 3: 477-481
    [89] Semiatin S L, Lahoti G D, et al. The occurrence of shear bands in metalworking. Material Behavior under High Stress and Ultrahigh loading Rates, 29th Sagamore Conference, Plenum Press, 1983:119-159
    [90] Xie J Q, Bayoumi A E, Zbib H M. Analytical and experimental study of shear localization in chip formation in orthogonal machining. J. Mater. Eng. Performance, 1995, 4(1): 32-39
    [91] Hou Z B, Komanduri R. Modeling of thermomechanical shear instability in machining. Int. J. Mech. Sci., 1997, 39:1273-1314
    [92] 王敏杰,胡荣生,刘培德.金属切削中的蓝脆效应与绝热剪切失稳.科学通报,1990,35(8):634-636
    [93] Wang M J, Hu R S, Liu P D. Determination for critical conditions of thermoplastic shear instability by using orthogonal machining method. Proceedings of the Asia-Pacific Symposium on Advances in Engineering Plasticity and its Applications-AEPA'92, Hong Kong, 1992, 957-964
    [94] Xie J Q, Bayoumi A E, Zbib H M. FEA Modeling and simulation of shear localized chip formation in metal cutting. Int. J. Mach.Tools. Manufact., 1998(38): 1067-1087
    [95] 《合金钢钢种手册》(第一册),冶金工业出版社,1983:249~253
    [96] Matsumoto Y, Barash M M, Liu C R. Cutting mechanisms during machining of hardened steels. Meter. Sci. Tech., 1987, 3:299-305
    [97] Nakayama K, Arai M, Kanda T. Machining characteristic of hardened steels. Annals of the CIRP, 1988, 37(1) : 89-92
    [98] Muller C, Blumke R. Influerce of heat treatment and cutting speed on chip segmentation of age hardenable aluminium alloy. Mater. Sci. Tech., 2001, 17:651-654
    [99] Turley D M, Doyle E D. Calculation of shear strains in chip formation in titanium. Mater. Sci. Eng., 1982, 55:45-48
    [100] He N, Lee T C, Lau W S, Chan S K. Assessment of deformation of a shear localized chip in high speed machining. J. Mater. Proc. Technology, 2002, 129:101-104
    [101] Owen D R J, Vaz J M. Computational techniques applied to high-speed machining under adiabatic shear localization conditions. Comput. Methods Appl. Mech. Engrg., 1999, 171: 445-461
    [102] Komanduri R, Hou Z B. Thermal modeling of the metal cutting process—Part Ⅲ: temperature rise distribution due to the combined effects of shear plane heat source and the tool-chip interface frictinal heat source. J. Mech. Sci., 2001, 43:89-107
    [103] Komanduri R, Hou Z B. Thermal modeling of the metal cutting process—Part Ⅱ: temperature rise distribution due to frictinal heat source at the too-chip interface. Inter. J. Mech. Sci., 2001, 43: 57-88
    
    [104] Bayoumi A E, Xie J Q. Some metallurgical aspects of chip formation in cutting Ti-6wt.%Al-4wt.%V alloy. Mater. Sci. Eng., 1995,A190:173-180
    [105] Huang J, Aifantis E C. A note on the problem of shear localization during chip formation in orthogonal machining. J. Mater. Eng. Performance, 1997, 6:25-26
    [106] Wright T W, Ockendon H. A model for fully formed shear bands. J. Mech. Phys. Solids, 1992, 40: 1217-1230
    [107] Wright T W, Ockendon H. A scaling law for the effect of inertia on the formation of adiabatic shear bands. Int. J. Plasticity, 1996, 12:927-934
    [108] Molinari A. Collective behavior and spacing of adiabatic shear bands. J. Mech. Phys. Solids, 1997, 45:1551-1578
    [109] Moufki A, Molinari A, Dudzinski D. Modeling of Orthogonal Cutting with A Temperature Dependent Friction Law. J. Mech. Phys. Solids, 1998,46:2103-2120
    [110] Sutter G, Molinari A, Faure L, et al. An experimental study of high speed orthogonal cutting. Int. Journal of Manufacturing Science and Engineering, 1998, 169-175
    [111] Molinari A, Musquar C, Sutter G. Adiabatic Shear Banding in High Speed Machining of Ti-6Al-4V: Experiments and Modeling. Int. J. Plasticity, 2002,18:443-459
    [112] 刘献礼,孟安,陈立国,等人.硬态干式切削GCr15时的临界硬度.机械工程学报,2000,36(3):13-16
    [113] Liu X L, Wen D H, Li Z J, et al. Experimental study on hard turning hardened GCr15 steel with PCBN tool. J. Mater. Proc. Technology, 2002, 129:217-221
    [114] 李强,马常祥,赖祖涵.30MnCrNiMoB低合金钢绝热剪切带的形成机制与微结构.金属学报, 1995,31(11):505-510
    [115] Derby B. The dependence of grain size on stress during dynamic recrystallization. Acta Metall. Mater, 1991, 39:955-962
    [116] Hines J A, Vecchio K S. Recrystallization kinetics within adiabatic shear bands. Acta Mater., 1997, 45(2): 635-649
    [117] Hines J A, Vecchio S K, Ahzi S. A model for microstructure evolution in adiabatic shear bands. Metall Mater. Trans., 1998, 29A: 191-202
    [118] Dodd B, Bai Y L. Ductile Fracture and Ductility. Chapter 6, Academic Press, London,1987, 123-146
    [119] 黄小玲.形变剪切带与韧性断裂.博士学位论文,中科院力学研究所,1987
    [120] Stelly M, Dormeval R. in Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena. L E Murr, K P Staudhammer and M A Meyers (eds), Marcel Dekker, New York and Basle, 1986, 607-632
    
    [121] Shockey D A. in Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena. L E Murr, K P Staudhammer, M A Mayers (eds), Marcel Dekker, New York and Basle, 1986, 633-656
    [122] Irwin G J. Defense Research Establishment. Valcartier, DREV-R-652/72, Canada, 1972.
    [123] Backman M E, Finnegan S A. in Metallurgical Effects at High Strain Rates. R W Rohde, B M Butcher, J R Holland and C H Kames(eds), Plenum Press, New York, 1973, 531-543
    [124] 董瀚,李桂芬,王步震,陈南平.高强度装甲钢中绝热剪切破坏.研究钢铁研究学报,1995,7(6):38-43
    [125] 董瀚,李桂芬,王步震,陈南平.高强度钢高速冲击载荷下的动态响应,兵器材料科学与工程, 1995.18(3):10-16
    [126] Giovanola J H. Adiabatic shear banding under pure shear loading Part Ⅱ: fractographic and metallographic observations. Mechanics of Materials, 1988, 7:73-87
    [127] Cowei J G; Azrin M, Olson G B. Microvoid formation during shear deformation of ultrahigh strength steels. Metall. Trans., 1989, 20A: 143-153
    [128] Cho K M, Chi Y C, Duffy J. Microscopic observations of adiabatic shear bands in three different steels. Metall. Trans., 1990, 21A: 1161-1175

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700