甜菜夜蛾与斜纹夜蛾触角细胞色素P450及酯酶基因cDNA片段的克隆和组织表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
昆虫在长期进化过程中形成了高度灵敏的嗅觉系统,并以此来感受自然环境中的各种化学信息,产生相应的生理和行为反应,如寻找配偶、食物源和栖息场所、产卵行为、逃避危险或者不适合的栖息地和寄主等,因此嗅觉系统对于昆虫的生命活动至关重要。将昆虫嗅觉应用于害虫防治,已成为害虫管理的一个重要手段,并将在未来害虫治理中起到越来越重要的作用。甜菜夜蛾和斜纹夜蛾是世界性分布的重要农业害虫,危害很多种粮食和蔬菜作物,生产上主要依靠化学防治,但由于害虫抗药性以及蔬菜等作物的无公害防治要求,迫切需要寻求新的防治技术。这两种夜蛾雌虫性信息素组分已得到鉴定,并成功用于田间种群的预测预报,但将性信息素直接用于害虫的大量诱杀或交配干扰,防治效果并不理想。因此,深入研究蛾类昆虫性信息素通讯的分子机制,弄清性信息素感受相关蛋白及其功能,必将有助于针对特定嗅觉蛋白设计和开发更为高效的两性通讯的调控技术,服务于蔬菜和粮食的无公害生产。本文对甜菜夜蛾和斜纹夜蛾触角内两类气味降解相关酶类进行了研究,主要结果如下:
     1甜菜夜蛾P450基因的克隆、序列分析及组织表达谱分析
     通过比较几种已发表夜蛾科昆虫的细胞色素P450氨基酸序列,设计合成一对简并性引物,利用反转录多聚酶链式反应(RT-PCR)技术从甜菜夜蛾(Spodoptera exigua Hubner)雄虫触角扩增得到2个分别为444bp和441bp的cDNA片段,由P450命名委员会命名为CYP4L15和CYP4L16。S. exigua的2个P450基因推导的氨基酸序列与已知其它鳞翅目昆虫P450基因具有较高的同源性,其中CYP4L15和甘蓝夜蛾CYP4L4基因相似性高达94%;CYP4L16和甘蓝夜蛾CYP4L4基因相似性高达92%。2个基因间的相似性为96%。
     RT-PCR结果表明,CYP4L15和CYP4L16在雌雄虫触角内均有表达,且表达量相当,说明该P450基因没有性特异性。CYP4L15基因在雄蛾各个组织中都有表达;CYP4L16除在雄蛾腹部没有明显表达外,在其它组织中均表达;两个基因在翅内的表达量均较低。根据上述结果,推测2个基因可能参与了昆虫的化学感受;而CYP4L15可能还参与对进入消化道的植物次生物质的代谢等。
     2斜纹夜蛾P450基因的克隆、序列分析及组织表达谱分析
     通过比较几种已发表夜蛾科昆虫的细胞色素P450氨基酸序列,设计合成一对简并性引物,利用反转录多聚酶链式反应(RT-PCR)技术从斜纹夜蛾(S. litura (Fabricius))雄蛾触角扩增得到3个细胞色素P450 cDNA片段,由P450命名委员会命名为CYP4L19、CYP4L20和CYP4L21。3个基因推导的氨基酸序列与已知其它昆虫P450具有较高的同源性,CYP4L19和甘蓝夜蛾CYP4L4基因相似性达到94%;CYP4L20和甘蓝夜蛾CYP4L4基因相似性达到92%;CYP4L21和甘蓝夜蛾CYP4L4基因相似性达到92%。CYP4L19和甜菜夜蛾细胞色素P450基因CYP4L15和CYP4L16的相似性分别为97%和95%;CYP4L20和甜菜夜蛾细胞色素P450基因CYP4L15和CYP4L16的相似性分别为95%和93%;CYP4L21和甜菜夜蛾细胞色素P450基因CYP4L15和CYP4L16的相似性分别为96%和93%;3个斜纹夜蛾P450 cDNA片段间的氨基酸序列的相似性互为97%。
     RT-PCR结果表明3个基因在雌雄蛾触角内都有表达,且表达量相当,说明3个基因在雌雄蛾触角内担负相似的功能,并具有相似的重要性。除CYP4L21在雄蛾翅内没有表达外,3个基因在所有测定的组织中均表达,以触角、腹部和足中的表达量较高,而头、胸及翅中的表达量较低。因此,同甜菜夜蛾的2个P450基因类似,3个斜纹夜蛾P450基因可能担负对外源气味物质、食物中的有毒物质及杀虫剂的代谢作用。
     3甜菜夜蛾和斜纹夜蛾触角酯酶基因克隆、序列及组织表达谱分析
     设计合成一对简并性引物,在甜菜夜蛾和斜纹夜蛾触角内分别克隆到1个长为393bp的cDNA片段,命名为SexiAE和SlitAE。SexiAE与已知其它昆虫具气味降解活性酯酶的同源性较高,其中和甘蓝夜蛾气味降解酯酶相似性最高为54%。SlitAE与已知甘蓝夜蛾气味降解酯酶和海灰翅夜蛾触角酯酶的相似性最高,均为51%,SexiAE和SlitAE相似性为67%。
     RT-PCR结果表明,SexiAE和SlitAE在甜菜夜蛾和斜纹夜蛾雌雄触角内均有表达,且表达量相当,不具有性特异性,推测2个酯酶基因可能参与了包括性信息素组分在内的多种气味物质的降解。SexiAE在甜菜夜蛾雄虫各个组织内都有表达,但在去触角的头部较低。SlitAE在斜纹夜蛾雄虫触角、腹部表达量较高,在足内表达微弱,在其它组织内没有表达。2个基因在腹部等非化感组织的表达,说明它们可能还担负降解气味物质以外的功能。由于SexiAE较SlitAE具有更宽的组织表达谱,说明前者可能参与更多的生理功能,其底物谱也可能更宽。
     本文利用分子生物学技术,成功克隆出甜菜夜蛾和斜纹夜蛾几个P450基因和酯酶基因,并进行了序列及组织表达谱等相关分析。研究结果为进一步明确两种夜蛾的气味感受机制,并为研制和开发新型、高效的两性通讯阻断剂提供了依据
In insects, the olfactory systems have evolved to be highly sensitive, enabling detection and discrimination among a diverse array of volatile chemicals, and thus leading to various behavioral responses such as mate-seeking, location of food and habitat, oviposition. Therefore, olfactory systems play crucial roles in insect survival and reproductive success. The olfactory-based control strategies have developed as an important means for pest control. The beet armyworm, Spodoptera exigua (Hiibner) and common cutworm, S. litura (Fabricius) (Lepidoptera: noctuidae), are severe pests of various agricultural crops. Their sex pheromone of female moths have been identified as complex blends, and successfully used in pest population monitoring. However, it is not satisfactory to use it in pest control neither by means of mass-trapping nor mating-disruption. Therefore, it is very important to gain insight on the molecular mechanism of the perception of female sex pheromone by the male. The insights into the molecular mechanism will facilitate molecular designing of specific regulator to olfactory related proteins, and for further development of more effective pest behaviorally interfering techniques. Here, we report the molecular identification and sequence analysis of P450 and antennal esterase genes from S. exigua and S. litura, and further tissure expression patterns of these genes. The main results are as follows.
     1. Molecular characterization and Tissue expression analysis of P450 genes from S. exigua
     PCR was performed with a pair of degenerate primers designed on the conserved amino acid regions in P450 of other insects, afforded two cDNA products of 444 and 441 bp, respectively. They were named CYP4L15 and CYP4L16, respectively. Alignment with other p450 genes putatively involved in odorant degradation, high identities were found among these proteins. The identity between gene CYP4L15 and CYP4L4 from M. brassicae was 94%; the identity between CYP4L16 and CYP4L4 was 92%. Two novel genes had a high identity of 96%.
     To investigate the expression of P450 in different tissues of S. exigua, reverse transcription-polymerase chain reaction (RT-PCR) experiments were performed using specific primers. CYP4L15 and CYP4L16 were expressed in male and female antennae of S. exigua, and got equal expression levels. CYP4L15 expressed in all tissues tested (antennae, head without antennae, thorax, abdomen, feet, wing) in male moth. CYP4L16 expressed in all tissues tested except for the abdomen in male moth. Both CYP4L15 and CYP4L16 were lowerly expressed in wings. Based on these results,2 genes were putatively proposed to involve in chemoreception, with CYP4L15 also in the metabolism of toxical chemicals in the alimentary canal.
     2. Molecular characterization and Tissue expression analysis of P450 genes from S. litura
     Similarly as in S. exigua, with RT-PCR technique, three cDNA fragments (444bp) were cloned. They were named CYP4L19, CYP4L20 and CYP4L21, respectively. Alignment with the other p450s putatively involved in odorant degradation, high identities were found among these proteins. The identity with CYP4L19 and CYP4L4 was 94%; both CYP4L20 and CYP4L21 have identity with CYP4L4 of 92%. CYP4L19 has identity of 97% and 95% with two P450 genes cloned from S. exigua CYP4L15 and CYP4L16; CYP4L20 has identity of 95% and 93% with CYP4L15 and CYP4L16; CYP4L21 has identity of 96% and 93% with CYP4L15 and CYP4L16. Three novel genes have high identity of 97%.
     To investigate expression of P450 in different tissues of S. litura, RT-PCR experiments were performed using specific primers. RT-PCR experiments show CYP4L19, CYP4L20 and CYP4L21 were expressed with equal level in male and female S. litura antennae. Six tissues were selected for expression comparison in the male moth, including antennae, head with antennae deduced, thorax, abdomen, feet and wing. CYP4L19 and CYP4L20 were expressed in all tested tissues, with higher amount in antennae, abdomen and feet. CYP4L21 expressed in all tested tissues except for in wing. Three cloned novel genes were proposed to play roles in metabolism of odorant moleculars, toxical chemicals and pesticide entered into alimentary canal with food.
     3. Molecular cloning, Characterization and Tissue expression analysis of esterase genes from S. exigua and S. litura
     By RT-PCR method with a pair of degenerate primers designed against an alignment of several known insect odorant degrading esterase animo acid sequences. Two cDNA fragments of antennal esterase gene, SexiAE and SlitAE were cloned and sequenced from the antennae of male S. exigua and S. litura, respectively. Alignment with the other esterase genes that putatively involved in odorant degradation, identities were analysised. SexiAE shared the highet identity of 54% with odorant degrading esterase gene of MbraODE, and SlitAE shared the highest identity of 51% with esterase of MbraODE and SlitEST. Two novel genes shared an identity of 67%.
     To investigate the expression of SexiAE and SlitAE in different tissues of S.exigua and S. litura, RT-PCR experiments were performed using specific primers. SexiAE and SlitAE were both expressed in male and female antennae of S. exigua and S. litura, respectively. Six tissues were selected for the expression study in the male moth, and these tissues were male antennae, head with antennae deduced, thorax, abdomen, feet and wing. SexiAE was expressed in all tested tissues, but the expression leve in wing was very low. SlitAE was expressed with higher level in antennae and abdomen than that in feet. There was no expression in other tissues tested. The expression pattern of these two esterase genes indicated that 2 esterases may play multiple roles besides odorant metabolism in chemoreception, and that. SexiAE comparing to SlitAE, may has wider substrate spectrum and thus undertake more physiological functions.
     In conclusion, we described the identification and characterization of odorant reception related enzymes from the male antennae of S. exigua and S. litura, and reported their tissue expression pattern in S. exigua or S. litura. The results could be helpful for both understanding of the molecular mechanism of odorant reception in S. exigua and S. litura, and providing theoretical bases in designing and developing new tactics in pest control.
引文
1.董双林,杜家纬。甜菜夜蛾性信息素鉴定及应用研究进展。昆虫知识,2002a,39(6):412-416
    2.董双林,杜家纬。甜菜夜蛾信息素组分的鉴定及其田间试验。植物保护学报,2002b,29(1):19-24
    3.范伟民,盛承发,苏建伟。棉铃虫成虫对性信息素的电生理和行为反应研究。昆虫知识,2003,46(2):138-143
    4.龚达平,赵萍,林英,张辉洁,夏庆友,向仲怀。家蚕信息素结合蛋白BmPBP2和BmPBP3基因的初步鉴定及表达分析,昆虫学报,2006,49(3):355-362
    5.巩中军,原国辉,郭线茹,安世恒。烟实夜蛾触角普通气味结合蛋白ⅡcDNA的克隆、序列分析及在大肠杆菌中的表达。昆虫学报,2005,48(1):18-23
    6.黄春霞,朱丽梅,倪珏萍,等。甜菜夜蛾的饲养方法介绍。昆虫知识,2002,39(3):229-231
    7.刘永杰。甜菜夜蛾抗药性监测与抗性机理研究。南京农业大学博士论文,2002
    8.刘晓光,安世恒,罗梅浩,郭线茹,原国辉。烟实夜蛾信息素结合蛋白3 cDNA的克隆、序列分析与原核表达。昆虫学报,2006,49(5):733-739
    9.娄永根,程家安。昆虫的化学感觉机理。生态学杂志,2001,20(2):66-69
    10.刘勇,倪汉祥,胡萃。昆虫气味结合蛋白研究进展。昆虫知识,2000,37(6):367-371
    11.雷宏,邱宇彤,Christensen T.A.昆虫嗅觉系统的结构与功能//刘同先,康乐。昆虫学研究:进展与展望。北京:科学出版社,2005:133-169
    12.孙凡,胡隐月,杜家纬。斜纹夜蛾性信息素通讯系统。昆虫学报,2001,45(3):404-407
    13.王桂荣,郭予元,吴孔明。一个棉铃虫触角特异表达基因cDNA片段的克隆。农业生物技术学报,2003,11(1):49-54
    14.王桂荣。棉铃虫气味结合蛋白的分子结构及气味的识别。中国农业科学院博士论文,2002
    15.王桂荣,郭予元,吴孔明。昆虫触角气味结合蛋白的研究进展。昆虫学报,2002a,45(1):131-137
    16.王桂荣,郭予元,吴孔明。棉铃虫普通气味结合蛋白Ⅱ基因的表达及鉴定。昆虫学报,2002b,45(3):285-289
    17.王桂荣,郭予元,徐广,吴孔明。甜菜夜蛾GOBP2基因的克隆及序列测定。中国农业科学,2001,34(6):619-625
    18.王桂荣,吴孔明,苏宏华,郭予元。棉铃虫嗅觉受体基因的克隆及组织特异性表达。昆虫学报,2005,48(6):823-828
    19.王睿,张薇,田雨,张善干。棉铃虫触角气味物质结合蛋白的鉴别。昆虫知识,1999,36(5): 297-298
    20.谢建军,胡美英,许再福。斜纹夜蛾的天敌及其生物防治。昆虫天敌,1999,21(2):82-92
    21.修伟明,董双林,苗慧,穆兰芳。2个甜菜夜蛾信息素结合蛋白cDNA片段的克隆和序列分析。中国农业科学,2005a,38(7):1501-1504
    22.修伟明,董双林,王荫长。昆虫信息素结合蛋白及其分子运输机制和生理功能研究进展。昆虫学报,2005b,48(5):778-784
    23.修伟明。甜菜夜蛾和斜纹夜蛾性信息素感受相关蛋白的分子克隆、定量分析及原核表达。南京农业大学博士学位论文,2007。
    24.阎凤明。化学生态学。北京:科学出版社,2003
    25.周晓梅,黄炳球。斜纹夜蛾抗药性及其防治对策的研究进展。昆虫知识,2002,39(2):98-102
    26.周弘春,贾新民。昆虫化感器中的OBP。黑龙江八一农垦大学学报,2002,12(2):7-12
    27.朱彬彬,姜勇,雷朝亮。昆虫信息素结合蛋白的研究概况。昆虫知识,2005,42(3):240-243
    28.杨慧,严善春,彭璐。鳞翅目昆虫化学感受器及其感受机理新进展。昆虫学报,2008,51(2):204-215
    29. Abraham D., Lofstedt C., Picimbon J.F., Molecular characterization and evolution of pheromone binding protein genes in Agrotis moths. Insect Biochem. Mol. Biol.2005,35:1100-1111
    30. Almaas T.J., Mustapsrta H., Heliothis virescens: response characteristics of receptor neurons in sensilla trichodea type 1 and type 2. J.Chem. Ecol.1991,17(5):953-972
    31. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J., Basic local alignment search tool. J. Mol. Biol.1990,215:403-410
    32. Bakalyar H.A., Reed R.R., The second messenger cascade in olfactory receptor neurons. Curr. Opin. Neurobiol.1991,1:204-208
    33. Baumann A., Frings S., Godde M., Seifert R., Kaupp U.B., Primary structure and functional expression of a Drosophila cyclic nucleotide-gated channel present in eyes and antennae. EMBO J. 1994,13:5040-5050
    34. Ben-Arie N., Khen M., Lancet D., Glutathione S-transferase in rat olfactory epithelium:purification, molecular properties and odorant biotransformation. Biochem. J.1993,292,379-384
    35. Bendtsen J.D., Nielsen H., Von Heijne G., Brunak S., Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol.2004,340:783-795
    36. Benton R., Sachse S., Michnick S.W., Vosshall L.B., Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol.2006,4(2)e20:240-257
    37. Bette S., Breer H., Krieger J., Probing a pheromone binding protein of the silkmoth Antheraea polyphemus by endogenous tryptophan fluorescence. Insect Biochem. Mol. Biol.2002,32:241-246
    38. Boeckh, J. et al. Anatomical and physiological characteristics of individual neurones in the central antennal pathways of insects. J. Insect. Physiol.1984,30:15-26
    39. Boeckh J. et al. Neurophysiology and neuroanatomy of the olfactory pathway in the cocktoach. Ann. Ny. Acad. Sci.1987,510:39-43
    40. Boekhoff I., Michel W.C., Breer H., Ache B.W., Single odors differentially stimulate dual second messenger pathways in lobster olfactory receptor cells. J. Neurosci.1994,14,3304-3309
    41. Boekhoff I., Raming K., Breer H., Pheromone-induced stimulation of inositol-trisphosphate formation in insect antennae is mediated by G-proteins. J. Comp. Physiol. B 1990a,160:99-103
    42. Boekhoff I., Seifert E., Goggerle S., Lindemann M., Kruger B.W., Breer H., Pheromone induced 2nd-messenger signaling in insect antennae. Insect Biochem. Mol. Biol.1993,23:757-762
    43. Boekhoff I., Strotmann J., Raming K., Tareilus E., Breer H., Odorant-sensitive phospholipase C in insect antennae. Cell Signal 1990b,2:49-56
    44. Bohbot J., Vogt R.G, Antennal expressed genes of the yellow fever mosquito (Aedes aegypti L.); characterization of odorant-binding protein 10 and takeout. Insect Biochem. Mol. Biol.2005, 35:961-979
    45. Bradford M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of protein-dye binding. Anal. Biochem.1976,72:248-254
    46. Bray S., Amrein H., A putative Drosophila pheromone receptor expressed in male-specific taste neurons is required for efficient courtship. Neuron 2003,39:1019-1029
    47. Breer H., Boekhoff I., Tareilus E., Rapid kinetics of second messenger formation in olfactory transduction. Nature 1990a,345:65-70
    48. Breer H., Krieger J., Raming K., A novel class of binding proteins in the antennae of the silkmoth Antheraea pernyi. Insect Biochem.1990b,20:735-740
    49. Breer H., Raming K., Krieger J., Rapid kinetics of second messenger formation in olfactory transduction. Nature 1994,354:65-68
    50. Briand L., Nespoulous C., Huet J.C., Pernollet J.C., Disulfide pairing and secondary structure of ASP1, an olfactory-binding protein from honeybee(Apis mellifera L). J. Pept. Res.2001, 58:540-545
    51. Bruyne M.de, Clyne P.J., Carlson J.R., Odor coding in a model olfactory organ:the Drosophila maxillary palp. J. Neurosci.1999,19:4520-4532
    52. Bruyne M.de, Foster K., Carlson J.R., Odor coding in the Drosophila antenna. Neuron 2001,30: 537-552
    53. Callahan F.E., Vogt R.G., Tucker M.L., Dickens J.C., Mattoo A.K., High level expression of "male specific" pheromone binding proteins (PBPs) in the antennae of female noctuid moths. Insect Biochem. Mol. Biol.2000,30:507-514.
    54. Campanacci V., Krieger J., Bette S., Sturgis J.N., Lartigue A., Cambillau C., Breer H., Tegoni M., Revisiting the specificity of Mamestra brassicae and Antheraea polyphemus pheromone binding proteins with a fluorescence binding assay. J. Biol. Chem.2001,276:20078-20084
    55. Campanacci V, Longhi S, Nagan-Le MP, Cambillau C, Tegoni M,1999, Recombinant pheromone binding protein 1 from Mamestra brassicae (MbraPBP1). Eur. J. Biochem.1999,264:707-716
    56. Carlson J.R., Olfaction in Drosophila: from odor to behavior. Trends Genet.1996,12:175-180
    57. Carr W.E., Gleeson R.A., Trapido-Rosenthal H.G., The role of perireceptor events in chemosensory processes. Trends Neurosci.1990,13:212-215
    58. Chess A., Simon I., Cedar H., Axel R., Allelic inactivation regulates olfactory receptor gene expression. Cell 1994,78:823-834
    59. Clyne P.J., Warr G.G., Freeman M.R., Lessing D., Kim J., Carison J.R., A novel family of divergent seven transmembrane proteins:Candidate odorant receptors in Drosophila. Neuron 1999, 22:327-338
    60. Crasto C., Marenco L., Miller P., Shepherd G., Olfactory Receptor Database: a metadata-driven automated population from sources of gene and protein sequences. Nucleic Acids Res.2002, 30:354-360
    61. Christensen T.A., Geoffrion S.C., Hildebrand J.G., Physiology of interspecific chemical communication in Heliothis moths. Physiol. Ent.1990,15:275-283
    62. Cheng E Y., Lu W T., Lin W G. Chinese J. Entomol. Special Publication,1991,4:199-213.
    63. Damberger F., Nikonova L., Horst R., Peng G., Leal W.S., Wuthrich K., NMR characterization of a pH-dependent equilibrium between two folded solution conformations of the pheromone-binding protein from Bombyx mori. Protein Sci.2000,9:1038-1041
    64. de Santis F, Francois M.C, Merlin C, Pelletier J., Maibeche-Coisne M., Conti E., Jacquin-Joly E., Molecular Cloning and in Situ Expression Patterns of Two New Pheromone-Binding Proteins from the Corn Stemborer Sesamia nonagrioides. J. Chem. Ecol.2006,32:1703-1717
    65. Del Punta K., Leinders-Zufall T., Rodriguez I., Jukam D., Wysocki C. J., Ogawa S., Zufall F., Mombaerts P., Deficient pheromone responses in mice lacking a cluster of vomeronasal receptor genes. Nature 2002,419:70-74
    66. Dhallan R.S., Yau K. W., Schrader K.A., Reed R.R. Primary structure and unctional expression of a cyclic nucleotide-activated channel from olfactory neurons. Nature 1990,347:184-187
    67. Dobritsa A.A., Van der Goes van Naters W., Warr C.G., Steinbrecht R.A., Carlson J.R., Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron 2003, 37:827-841
    68. Dolzer J., Fischer K., Stengl M.,2003, Adaptation in pheromone-sensitive trichoid sensilla of the hawkmoth Manduca sexta. J. Exp. Biol.2003,206:1575-1588
    69. Du G, Prestwich G.D., Protein structure encodes the ligand binding specificity in pheromone binding proteins. Biochemistry 1995,34:8726-8732
    70. Dunipace L., Meister S., McNealy C., Amrein H., Spatially restricted expression of candidate taste receptors in the Drosophila gustatory system. Curr. Biol.2001,11:822-835
    71. Elmore T., Smith D.P., Putative Drosophila odor receptor OR43b localizes to dendrites of olfactory neurons. Insect Biochem. Mol. Biol.2001,31,791-798
    72. Elmore T., Ignell R., Carlson J.R., Smith D.P., Targeted mutation of a Drosophila odor receptor defines receptor requirement in a novel class of sensillum. J. Neurosci.2003,23:9906-9912
    73. Fadool D.A., Ache B.W., Plasma membrane inositol 1,4,5-trisphosphate activated channels mediate signal transduction in lobster olfactory receptor neurons. Neuron 1992,9:907-918
    74. Forstner M, Gohl T, Breer H, Krieger J., Candidate pheromone binding proteins of the silkmoth Bombyx mori. Invert. Neurosci.2006,8:177-187
    75. Fox A.N., Pitts R.J., Robertson H.M., Carlson J.R., Zwiebel L.J., Candidate odorant receptors from the malaria vector mosquito Anopheles gambiae and evidence of down-regulation in response to blood feeding. Proc. Natl Acad. Sci.2001,98:14693-14697
    76. Fox A.N., Pitts R.J., Zwiebel L.J., A cluster of candidate odorant receptors from the malaria vector mosquito, Anopheles gambiae. Chem. Senses 2002,27:453-459
    77. Freitag J., Ludwig G., Andreini I., Roessler P., Breer H., Olfactory receptors in aquatic and terrestrial vertebrates. J. Comp. Physiol. A 1998,183,635-650
    78. Fuchs T., Glusman G., Horn-Saban S., Lancet D., Pilpel Y., The human olfactory subgenome:from sequence to structure and evolution. Hum. Genet.2001,108:1-13
    79. Gaillard I., Rouquier S., Giorgi D., Olfactory receptors. Cell. Mol. Life Sci.2004,61:456-469
    80. Gao, Q., Chess A., Identification of candidate Drosophila olfactory receptors from genomic DNA sequence. Genomics 1999,60:31-39
    81. Gat U., Nekrasova E., Lancet D., Natochin M., Olfactory receptor proteins:expression, characterization and partial purification. Eur. J. Biochem.1994,225:1157-1168
    82. Getchell T.V., Margolis F.L., Getchell M.L., Perireceptor and receptor events in vertebrate olfaction. Prog. Neurobiol.1984,23:317-345
    83. Gilad Y., Man O., Paabo S., Lancet D., Human specific loss of olfactory receptor genes. Proc. Natl. Acad. Sci.2003,100:3324-3327
    84. Glusman G., Yanai I., Rubin I., Lancet D., The complete human olfactory subgenome. Genome Res. 2001,11:685-702
    85. Grater F., Xu W., Leal W., Grubmuller H., Pheromone discrimination by the pheromone-binding protein of Bombyx mori. Structure 2006,14:1577-1586
    86. Groβe-Wilde E., Svatos A., Krieger J., A pheromone binding protein mediates the bombykol-induced activation of a pheromone receptor in vitro. Chem. Senses 2006,31:547-555
    87. Goh H G., Choi J, Uhm S K B., Choi M K., Kim J W. Korean J. Appl. Entomol.,1993,32 (4):389-394.
    88. Hallem E.A., Ho M.G., Carlson J.R., The molecular basis of odor coding in the Drosophila antenna. Cell 2004a,117:965-979
    89. Hallem E.A., Nicole Fox A., Zwiebel L.J., Carlson J.R., Olfaction:mosquito receptor for human-sweat odorant. Nature 2004b,427:212-213
    90. Hansson B.S., Olfaction in Lepidoptera. Experientia 1995,51:1003-1027
    91. Hansson B.S., Carlsson M.A., Kalinova B., Olfactory activation patterns in the antennal lobe of the sphinx moth, Manduca sexta. J. Comp. Physiol. A 2003,189:301-308
    92. Hatt H., Ache B.W., Cyclic nucleotide-and inositol phosphate-gated ion channels in lobster olfactory receptor neurons. Proc. Natl. Acad. Sci.1994,91:6264-6268
    93. Hildebrand J.G., Analysis of chemical signals by nervous systems. Proc. Acad. Sci.1995,92:67-74
    94. Hildebrand J.G., Olfactory control of behavior in moths: central processing of odor information and the functional significance of olfactory glomeruli. J. Comp. Physio. A.1996,178:5-19
    95. Hildebrand J.G., Shepherd G.M., Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu. Rev. Neurosci.1997,20:595-631
    96. Hill C.A., Fox A.N., Pitts R.J., Kent L.B., Tan P.L., Chrystal M.A., Ravchik A., Collins F.H., Robertson H.M., Zwiebel L.J., G protein-coupled receptors in Anopheles gambiae. Science 2002, 298:176-178
    97. Homberg U., Montague R.A., Hildebrand J.G., Anatomy of antenno-cerebral pathways in the brain of the sphinx moth Manduca sexta. Cell Tissue Res.1988,254:255-281
    98. Homberg U., et al. Structure and function of the deutocerebrum in insects. Annu. Rev. Entomol. 1989,34:477-501
    99. Honson N., Johnson M.A., Oliver J.E., Prestwich G.D., Plettner E., Structure-activity studies with pheromone-binding proteins of the gypsy moth, Lymantria dispar. Chem. Senses.2003,8:479-489
    100. Horst R., Damberger F., Luginbuhl P., Guntert P., Peng G., Nikonova L., Leal W.S., Wuthrich K., NMR structure reveals intramolecular regulation mechanism for pheromone binding and release. Proc. Natl. Acad. Sci.2001,98:14374-14379
    101.Howse P.E., Stevens L.D.R., Jones O.T., Insect pheromones and their use in pest management. Chepman and Hall,1998
    102. Ishida Y and Leal W S. Cloning of putative odorant-degrading enzyme and integumental esterase cDNA from the wild silkmoth, Antheraea polyphemus. Insect Biochem Mol Biol,2002,32: 1775-1780
    103. Ishida Y, Leal W S. Rapid inactivation of a moth pheromone. Proc Natl Acad Sci USA,2005, 102(39):14075-14
    104.Jacquin-Joly E., Merlin C., Insect olfactory receptors:contributions of molecular biology to chemical ecology. J. Chem. Ecol.2004,30(12):2359-2397
    105.Jones W.D., Cayirlioglu P., Kadow I.G., Vosshall L.B., Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature 2007,445(4):86-90
    106.Jones W.D., Nguyen T.A., Kloss B., Lee K.J., Vosshall L.B., Functional conservation of an insect odorant receptor gene across 250 million years of evolution. Curr. Biol.2005,15(4):R119-R121
    107.Kaissling K.E., Chemo-electrical transduction in insect olfactory receptors. Annu. Rev. Neurosci. 1986,9:121-145
    108.Kaissling K.E., Peripheral mechanisms of pheromone reception in moths. Chem. Senses.1996,21: 257-268
    109.Kaissling K.E., Olfactory perireceptor and receptor events in moths:a kinetic model. Chem. Senses, 2001,26:125-150
    110.Kaissling K.E., Physiology of pheromone reception in insects (an example of moths). ANIR.2004, 6:73-91
    111.Kaissling K.E., Thorson J., Insect olfactory sensilla: structural, chemical and electricalaspects of the functional organisation. In: Receptors for Neurotransmitters, Hormones and Pheromones in Insects (eds.Sattelle D.B., Hall L.M., Hildebrand J.G). Elsevier/North-Holland Biomedical Press,1980, 261-282
    112.Kent K.S., Hildebrand J.G., Cephalic sensory pathways in the central nervous system of larval Manduca sexta (Lepidoptera:Sphingidae). Phil. Trans. R. Soc.1987,315:1-36
    113.Klusak V., Havlas Z., Rulisek L., Vondrasek J., Svatos A., Sexual attraction in the silkworm moth: Nature of binding of bombykol in pheromone binding protein-an ab initio study. Chem. Biol.2003, 10:331-340
    114.Koontz M.A., Schneider D., Sexual dimorphism in neuronal projections from the antennae of silk moths (Bombyx mori, Antheraea polyphemus) and the gypsy moth (Lymantria dispar). Cell Tissue Res.1987,249:39-50
    115.Kowcun A., Honson N., Plettner E., Olfaction in the gypsy moth, Lymantria dispar: effect of pH, ionic strength, and reductants on pheromone transport by pheromone-binding proteins. J. Biol. Chem.2001,276:44770-44776
    116.Krieger J., Breer H., Olfactory reception in invertebrates. Science 1999,286:720-723
    117.Krieger J., Breer H.,2003, Transduction mechanisms of olfactory sensory neurons. In Insect Pheromone Biochemistry and Molecular Biology. (eds. Blomquist G.J., Vogt R.G.), Elsevier Academic Press, London.2003,593-607
    118.Krieger J., Klink O., Mohl C., Raming K., Breer H., A candidate olfactory receptor subtype highly conserved across different insect orders. J. Comp. Physiol. A 2003,189:519-526
    119.Krieger J., Ganssle H., Raming K., Breer H., Odorant binding proteins of Heliothis virescens. Insect Biochem. Mol. Biol.1993,23:449-456
    120.Krieger J., Grosse-Wilde E., Gohl T. Breer H., Candidate pheromone receptors of the silkworm Bombyx mori. Eur. J. Neurosci.2005,21:2167-2176
    121.Krieger J., Grosse-Wilde E., Gohl T., Dewer Y.M., Raming K., Breer H., Genes encoding andidate pheromone receptors in a moth (Heliothis virescens). Proc. Natl. Acad. Sci.2004,101:11845-11850
    122.Krieger J., Mameli M., Breer H., Elements of the olfactory signaling pathways in insect antennae. Invert. Neurosci.1997,3:137-144
    123.Krieger J., Raming K., Breer H., Cloning of genomic and complementary DNA encoding insect pheromone binding proteins: evidence for microdiversity. Biochim. Biophys. Acta 1991,1088 (2):277-284
    124.Krieger J., Raming K., Dewer Y.M., Bette S., Conzelmann S., Breer H., A divergent gene family encoding candidate olfactory receptors of the moth Heliothis virescens. Eur. J. Neurosci.2002, 16:619-628
    125.Krieger J., Von Nickisch-Rosenegk E., Mameli M., Pelosi P., Breer H., Binding proteins from the antennae of Bombyx mori. Insect Biochem. Mol. Biol.1996,26:297-307
    126.Kumar S., Tamura K., Nei M., MEGA3:Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief. Bioinform.2004,5:150-163
    127.Kyte J., Doolittle R.F., A simple method for displaying the hydropathic character of a protein. J. Mol. Biol.1982,157:105-132
    128.Krieger J., Raming K., Breer H., Cloning of genomic and complementary DNA encoding insect pheromone-binding proteins:evidence for microdiversity. Biochim. Biophys. Acta.1991, 1088:277-284
    129.Kim K C., Park J D., Choi D S. Korean J. Appl. Entomol.,1995,34 (2):106-111.
    130.Labandeira C.C., Sepkoski J.J., Insect diversity in the fossil record. Science 1993,261:310-315
    131.Laemmli U.K., Cleavage of structural proteins during the assembly of the head of bacterophage TA, Nature 1970,227:680-685
    132.LaForest S.M., Prestwich G.D., Lofstedt C., Intraspecific nucleotide variation at the pheromone binding protein locus in the turnip moth, Agrotis segetum. Insect Mol. Biol.1999,8:481-490
    133.Larsson M.C., Domingos A.I., Jones W.D., Chiappe M.E., Amrein H., Vosshall L.B., Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 2004,43:703-714
    134.Lartigue A., Gruez A., Spinellil S., Riviere S., Brossut R., Tegoni M., Cambillau C., The crystal structure of a cockroach pheromone binding protein suggests a new ligand binding and release mechanism. J. Biol. Chem.2003,278:30213-30218
    135.Laue M., Steinbrecht R.A., Ziegelberger G., Immunocytochemical localization of general odorant binding protein in olfactory sensilla of the silkmoth Antheraea polyphemus. Naturwissenschaften 1994,81:178-180
    136.Laue M., Steinbrecht R.A., Topochemistry of moth olfactory sensilla. Int. J. Insect Morph. Embryol. 1997,26:217-228
    137.Lautenschlager C., Leal W.S., Clardy J., Coil-to-helix transition and ligand release of Bombyx mori pheromone-binding protein. Biochem. Biophys. Res. Commun.2005,335:1044-1050
    138.Leal W.S., Proteins that make sense. In Insect Pheromone Biochemistry and Molecular Biology. (eds. Blomquist G.J., Vogt R.G.), Elsevier Academic Press, London.2003,447-476
    139.Leal W.S., Chen A.M., Ishida Y., Chiang V.P., Erickson M.L., Morgan T.I., Tsuruda J.M., Kinetics and molecular properties of pheromone binding and release. Proc. Natl Acad. Sci.2005, 102(15):5386-5391
    140.Leal W.S., Nikonova L., Peng G., Disulfide structure of the pheromone binding protein from the silkworm moth, Bombyx mori. FEBS Letters 1999,468:85-90
    141.Leal W S, Wojtasek H, Picimbon J F, et al. Perireceptor events in pheromone perception in scarab beetles. J Asia-Pacific Entomol,1998,1(1):1-8.
    142.Lee D., Damberger F.F., Peng G., Horst R., Guntert P., Nikonova L. et al. NMR structure of the unliganded Bombyx mori pheromone-binding protein at physiological pH. FEBS Letters,2002, 531:314-318
    143.Liu A. H., Zhang X., Stolovitzky G. A., Califano A., Firestein S. J. Motif-based construction of a functional map for mammalian olfactory receptors. Genomics 2003,81:
    144.Livak K.J., Schmittgen T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method. Methods 2001,25:402-408
    145.Ljungberg H., Anderson P., Hansson B.S., Physiology and morphology of pheromone specific sensilla on the antennae of male and female Spodoptera littoralis (Lepidoptera: Noctuidae). J. Insect Physiol.1993,39:253-260
    146.Lynch M., Force A., The probability of duplicate gene preservation by subfunctionalization. Genetics 2000,154:459-473
    147.Maibeche-Coisne M., Jacquin-Joly E., Francois M.C., Nagnan-Le Meillour P., Molecular cloning of two pheromone binding proteins in the cabbage armyworm Mamestra brassicae. Insect Biochem. Mol.Biol.1998,28:815-818
    148.Maibeche-coisne M., Sobrio F., Delaunay T., Lettere M., Dubroca J., Jacquin-Joly E., Pheromone-Binding Proteins of the moth Mamestra brassicae:specificity of ligand binding. Insect Biochem. Mol. Biol.1997,27:213-221
    149.Maibeche-Coisne M, Jacquin-Joly E, Francois M C, et al. cDNA cloning of biotransfrmation enzymes belonging to the cytochrome P450 family in the antennae of the noctuid moth Mamestra brassicae. Insect Mol Biol,2002,11(3):273-281
    150. Maibeche-Coisne M, Nikonov A A, Ishida Y. Pheromone anosmia in a scarab beetle induced by in vivo inhibition of a pheromone-degrading enzyme. Proc Natl Acad Sci USA,2004,101(31): 11459-11464
    151.Maibeche-Coisne M, Merlin C, Francois M C. Putative odorant-degrading Esterase cDNA from the Moth Mamestra brassicae: Cloning and Expression Patterns in Male and Female Antennae. Chem. Senses,2004,29:381-390
    152. Maibeche-Coisne M, Merlin C, Francois M C. P450 and P450 reductase cDNAs from the moth Mamestra brassicae: cloning and expression patterns in male antennae. Gene,2005,346:195-203
    153.Maida R., Krieger J., Gebauer T., Lange U., Ziegelberger G., Three pheromone-binding proteins in olfactory sensilla of the two silkmoth species Antheraea polyphemus and Antheraea pernyi. Eur. J. Biochem.,2000,267:2899-2908
    154.Maida R., Mameli M., Muller B., Krieger J., Steinbrecht R. A., The expression pattern of four odorant-binding proteins in male and female silk moths, Bombyx mori. J. Neurocytology 2005, 34:149-163
    155.Maida R., Krieger J., Gebauer T., Lange U., Ziegelberger G., Three pheromone-binding proteins in olfactory sensilla of the two silkmoth species Antheraea polyphemus and Antheraea pernyi. Eur. J. Biochem.2000,267:2899-2908
    156.Maida R., Ziegelberger G., Kaissling K.E., Ligand binding to six recombinant pheromone binding proteins of Antheraea polyphemus and Antheraea pernyi. J. Comp. Physiol. B 2003,173:565-573
    157.Malnic B., Hirono J., Sato T., Buck L. B., ombinatorial receptor codes for odors. Cell 999, 96:713-723
    158.McNeil J., Behavioral ecology of pheromone-mediated communication in moths and its importance in the use of pheromone traps. Annu. Rev. Entomol.1991,36:407-430
    159.Melo A.C.A., Rutzler M., Pitts R.J., Zwiebel L.J., Identification of a chemosensory receptor from the yellow fever mosquito, Aedes aegypti, that is highly conserved and expressed in olfactory and gustatory organs. Chem. Senses 2004,29:40-10
    160.Merlin C, Bozzolan F, Pelletier J. A new aldehyde oxidase selectively expressed in chemosensory organs of insects. Biochem and Biophysi Rese Comm,2005,332:4-10
    161. Merlin C, Rosell G, Carot-sans G. Antennal esterase cDNA from two pest moths, Spodoptera littoralis and Sesamia nonagrioides, potentially involved in odorant degradation. Insect Mol Biol, 2006,16(1):73-81
    162.Merritt T.J.S., LaForest S., Prestwich G.D., Quattro J.M., Vogt R.G., Patterns of gene duplication in lepidopteran pheromone binding proteins. J. Mol. Evol.1998,46:272-276
    163.Michael L., John S.C., The evolutionary fate and consequences of duplicate genes. Science 2000, 290:1151-1155
    164.Mita K., Kasahara M., Sasaki S., Nagayasu Y., Yamada T., Kanamori H., et al. The genome sequence of silkworm, Bombyx mori. DNA Res.2004,11:27-35
    165.Mitchell E R., Sugie H., Tumlinson J H. J. Chem. Ecol.,1983,9:95-104.
    166.Michel W.C., Ache B.W., Cyclic nucleotides mediate an odor-evoked potassium conductance in lobster olfactory receptor cells. J. Neurosci.1992,12:3979-3984
    167.Mitchell E. R., Kehat M., Tingle F.C., Mclaughlin J.R., Suppression of mating by beet armyworm (Noctuidae:Lepidoptera) in cotton with pheromone. J. Agri. Entomol.1997,14:17-28
    168.Mitchell E.R., Tumlinson J.H., Response of spodoptera exigua and S. eridania (Lepidoptera: Noctuidae) males to synthetic pheromone and S. exigua females. Florida Entomol.1994, 77:237-247
    169.Mittapalli O., Wise I.L., Shukle R.H., Characterization of a serine carboxypeptidase in the salivary glands and fat body of the orange wheat blossom midge, Sitodiplosis mosellana (Diptera: Cecidomyiidae). Insect Biochem. Mol. Biol.2006,36:154-160
    170.Mohl C., Breer H., Krieger J., Species-specific pheromonal compounds induce distinct conformational changes of pheromone binding protein subtypes from Antheraea polyphemus, Invert. Neurosci.2002,4:165-174
    171.Mombaerts P., Molecular biology of odorant receptors in vertebrates. Annu. Rev. Neurosci.1999, 22,487-509
    172.Mori K., and Yoshihara Y., Molecular recognition and olfactory processing in the mammalian olfactory system. Prog. Neurobiol.1995,45:585-619
    173.Muller H.J., The organisation of chromatin deficiencies as minute deletions subject to insertion elsewhere. Genetics 1935,17:237-252
    174.Mustaparta H., Central mechanisms of pheromone information processing. Chem. Senses 1996, 1:269-275
    175.Nakagawa T., Sakurai T., Nishioka T., Touhara K., Insect sex-pheromone signals mediated by specific combinations of olfactory receptors. Science 2005,307:1638-1642
    176.Nagnan-Le Meillour P., Huet J.C., Maibeche M., Pernollet J.C., Descoins C., Purification and characterization of multiple forms of Odorant/Pheromone binding proteins in the antennae of Mamestra brassicae (Noctuidae). Insect Biochem. Mol. Biol.1996,26:59-67
    177.Nef S., Allaman I., Fiumelli H., De Castro E., Nef P., Olfaction in birds: differential embryonic expression of nine putative odorant receptor genes in the avian olfactory system.1996,55:65-77
    178.Neuhaus E.M., Gisselmann G., Zhang W., Dooley R., Stortkuhl K., Hatt H., Odorant receptor heterodimerization in the olfactory system of Drosophila melanogaster. Nature Neurosci.2005, 8:15-17
    179.Newcomb R.D., Sirey T.M., Rassam M., Greenwood D.R., Pheromone binding proteins of Epiphyas postvittana (Lepidoptera:Tortricidae) are encoded at a single locus. Insect Biochem. Mol. Biol. 2002,32(11):1543-1554
    180.Nikonov A.A., Peng G., Tsurupa G., Leal W.S., Unisex Pheromone detectors and pheromone binding proteins in Scarab Beetles. Chem. Senses 2002,27:495-504
    181.Ngai J., Dowling M.M., Buck L., Axel R., Chess A., The family of genes encoding odorant receptors in the channel catfish. Cell 1993,12:657-666
    182.Ochieng S.A., Anderson P., Hansson B.S., Antennal lobe projection patterns of olfactory receptor neurons involved in sex pheromone detection in Spodoptera littoralis (Lepidoptera: Noctuidae).Tissue Cell 1995,27:221-232
    183.Pace U., Hanski E., Salomon Y., Lancet D., Ordorant-sensitive adenylate cyclase may mediate olfactory reception. Nature 1985,316:255-258
    174. Park, J D., Goh H G., Lee J H., Lee W J., Kim J K. Korean J. Appl. Entomol.,1991,30 (2):124-129.
    184.Pelosi P., Odorant-binding proteins. Crit. Rev. Biochem. Molec. Biol.29:199-228
    185.Peng G., Leal W.S., Identification and cloning of a pheromone-binding protein from the oriental beetle, Exomala orientalis. J. Chem. Ecol.,2001,27(11):2183-2192
    186.Pelosi P., Perireceptor events in olfaction. J. Neurobiol.1996,30:3-19
    187. Pelletier J, Bozzolan F, Solvar M. Identification of candidate aldehyde oxidases from the silkworm Bombyx mori potentially involved in antennal pheromone degradation. Gene,2007,404:31-40
    187.Picimbon J.F., Gadenne G., Evolution in noctuid pheromone binding proteins: identification of PBP in the Black cutworm moth, Agrotis ipsilon. Insect Biochem. Mol. Biol.2002,32:839-846
    188.Pierce K.L., Premont R.T., Lefkowitz R.J., Seven-transmembrane receptors. Nat. Rev. Mol. Cell. Biol.2002,3:639-650
    189.Pilpel Y., Lancet D., The variable and conserved interfaces of modeled olfactory receptor proteins. Protein Sci.1999,8:969-977
    190.Pitts R.J., Fox A.N., Zwiebel L.J., A highly conserved candidate chemoreceptor expressed in both olfactory and gustatory tissues in the malaria vector Anopheles gambiae. Proc. Natl Acad. Sci.2004, 101:5058-5063
    191.Plettner E., Lazar J., Prestwich E.G., Prestwich G.D., Discrimination of Pheromone enantiomers by two pheromone binding proteins from the Gypsy moth Lymantria dispar. Biochemistry 2000, 39:8953-8962
    192.Prasad B.C., Reed R.R., Chemosensation-molecular mechanisms in worms and mammals. Trends genet.1999,15:(4)150-153
    193.Prestwich G.D., Du G., Laforest S., How is pheromone specificity encoded in proteins? Chem. Senses 1995,20:461-469
    194.Probst W.C., Snyder L.A., Schuster D.I., Brosius J., Sealfon S.C., Sequence alignment of the G-protein coupled receptor superfamily. DNA Cell Biol.1992,11:1-20
    195.Python F., Stocker R.F., Adult-like complexity of the larval antennal lobe of D. melanogaster despite markedly low numbers of odorant receptor neurons. J. Comp. Neurol.2002,445:374-387
    196.Raming K., Krieger J., Breer H., Primary structure of a pheromone-binding protein from Antheraea pernyi: homologies with other ligand-carrying proteins. J. Comp. Physiol. B 1990,1160:503-509
    197.Raming K., Krieger J., Strotmann J., Boekhoff I., Kubick S., Baumstark C., Breer H., Cloning and expression of odorant receptors. Nature 1993,361:353-356
    198.Redkozubov A., Guanosine 3',5'-cyclic monophosphate reduces the response of the moth's olfactory receptor neuron to pheromone. Chem. Senses 2000,25:381-385
    199.Rhein L.D., Cagan R.H., Biochem ical studies of olfaction: islation, characterization, and ordorant binding activity of cilia from rainbow trout olfactory rosettes. Proc. Natl. Acad. Sci.1980,77: 4412-4416
    200.Riesgo-Escovar J., Raha D., Carlson J.R., Requirement for a phospholipase C in odor response: overlap between olfaction and vision in Drosophila. Proc. Natl Acad. Sci.1995,28:2864-2868
    201.Riviere S., Lartigue A., Quennedey B., Campanacci V., Farine J.P., Regoni M., Cambillau C., Brossut R., A pheromone-binding protein from the cockroach Leucophaea maderae: cloning, expression and pheromone binding. J. Biochem.2003,371:573-579
    202.Robertson H.M, Martos R, Sears C.R, Todres E.Z., Waldon K.K.O., Nardi J.B., Diversity of odourant-binding proteins revealed by an expressed sequence tag project on male Manduca sexta moth antennae. Insect Mol. Biol.1999,8:501-518
    203.Robertson H.M., Warr C.G., Carlson J.R., Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc. Natl. Acad. Sci.2003,100:14537-14542
    204.Robertson H.M., The large srh family of chemoreceptor genes in Caenorhabditis nematodes reveals processes of genome evolution involving large duplications and deletions and intron gains and losses. Genome Res.2000,10:192-203
    205.Rouquier S., Blancher A., Giorgi D., The olfactory receptor gene repertoire in primates and mouse: Evidence for reduction of the functional fraction in primates. Proc. Natl. Acad. Sci.2000, 97:2870-2874
    206. Rybczynski R, Reagan J, Lerner M R. A pheromone-Degrading Aldhyde Oxidase in the antennae of the Moth Manduca Sexta. The Journal of Neur,1989,9(4):1341-1353
    207. Rybczynski R, Vogt R G, Lerner M R. Antennal-specific Pheromone-degrading Aldehyde Oxidase from the Moths Antheraea polyphemus and Bombyx mori. The Journal of Biol Chem,1990, 265(32):19712-19715
    208.Sakurai T., Nakagawa T., Mitsuno H., Mori H., Endo Y., Tanoue S., et al. Identification and functional characterization of a sex pheromone receptor in the silkworm Bombyx mori. Proc. Natl Acad. Sci.2004,101:16653-16658
    209.Sandler B.H., Nikonova L., Leal W.S., Clardy J., Sexual attraction in the silkworm moth:structure of the pheromone-binding-protein-bombykol complex. Chem. Biol.2000,7:143-151
    210.Schweitzer E.S., Sanes J.R., Hildebrand J.G., Ontogeny of electroantennogram responses in the moth, Manduca sexta. J. Insect Physiol.1976,22:955-960
    211.Seabrook W.D., Linn C.E., Dyer L.J., Shorey H.H., Comparison of electroantennograms from female and male cabbage looper moths (Trichoplusia ni) of different ages and for various pheromone concentrations. J. Chem. Ecol.1987,13:1443-1453
    212.Shepherd G.M., Modules for molecules. Nature 1992,358:457-458
    213.Shepherd G.M., Discrimination of molecular signals by the olfactory receptor neuron. Neuron 1994, 13:771-779
    214.Smith D.P., Drosophila odor receptors revealed. Neuron 1999,22:203-204
    215.Spinelli S., Ramoni R., Grolli S., Bonicel J., Cambillau C., Tegoni M., The structure of the monomeric porcine odorant binding protein sheds light on the domain swapping mechanism. Biochemistry 1998,37:7913-7918
    216.Steinbrecht R.A., Ozaki M., Ziegelberger G., Immunocytochemical localization of pheromone binding protein in moth antennae. Cell Tissue Res.1992,270:287-302
    217.Steinbrecht R.A., Laue M., Ziegelberger G., Immunocytochernical of pheromone-binding protein and general odorant-binding protein in olfactory sensilla of the silk moth Antheraea and Bombyx. Cell Tissue Res.1995,282:203-217
    218.Steinbrecht R.A., Laue M., Zhang S.G., Ziegelberger G., Immunocytochemistry of odorant binding proteins. In Olfaction and Taste Ⅺ. (eds. Kurihara K., Swmki N., Ogawa H.), Springer, Tokyo, 1994,804-807
    219.Steinbrecht R.A., Pore structures in insect olfactory sensilla: a review of data and concepts. Int. J. Insect. Morphol. Embryol.1997,26:229-245
    220.Steinbrecht R.A., Olfactory receptors. in Atlas of Arthropod Sensory Receptors, Dynamic Morphology in Relation to Function (eds. Eguchi E., Tominaga Y.) Springer-Verlag, Tokyo.1999,
    221.Stengl M., Inositol-trisphosphate-dependent calcium currents precede cation currents in insect olfactory neurons in vitro. J. Comp. Physiol A 1994,174:187-194
    222.Stocker R.F., The organization of the chemosensory system in Drosophila melanogaster: a review. Cell Tissue Res.1994,275:3-26
    223.Stoltzfus A., On the possibility of constructive neutral evolution. J. Mol. Evol.1999,49:169-181
    224.Storkuhl K.F., Kettler R., Functional analysis of an olfactory receptor in Drosophila melanogaster. Proc. Natl Acad. Sci.2001,98:9381-9385
    225.Strader C.D., Fong T.M., Tota M.R., Underwood D., Structure and function of G protein-coupled receptors. Annu. Rev. Biochem.1994,63:101-132
    226.Tamaki Y., Noguchi H., Yushima T., Sex pheromone of Spodoptera litura(F.) (Lepidoptera: Noctuidae):isolation, identification and synthesis. Appl. Ent. Zool.1973,8:200-203
    227.Tamaki Y., Osawa T., Yushima T., et al. Sex pheromone and related compounds secreted by the virgin female of Spodoptera litura (F.). Jap. J. Appl. Ent. Zool.1976,20:81-86
    228.Tegoni M., Pelosi P., Vincent F., Spinelli S., Campanacci V., Grolli S., Ramoni R., Cambillau C., Mammalian Odorant Binding Proteins. Biochim. Biophys. Acta 2000,1482:229-240
    229.Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgin D.G., The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acid Res.1997,25:4876-4882
    230.Troemel E.R., Chou J.H., Dwyer N.D., Colbert H.A., Bargmann C.I., Divergent seven transmembrane receptors are candidate chemosensory receptors in C.elegans. Cell 1995, 83:207-218
    231.Vaidehi N., Floriano W.B., Trabanino R., Hall S.E., Freddolino P., Choi E.J. et al. Prediction of structure and function of G protein-coupled receptors. Proc. Natl. Acad. Sci.2002,99:12622-12627
    232.Venkatesh S., Singh R.N, Sensilla on the third antennal segment of Drosophila melanogaster Meigen (Diptera:Drosophilidae). Int.J.Insect Morphol.Embryol.1984,13:51-63
    233.Visser J.H., Host odor perception in phytophagous insects. Annu. Rev. Entonol.1986,31:121-144
    234.Vogt R.G., Biochemical diversity of odor detection: OBPs, ODEs and SNMPs. In Insect Pheromone Biochemistry and Molecular Biology. (eds. Blomquist G.J., Vogt R.G.), Elsevier Academic Press, London.2003,391-446
    235. Vogt R.G., Molecular basis of pheromone detection in insects. In Comprehensive Insect Physiology, Biochemistry, Pharmacology and Molecular Biology. (eds. Gilbert L.I, Iatro K., Gill S.). Elsevier. 2004
    236.Vogt R.G., Callahan F.E., Rogers M.E., Dickens J.C., Odorant binding protein diversity and distribution among the insect orders, as indicated by LAP, an OBP-related protein of the true bug Lygus lineolaris (Hemiptera, Heteroptera). Chem. Senses 1999,24:481-495
    237. Vogt R.G., Kohne A.C., Dubnau J.T., Prestwich G.D., Expression of pheromone binding proteins during antennal development in the gypsy moth Lymantria dispar. J. Neurosci.1989.9:3332-3346
    238.Vogt R.G., Prestwich G.D., Lerner M.R., Odorant binding protein subfamilies associate with distinct classes of olfactory receptor neurons in insects. Neurobiol.1991,22:74-84
    239.Vogt R.G., Riddiford L.M., Pheromone binding and inactivation by moth antennae. Nature 1981, 293:161-163
    240. Vogt R.G., Rogers M.E., Franco M.D., Sun M., A comparative study of odorant binding protein genes: differential expression of the PBP1-GOBP2 gene cluster in Manduca sexta (Lepidoptera) and the organization of OBP genes in Drosophila melanogaster (Diptera). J. Exp. Biol.2002, 205:719-744
    241. Vogt R G, Raddiford L M. Pheromone binding and inactivation by moth antennae. Nature,1981, 293(5827):161-163
    242.Vogt R G, Riddiford L M, Prestwich G D. Kinetic Properties of a Sex Pheromone-Degrading Enzyme: The sensillar Esterase of Antheraea polyphemus. Proc Natl Acad Sci USA,1985, 82(24):8827-8831
    243.Vogt R G, Riddiford L M. SCALE ESTERASE:A Pheromone-Degrading Enzyme from Scales of silk Moth Antheraea polyphemus. Journal of Chem Ecol,1986,12(2):469-482
    244.Vosshall L.B., Olfaction in Drosophila. Curr. Opin. Neurobiol.2000,10:498-503
    245.Vosshall L.B., Diversity and expression of odorant receptors in Drosophila. In Insect Pheromone Biochemistry and Molecular Biology. (eds. Blomquist G.J., Vogt R.G.,),2003,567-591. Elsevier Academic Press, London.
    246.Vosshall L.B., Amrein H., Morozov P.S., Rzhetsky A., Axel R., A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 1999,96:725-736
    247.Vosshall L.B., Keller A., Decoding olfaction in Drosophila. Curr. Opin. Neurobiol.2003, 13:103-110
    248.Vosshall L.B., Wong A.M., Axel R., An olfactory sensory map in the fly brain. Cell 2000,102: 147-159
    249.Wakamura S., Takai M., Kozai S., Inoue H., Yamashita I., Kawahara S., Kawamura M., Control of the beet army worm Spodoptera exigua (Hubner) (Lepidoptera:Noctuidae) using synthetic sex pheromone. I. Effect of communication disruption in Welsh onion fields. Appl. Entomol. Zool.1989, 24:387-397
    250. Walsh J.B., How many processed pseudogenes are accumulated in a gene family? Genetics 1985, 110:345-364
    251. Wakamura S., Takai M., Kozai S., Inoue H., Yamashita I., Kawahara S., Kawamura M. Appl. Entomol. Zool.,1989,24(4):387-397.
    252. Wojtasek H., Leal W S. Degradation of an alkaloid pheromone from the pale-brown chafer, Phfllopertha diversa(Coleoptera: Scarabaeidae). Insect Olfactory Cytoehrome. FEBS letters,1999, 458(32):3333-3336.
    253. Wanner K.W., Anderson A.R., Trowell S.C., Theilmann D.A., Robertson H.M., Newcomb R.D., Female-biased expression of odourant receptor genes in the adult antennae of the silkworm, Bombyx mori. Insect Mol. Biol.2007,16(1):107-119
    254. Wang G.R., Wu K.M., GuoY.Y., Molecular cloning and bacterial expression of pheromone binding protein in the antennae of Helicoverpa armigera (Hiibner). Arch. Insect Biochem. Physiol.2004, 57(1):15-27
    255. Wegener J.W, Hanke W., Breer H., Second messenger-controlled membrane conductance in locust (Locust migratoria) olfactory neurons. J. Insect Physiol.1997,43:595-605
    256. Wetzel C.H., Behrendt H., Gisselmann G., Storkuhl K.F., Hovemann B., Hatt H., Functional expression and characterization of a Drosophila odorant receptor in a heterologous cell system. Proc. Natl Acad. Sci.2001,98:9377-9380
    257. Wetzel C.H., Oles M., Wellerdieck C., Kuczkowiak M., Gisselmann G., Hatt H., Specificity and sensitivity of a human olfactory receptor functionally expressed in human embryonic kidney 293 cells and Xenopus laevis oocytes. J. Neurosci.1999,19:7426-7433
    258. Willett C.S., Do pheromone-binding proteins converge in amino acid sequence when pheromone converge? J. Mol. Evol.2000a,50:175-183
    259. Willett C.S., Evidence for directional selection acting on pheromone-binding proteins in the genus Choristoneura. Mol. Biol. Evol.2000b,17:553-562
    260. Willett C.S., Harrison R.G., Pheromone binding proteins in the European and Asian corn borers:No protein change associates with pheromone differences. Insect Biochem. Mol. Biol.1999, 29:277-284
    261. Wojtasek H., Hansson B.S., Leal W.S., Attracted or repelled? a matter of two neurons, one pheromone binding protein, and a chiral center. Biochem. Biophys. Res. Commun.1998,250 (2):217-222
    262. Wojtasek H., Leal W.S., Conformational change in the pheromone-binding protein from Bombyx mori induced by pH and by interaction with membranes. J. Biol. Chem.1999,274:30950-30956
    263. Xia Q., Zhou Z., Lu C., Cheng D., Dai F., Li B., et al. A draft sequence for the genome of the domesticated silkworm(Bombyx mori). Science 2004,306:1937-1940
    264. Xia Y., Zwiebel L., Identification and characterization of an odorant receptor from the West Nile Virus mosquito, Culex quinquefasciatus Insect Biochem. Mol. Biol.2006,36 (3):169-176
    265. Xiu W M., Dong S L. Molecular characterization of two pheromone binding proteins and quantitative analysis of their expression in the Beet armyworm, Spodoptera exigua Hubner. J. Chem. Ecol.2007,33(5):947-961
    266. Xiu W M., ZHOU Y Z., Dong S L. Molecular characterization and quantitative analysis of two pheromone binding proteins from common cutworm, Spodoptera litura Fabricius. J. Chem. Ecol. 2008,34(4):487-498
    267. Yoshiyasu Y., Yamagishi M., Katayama J., Control of the beet army worm Spodoptera exigua (Hubner), on Welsh onion by synthetic sex pheromone in Yodo district Kyoto. Scientific reports of the Kyoto Prefectural University.1995,47:1-8
    268. Young J.M., Friedman C., Williams E.M., Ross J.A., Tonnes-Priddy L., Trask B.J., Different evolutionary processes shaped the mouse and human olfactory receptor gene families. Hum. Mol. Genet.2002a,11:535-546
    269. Young J.M., Trask B.J., The sense of smell:genomics of vertebrate odorant receptors. Hum. Mol. Genet.2002b,11:1153-1160
    270. Yoshiyasu Y., Yamagishi M., Katayama J., Oyake K. Scientific Reports of the Kyoto Prefectural University Agriculture,1995,47:1-8.
    271.Zhang Y., Chou J.H., Bradley J., Bargmann C.I., Zinn K., The Caenorhabditis elegans seven-transmembrane protein ODR-10 functions as an odorant receptor in mammalian cells. Proc. Natl Acad. Sci.1997,94:12162-12167
    272.Zhang X., Firestein S., The olfactory receptor gene superfamily of the mouse. Nat. Neurosci.2002, 5:124-133
    273.Zhang S.G., Maida R., Steinbrecht R.A., Immunolocalization of odorant-binding proteins in noctuid moths (insecta, lepidoptera). Chem.Senses 2001,26:885-896
    274.Zhao H., Ivic L., Otaki J.M., Hashimoto M., Mikoshiba K., Firestein S., Functional expression of a mammalian odorant receptor. Science 1998,279:237-242
    275.Ziegelberger G., Van Den Berg M.J., Kaissling K-E., Klumpp S., Schultz J.E., Cyclic GMP levels and gyanylate cyclase activity in pheromone sensitive antennae of the silkmoths Antheraea polyphemus and Bombyx mori. J. Neurosci.1990,10:1217-1225
    276.Ziegelberger G., Redox-shift of pheromone binding protein in the silk moth Antheraea polyphemus. Eur. J. Biochem.1995,232:706-711
    277.Zubkov S., Gronenborn A.M., Byeon In-Ja L., Mohanty S., Structural consequences of the ph-induced conformational switch in A. polyphemus pheromone binding protein: mechanisms of ligand release. J. Mol. Biol.2005,354:1081-1090
    278.Zufall F., Hatt H., Dual activation of a sex pheromone-dependent ion channel from insect olfactory dendrites by proteins kinase C axtivators and cyclic GMP. Proc. Natl Acad. Sci.1999,88:8520-8524
    279.Zwiebel L.J., Takken W., Olfactory regulation of mosquito host interactions. Insect Biochem. Mol. Biol.2004,34 (7):645-652

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700