甜菜夜蛾性信息素结合蛋白的RNA干扰及嗅觉受体基因的表达谱
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
昆虫在长期进化过程中形成了高度灵敏的嗅觉系统,并以此来感受自然环境中的各种化学信息,产生相应的生理和行为反应,如寻找配偶、食物源和栖息场所、产卵行为、逃避危险或者不适合的栖息地和寄主等。将昆虫嗅觉应用于害虫防治,已成为害虫管理的一个重要手段,并将在未来害虫治理中起到越来越重要的作用。深入研究蛾类昆虫性信息素通讯的分子机制,弄清性信息素感受相关蛋白的功能,对于针对特定嗅觉蛋白设计和开发更为高效的基于两性通讯的害虫调控技术,至关重要。
     昆虫信息素结合蛋白(PBP)及受体蛋白(OR)被认为在性信息素感受中起重要作用,但目前为止在活体昆虫内进行该类蛋白功能的研究国内外还没有报道。在课题组前期成功克隆出甜菜夜蛾性信息素结合蛋白1(SexigPBP1)和信息素受体蛋白2(SexiOR2)全基因序列的基础上,本研究重点利用RNAi技术对SexigPBP1基因的功能进行了研究,同时对嗅觉受体蛋白SexiOR2和SlitOR2的组织分布进行了调查,主要结果如下:
     1)设计引物并通过RT-PCR扩增出530 bp的SexiPBP1 DNA片段,并以此为模板合成用于RNAi的双链SexiPBP1RNA。
     2)通过腹腔注射法将双链RNA导入到初羽化雄蛾体内,48小时后的RT-PCR和qRT-PCR的检测结果表明,处理试虫触角内SexigPBP1基因的表达量被敲减了约90%,同时处理试虫死亡率和对照相比没有明显差异。说明该方法可以有效沉默昆虫PBP基因的表达,从而进行相关功能研究。
     3)进一步的触角电位(EAG)检测结果表明,RNAi处理48小时后,雄蛾对雌蛾性信息素主组分Z9,E12,14:Ac的EAG反应降低了约60%,直接证明SexigPBP1在雄蛾对该组分的感受中起重要作用。这是首次应用RNA干扰技术对蛾类昆虫PBP功能的研究报道。
     4)通过设计特异性引物,以RT-PCR方法对嗅觉受体基因SexiOR2和SlitOR2分别在甜菜夜蛾和斜纹夜蛾中的组织表达谱进行了分析。结果表明,SexiOR2和SlitOR2基因只表达于雌雄蛾的触角中,在头、胸、腹、足、喙、翅等其他部位没有表达。
In insects, the olfactory systems have been evolved to be highly sensitive, enabling insects to detect and discriminate among a diverse array of volatile chemicals. With this sensitive olfactory system, insects resopond properly to the chemical environment by different behaviors, such as mate-seeking, food and habitat locating, and oviposition-site finding. Therefore, the olfactory-based control strategies have developed to be an important means for pest control. To furter improve the olfactory-based control strategies, it is very important to gain insight on the molecular mechanism of the perception of female sex pheromone by the male. With the insights on the function of olfactory related protein, it will be facilitated for molecular designing of specific regulator targeted to these olfactory proteins, and for further development of more effective pest behaviorally interference techniques.
     Pheromone binding proteins (PBPs) and olfactory receptor (Ors) are thought to play critical roles in male perception of conspecific female sex pheromone. The major method to address the functions of PBP is in vitro binding assays between PBP and sex pheromone chemicals. As a robust method to study the new protein or gene functions, RNA interference (RNAi) has been used in many organisms including plants and animals. However, there is no report to date on the PBP fuction study with the employment of the RNAi method. Based on our previous molecular characterization of the PBP and OR2 genes in Spodopera exigua and S. litura, the present paper dealt with the PBP function study by using RNA interference technique. In addition, the expression pattern of SexiOR2 and SlitOR2 genes among different insect tissures of S. exigua and S. litura were inversitated using RT-PCR method. The main results were as follows.
     1) Fragment of 530bp was amplified with the specific primers designed accoding to known cDNA sequence of Sexig PBP1, and the dsRNA of Sexig PBP1 used for RNAi was further synthesized with above 530bp fragment as template using T7 RiboMAX Express RNAi System.
     2) Abodomen injection method was tested for introducing SexigPBP1 dsRNA into the moth abdomen cavity. RT-PCR and qRT-PCR detections at two days after injection of dsRNA revealed that the mRNA expression level of SexigPBP1 in male antenna was significantly reduced by about 90%, and that the moth survival rates were not significantly different between treatments of dsRNA injected and DEPC-water injected. Therefore, the abodomen injection method was effective to be used for PBP RNAi in the moth species.
     3) Two days after dsRNA injection, the electroantennography (EAG) mesurment was further performed to detect the response of live moth at electrophysiolocial level. The results showed that the EAG response to the major femal sex pheromone component Z9,E12,14:Ac was reduced significantly by about 60% in dsRNA injected moths comparied to the DEPC-water injected control moths, which provided the direct evidence that SexigPBP1 played important role in the sex pheromone perception in male moths. This is the first report on investigation of insect PBP function in vivo by using RNAi approach.
     4) The tissure expression patterns of SexiOR2 and SlitOR2 were investigated, respectively, in S. exigua and S. litura by RT-PCR approach. As a result, the antenna of both sexes was the unique tissur to express the OR2 gene, while the head, thorax, abdomen, wing, proboscis and leg had no detected expression of the OR2 gene.
引文
1.董双林,杜家纬.甜菜夜蛾性信息素鉴定及应用研究进展.昆虫知识,2002a,39(6):412-416
    2.董双林,杜家纬.甜菜夜蛾信息素组分的鉴定及其田间试验.植物保护学报,2002b,29(1):19-24
    3.龚达平,赵萍,林英,张辉洁,夏庆友,向仲怀.家蚕信息素结合蛋白BmPBP2和BmPBP3基因的初步鉴定及表达分析,昆虫学报,2006,49(3):355-362
    4.巩中军,原国辉,郭线茹,安世恒.烟实夜蛾触角普通气味结合蛋白Ⅱ cDNA的克隆、序列分析及在大肠杆菌中的表达.昆虫学报,2005,48(1):18-23
    5.黄春霞,朱丽梅,倪珏萍,等.甜菜夜蛾的饲养方法介绍.昆虫知识,2002,39(3):229-231
    6.刘永杰.甜菜夜蛾抗药性监测与抗性机理研究.南京农业大学博士论文,2002
    7.刘晓光,安世恒,罗梅浩,郭线茹,原国辉.烟实夜蛾信息素结合蛋白3 cDNA的克隆、序列分析与原核表达.昆虫学报,2006,49(5):733-739
    8.娄永根,程家安.昆虫的化学感觉机理.生态学杂志,2001,20(2):66-69
    9.刘勇,倪汉祥,胡萃.昆虫气味结合蛋白研究进展.昆虫知识,2000,37(6):367-371
    10.孙凡,胡隐月,杜家纬.斜纹夜蛾性信息素通讯系统.昆虫学报,2001,45(3):404-407
    11.王桂荣.棉铃虫气味结合蛋白的分子结构及气味的识别.中国农业科学院博士论文,2002
    12.王桂荣,郭予元,吴孔明.昆虫触角气味结合蛋白的研究进展.昆虫学报,2002a,45(1):131-137
    13.王桂荣,郭予元,吴孔明.棉铃虫普通气味结合蛋白Ⅱ基因的表达及鉴定.昆虫学报,2002b,45(3):285-289
    14.王桂荣,郭予元,徐广,吴孔明.甜菜夜蛾GOBP2基因的克隆及序列测定.中国农业科学,2001,34(6):619-625
    15.王桂荣,吴孔明,苏宏华,郭予元.棉铃虫嗅觉受体基因的克隆及组织特异性表达.昆虫学报,2005,48(6):823-828
    16.王睿,张薇,田雨,张善干.棉铃虫触角气味物质结合蛋白的鉴别.昆虫知识,1999,36(5):297-298
    17.修伟明.甜菜夜蛾和斜纹夜蛾性信息素感受相关蛋白的分子克隆、定量分析及原核表达.南京农业大学博士论文,2007
    18.修伟明,董双林,苗慧,穆兰芳.2个甜菜夜蛾信息素结合蛋白cDNA片段的克隆和序列分析.中国农业科学,2005a,38(7):1501-1504
    19.修伟明,董双林,王荫长.昆虫信息素结合蛋白及其分子运输机制和生理功能研究进展.昆虫学报,2005b,48(5):778-784
    20.修伟明,董双林.斜纹夜蛾信息素结合蛋白cDNA片段的克隆及序列分析.南京农业大学学报,2007,30(3):53-57
    21.阎凤明.化学生态学.北京:科学出版社,2003
    22.周晓梅,黄炳球.斜纹夜蛾抗药性及其防治对策的研究进展.昆虫知识,2002,39(2):98-102
    23.周弘春,贾新民.昆虫化感器中的OBP.黑龙江八一农垦大学学报,2002,12(2):7-12
    24.朱彬彬,姜勇,雷朝亮.昆虫信息素结合蛋白的研究概况.昆虫知识,2005,42(3):240-243
    25.Almaas T.J.,Mustapsrta H.,Heliothis virescens:response characteristics of receptor neurons in sensilla trichodea type 1 and type 2.J.Chem.Ecol.1991,17(5):953-972
    26.Altschul S.F.,Gish W.,Miller W.,Myers E.W.,Lipman D.J.,Basic local alignment search tool.J.Mol.Biol.1990,215:403-410
    27.Araujo R.N.,Santos A.,Pinto F.S.,Gontijo N.F.,Lehane M.J.,Pereira M.H.,RNA interference of the salivary gland nitrophorin 2 in triatomine bug Rhodnius prolixus(Hemiptera Reduviidae) by dsRNA ingestion or injection.Insect Biochem.Mol.Biol.2006,36:683-693
    28.Aronstein K.Sid-1 is implicated in systemic gene silencing in the honey bee.Journal of Apicultural Research.2006,45(1):20-24
    29.Baulcombe D.C.,RNA as a target and an initiator of post-transcriptional gene silencing in transgenic plants.Plant Mol Biol,1996,32:79-88
    30.Bendtsen J.D.,Nielsen H.,Von Heijne G.,Brunak S.,Improved prediction of signal peptides:SignalP 3.0.J.Mol.Biol.2004,340:783-795
    31.Benton R.,Sachse S.,Michnick S.W.,Vosshall L.B.,Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo.PLoS Biol.2006,4(2)e20:240-257
    32.Bernstein E.,Caudy A.A.,Hammond S.M.,et al.Role for a bidentate ribonuclease in the initiation step of RNA interference.Nature,2001,409:363-366
    33.Bette S.,Breer H.,Krieger J.,Probing a pheromone binding protein of the silkmoth Antheraea polyphemus by endogenous tryptophan fluorescence.Insect Biochem.Mol.Biol.2002,32:241-246
    34.Bettencourt R.,Terenius O.,Faye I.,Hemolin gene silencing by ds-RNA injected into Cecropia pupae is lethal to next generation embryos.J.Mol.Biol.2002,11(3):267-271
    35.Blaszczyk J.,Tropea J.E.,Bubunenko M.,et al.Crystallographic and modeling studies of RNase Ⅲsuggest a mechanism for double-stranded RNA cleavage.Structure.2001,9:1225-1236
    36.Boeckh,J.et al.Anatomical and physiological characteristics of individual neurones in the central antennal pathways of insects.J.Insect.Physiol.1984,30:15-26
    37. Boeckh J. et al. Neurophysiology and neuroanatomy of the olfactory pathway in the cocktoach. Ann. Ny. Acad. Sci. 1987, 510:39-43
    38. Bohbot J., Vogt R.G., Antennal expressed genes of the yellow fever mosquito (Aedes aegypti L); characterization of odorant-binding protein 10 and takeout. Insect Biochem. Mol. Biol. 2005, 35:961-979
    39. Breer H., Krieger J., Raming K., A novel class of binding proteins in the antennae of the silkmoth Antheraea pernyi. Insect Biochem. 1990b, 20:735-740
    40. Briand L, Nespoulous C, Huet J.C., Pernollet J.C., Disulfide pairing and secondary structure of ASP1, an olfactory-binding protein from honeybee (Apis mellifera L). J. Pept. Res. 2001, 58:540-545
    41. Callahan F.E., Vogt R.G., Tucker M.L., Dickens J.C., Mattoo A.K., High level expression of "male specific" pheromone binding proteins (PBPs) in the antennae of female noctuid moths. Insect Biochem. Mol. Biol. 2000, 30:507-514.
    42. Campanacci V., Krieger J., Bette S., Sturgis J.N., Lartigue A., Cambillau C, Breer H., Tegoni M., Revisiting the specificity of Mamestra brassicae and Antheraea polyphemus pheromone binding proteins with a fluorescence binding assay. J. Biol. Chem. 2001, 276:20078-20084
    43. Campanacci V, Longhi S, Nagan-Le MP, Cambillau C, Tegoni M, 1999, Recombinant pheromone binding protein 1 from Mamestra brassicae (MbraPBP1). Eur. J. Biochem. 1999, 264:707-716
    44. Carr W.E., Gleeson R.A., Trapido-Rosenthal H.G., The role of perireceptor events in chemosensory processes. Trends Neurosci. 1990, 13:212-215
    45. Chess A., Simon I., Cedar H., Axel R., Allelic inactivation regulates olfactory receptor gene expression. Cell. 1994, 78:823-834
    46. Cikaluk D.E., Tahbaz N., Hendricks LC, et al. GERp95, a membrane-associated protein that belongs to a family of proteins involved in stem cell differentiation. Mol Bioi Cell, 1999, 10 :3357-3372
    47. Clyne P.J., Warr G.G., Freeman M.R., Lessing D., Kim J., Carison J.R., A novel family of divergent seven transmembrane proteins: Candidate odorant receptors in Drosophila. Neuron 1999, 22:327-338
    48. Christensen T.A., Geoffrion S.C., Hildebrand J.G., Physiology of interspecific chemical communication in Heliothis moths. Physiol. Ent. 1990, 15:275-283
    49. Ciudad L., Piulachs M.D., Belles X. Systemic RNAi of the cockroach vitellogenin receptor results in a phenotype similar to that of the Drosophila yolkless mutant. FEBS Journal. 2006, 273 : 325-335
    50. Cogoni C., Irelan J.T., Schumacher M., et al. Transgene silencing of the all gene in vegetative cells of Neurospora is mediated by acytoplasmic effector and does not depend on DNA -DNA interactions or DNA methylation. EMBO J, 1996, 15:3153-3163
    51. Cogni C., Macino G., Gene silencing in Neuro sporacrassa requires a protein homologous to RNA -dependent RNA polymerase. Nature, 1999, 399:166-169
    52. Cogoni C., Macino G., Post-transcriptional gene silencing across kingdoms. Curr Opin Genet Dev, 2000,10:638-643
    53. Dalmay T., Horsefield R., Braunstein T.H., et al. SDE3 encodes an RNA helicase required for post-transcriptional gene silencing in Arabidopsis. EMBO J , 2001, 20:2069-2078
    54. Damberger F., Nikonova L, Horst R., Peng G., Leal W.S., Wuthrich K., NMR characterization of a pH-dependent equilibrium between two folded solution conformations of the pheromone-binding protein from Bombyx mori. Protein Sci. 2000, 9:1038-1041
    55. de Santis F, Francois M.C, Merlin C, Pelletier J., Maibeche-Coisne M., Conti E., Jacquin-Joly E., Molecular Cloning and in Situ Expression Patterns of Two New Pheromone-Binding Proteins from the Corn Stemborer Sesamia nonagrioides. J. Chem. Ecol. 2006, 32:1703-1717
    56. Dong Y, Friedrich M. Nymphal RNAi: systemic RNAi mediated gene knockdown in juvenile grasshopper. BMC biotechnology. 2005, 5(25): 1-7
    57. Du G, Prestwich G.D., Protein structure encodes the ligand binding specificity in pheromone binding proteins. Biochemistry 1995, 34:8726-8732
    58. Dudley N.R., Labbe J.C., Goldstein B., Using RNA interference to identify genes required for RNA interference. Proc Natl Acad Sci, 2002, 99:4191-4196
    59. Dunipace L., Meister S., McNealy C., Amrein H., Spatially restricted expression of candidate taste receptors in the Drosophila gustatory system. Curr. Biol. 2001, 11:822-835
    60. Duxbury M.S., Ashley S.W., Whang E.E. RNA interference: a mammalian SID-1 homologue enhances siRNA uptake and gene silencing efficacy in human cells. Biochem Biophys Res Commun. 2005, 331(2): 459-463
    61. Elbashir S.M., Martinez J., Patkaniowska A., et al. Functional anatomy of siRNAs for mediating efficient RNAi in Drosopila melanogaster embryo lysate. EMBO J, 2001, 20:6877-6888
    62. Elmore T., Ignell R., Carlson J.R., Smith D.P., Targeted mutation of a Drosophila odor receptor defines receptor requirement in a novel class of sensillum. J. Neurosci. 2003, 23:9906-9912
    63. Fagard M., Boutet S., Morel J.B., et al. QDE-l,QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals.Proc Natl Acad Sci. 2000, 97:11650-11654
    64. Fire A., Xu S., Montgomery M.K., et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998, 391:806-811
    65. Forstner M, Gohl T, Breer H, Krieger J., Candidate pheromone binding proteins of the silkraoth Bombyx mori. Invert. Neurosci. 2006, 8:177-187
    66. Getchell T.V., Margolis F.L., Getchell M.L., Perireceptor and receptor events in vertebrate olfaction. Prog. Neurobiol. 1984, 23:317-345
    67. Grater F., Xu W., Leal W., Grubmiiller H., Pheromone discrimination by the pheromone-binding protein of Bombyx mori. Structure. 2006, 14:1577-1586
    68. Grishok A., Pasquinelli A.E., Conte D., et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing.Cell, 2001, 106:23-34
    69. Guo S., Kemphues K.J., Par21, a gene required for establishing polarity in C. elegans embryos, encodes a, putative Ser/Thr kinase that is asymmetrically distributed. Cell, 1995, 81:611-620
    70. Hamilton,A., Voinnet O., Chappell L., Baulcombe D.C. Two classes of short interfering RNA in RNA silencing. EMBO J. 2002, 21:4671-4679
    71. Hammond S.M., Bernstein E., Beach D., et al. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature. 2000, 404:293-296
    72. Hammond S.M., Boettcher S., Caudy A.A., Kobayashi R., Hannon G.J. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science. 2001, 293:1146-1150
    73. Hannon G.J., RNA interference. Nature. 2002, 418:244-251
    74. Hansson B.S., Olfaction in Lepidoptera. Experientia. 1995, 51:1003-1027
    75. Hansson B.S., Carlsson M.A., Kalinova B., Olfactory activation patterns in the antennal lobe of the sphinx moth, Manduca sexta. J. Comp. Physiol. A. 2003, 189:301-308
    76. Hildebrand J.G., Analysis of chemical signals by nervous systems. Proc. Acad. Sci. 1995, 92:67-74
    77. Hildebrand J.G., Olfactory control of behavior in moths: central processing of odor information and the functional significance of olfactory glomeruli. J. Comp. Physio. A. 1996, 178:5-19
    78. Hildebrand J.G., Shepherd G.M., Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu. Rev. Neurosci. 1997, 20:595-631
    79. Homberg U., Montague R.A., Hildebrand J.G., Anatomy of antenno-cerebral pathways in the brain of the sphinx moth Manduca sexta. Cell Tissue Res. 1988, 254:255-281
    80. Homberg U., et al. Structure and function of the deutocerebrum in insects. Annu. Rev. Entomol. 1989,34:477-501
    81. Honson N., Johnson M.A., Oliver J.E., Prestwich G.D., Plettner E., Structure-activity studies with pheromone-binding proteins of the gypsy moth, Lymantria dispar. Chem. Senses. 2003, 8:479-489
    82. Horst R., Damberger F., Luginbuhl P., Guntert P., Peng G., Nikonova L., Leal W.S., Wuthrich K., NMR structure reveals intramolecular regulation mechanism for pheromone binding and release. Proc. Natl. Acad. Sci. 2001, 98:14374-14379
    83. Howse P.E., Stevens L.D.R., Jones O.T., Insect pheromones and their use in pest management. Chepman and Hall, 1998
    84. Hutvagner G.M., Mlynarova L., Nap J.P., Detailed characterization of the post-transcriptional gene-silencing-related small RNA in a GUS gene-silenced tobacco. RNA. 2000, 6:1445-1454
    85. Jacquin-Joly E., Merlin C, Insect olfactory receptors: contributions of molecular biology to chemical ecology. J. Chem. Ecol. 2004, 30(12):2359-2397
    86. Jones W.D., Nguyen T.A., Kloss B., Lee K.J., Vosshall L.B., Functional conservation of an insect odorant receptor gene across 250 million years of evolution. Curr. Biol. 2005, 15(4): R119-R121
    87. Jorgensen R.A., Cluster P.D., English J., et al. Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of sense vs. antisense constructs and single-copy vs. complex T-DNA sequences. Plant Mol Biol. 1996, 31:957-973
    88. Kaissling K.E., Chemo-electrical transduction in insect olfactory receptors. Annu. Rev. Neurosci. 1986,9:121-145
    89. Kaissling K.E., Peripheral mechanisms of pheromone reception in moths. Chem. Senses. 1996, 21: 257-268
    90. Kaissling K.E., Olfactory perireceptor and receptor events in moths: a kinetic model. Chem. Senses. 2001,26:125-150
    91. Kaissling K.E., Physiology of pheromone reception in insects (an example of moths). ANIR. 2004, 6:73-91
    92. Kaissling K.E., Thorson J., Insect olfactory sensilla: structural, chemical and electricalaspects of the functional organisation. In: Receptors for Neurotransmitters, Hormones and Pheromones in Insects (eds.Sattelle D.B., Hall L.M., Hildebrand J.G.). Elsevier/North-Holland Biomedical Press, 1980, 261-282
    93. Kennerdell J.R., Carthew R.W., Heritable gene silencing in Drosophila using double-stranded RNA. Nat Biotech. 2000, 18:896-898
    94. Kent K.S., Hildebrand J.G., Cephalic sensory pathways in the central nervous system of larval Manduca sexta (Lepidoptera: Sphingidae). Phil. Trans. R. Soc. 1987, 315:1-36
    95. Ketting R.F., Fischer S.E., Bernstein E., et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Curr Opin Genet Dev. 2001, 15:2654-2659
    96. Klusak V., Havlas Z., Rulisek L., Vondrasek J., Svatos A., Sexual attraction in the silkworm moth: Nature of binding of bombykol in pheromone binding protein-an ab initio study. Chem. Biol. 2003, 10:331-340
    97. Koontz M.A., Schneider D., Sexual dimorphism in neuronal projections from the antennae of silk moths (Bombyx mori, Antheraea polyphemus) and the gypsy moth (Lymantria dispar). Cell Tissue Res. 1987,249:39-50
    98. Kowcun A., Honson N., Plettner E., Olfaction in the gypsy moth, Lymantria dispar. effect of pH, ionic strength, and reductants on pheromone transport by pheromone-binding proteins. J. Biol. Chem. 2001, 276:44770-44776
    99. Krieger J..,.Breer H., Olfactory reception in invertebrates. Science. 1999, 286:720-723
    100. Krieger J., Klink O., Mohl C., Raming K., Breer H., A candidate olfactory receptor subtype highly conserved across different insect orders. J. Comp. Physiol. A 2003, 189:519-526
    101. Krieger J., Ganssle H., Raming K., Breer H., Odorant binding proteins of Heliothis virescens. Insect Biochem. Mol. Biol. 1993, 23:449-456
    102. Krieger J., Mameli M, Breer H., Elements of the olfactory signaling pathways in insect antennae. Invert. Neurosci. 1997, 3:137-144
    103. Krieger J., Raming K., Breer H., Cloning of genomic and complementary DNA encoding insect pheromone binding proteins: evidence for microdiversity. Biochim. Biophys. Acta. 1991, 1088 (2):277-284
    104. Krieger J., Von Nickisch-Rosenegk E., Mameli M., Pelosi P., Breer H., Binding proteins from the antennae of Bombyx mori. Insect Biochem. Mol. Biol. 1996, 26:297-307
    105. Kumar S., Tamura K., Nei M., MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief. Bioinform. 2004, 5:150-163
    106. Krieger J., Raming K., Breer H., Cloning of genomic and complementary DNA encoding insect pheromone-binding proteins: evidence for microdiversity. Biochim. Biophys. Acta. 1991, 1088:277-284
    107. LaForest S.M., Prestwich G.D., Lofstedt C, lntraspecific nucleotide variation at the pheromone binding protein locus in the turnip moth, Agrotis segetum. Insect Mol. Biol. 1999, 8: 481-490
    108. Larsson M.C., Domingos A.I., Jones W.D., Chiappe M.E., Amrein H., Vosshall L.B., Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron. 2004, 43:703-714
    109. Lartigue A., Gruez A., Spinellil S., Riviere S., Brossut R., Tegoni M., Cambillau C., The crystal structure of a cockroach pheromone binding protein suggests a new ligand binding and release mechanism. J. Biol. Chem. 2003, 278:30213-30218
    110. Laue M., Steinbrecht R.A., Ziegelberger G., Immunocytochemical localization of general odorant binding protein in olfactory sensilla of the silkmoth Antheraea polyphemus. Naturwissenschaften. 1994,81:178-180
    111. Lautenschlager C., Leal W.S., Clardy J., Coil-to-helix transition and ligand release of Bombyx mori pheromone-binding protein. Biochem. Biophys. Res. Commun. 2005, 335:1044-1050
    112. Leal W.S., Proteins that make sense. In Insect Pheromone Biochemistry and Molecular Biology. (eds. Blomquist G.J., Vogt R.G.), Elsevier Academic Press, London. 2003, 447-476
    113. Leal W.S., Chen A.M., Ishida Y., Chiang V.P., Erickson M.L., Morgan T.I., Tsuruda J.M., Kinetics and molecular properties of pheromone binding and release. Proc. Natl Acad. Sci. 2005, 102(15):5386-5391
    114. Leal W.S., Nikonova L., Peng G., Disulfide structure of the pheromone binding protein from the silkworm moth, Bombyx mori. FEBS Letters. 1999, 468:85-90
    115. Lee D., Damberger F.F., Peng G., Horst R., Guntert P., Nikonova L. et al. NMR structure of the unliganded Bombyx mori pheromone-binding protein at physiological pH. FEBS Letters. 2002, 531:314-318
    116. Lee R.C., Feinbaum R.L., Ambros V., The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993, 75:843-854
    117. Lipardi C., Wei Q., Paterson B.M. RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell. 2001, 107:297-307
    118. Livak K.J., Schmittgen T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2~(-ΔΔCT) method. Methods. 2001, 25:402-408
    119. Maibeche-Coisne M., Jacquin-Joly E., Francois M.C., Nagnan-Le Meillour P., Molecular cloning of two pheromone binding proteins in the cabbage armyworm Mamestra brassicae. Insect Biochem. Mol.Biol. 1998, 28:815-818
    120. Maibeche-coisne M., Sobrio F., Delaunay T., Lettere M., Dubroca J., Jacquin-Joly E., Pheromone-Binding Proteins of the moth Mamestra brassicae: specificity of ligand binding. Insect Biochem. Mol. Biol. 1997, 27:213-221
    121. Maida R., Krieger J., Gebauer T., Lange U., Ziegelberger G, Three pheromone-binding proteins in olfactory sensilla of the two silkmoth species Antheraea polyphemus and Antheraea perayi. Eur. J. Biochem. 2000, 267:2899-2908
    122. Maida R., Mameli M., Muller B., Krieger J., Steinbrecht R. A., The expression pattern of four odorant-binding proteins in male and female silk moths, Bombyx mori. J. Neurocytology. 2005, 34:149-163
    123. Maida R., Krieger J., Gebauer T., Lange U., Ziegelberger G., Three pheromone-binding proteins in olfactory sensilla of the two silkmoth species Antheraea polyphemus and Antheraea pernyi. Eur. J. Biochem. 2000, 267:2899-2908
    124. Maida R., Ziegelberger G, Kaissling K.E., Ligand binding to six recombinant pheromone binding proteins of Antheraea polyphemus and Antheraea pernyi. J. Comp. Physiol. B 2003, 173:565-573
    125. Mallory A.C., Ely L., Smith T.H., et al. HC-Pro suppression of transgene silencing eliminates the small RNAs but not transgene methylation or the mobile signal. Plant Cell. 2001, 13:571-583
    126. Mao Y.B., Cai W.J., Wang J.W., Hong G.J., Tao X.Y., et al. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol. 2007,25:1307-1313.
    127. Martin Dv, Maestro O., Cruz J., Mane-Padros D., Belles X. RNAi studies reveal a conserved role for RXR in molting in the cockroach Blattella germanica. Journal of Insect Physiology. 2006, 52: 410-416.
    128. McNeil J., Behavioral ecology of pheromone-mediated communication in moths and its importance in the use of pheromone traps. Annu. Rev. Entomol. 1991, 36:407-430
    129. Melo A.C.A., Rutzler M., Pitts R.J., Zwiebel L.J., Identification of a chemosensory receptor from the yellow fever mosquito, Aedes aegypti, that is highly conserved and expressed in olfactory and gustatory organs. Chem. Senses. 2004, 29:403-410
    130. Mitchell E. R., Kehat M., Tingle F.C., Mclaughlin J.R., Suppression of mating by beet armyworm (Noctuidae: Lepidoptera) in cotton with pheromone. J. Agri. Entomol. 1997,14:17-28
    131. Mitchell E.R., Tumlinson J.H., Response of spodoptera exigua and S. eridania (Lepidoptera: Noctuidae) males to synthetic pheromone and S. exigua females. Florida Entomol. 1994, 77:237-247
    132.Mitchell R.D III, Ross E., Osgood C, Sonenshine D.E., Donohue K.V., Khalil S.M., Thompson D.M., Roe R.M., Molecular characterization, tissue-specific expression and RNAi knockdown of the first vitellogenin receptor from a tick. Insect Biochem Mol Biol. 2007; 37:375-88.
    133. Mittapalli O., Wise I.L., Shukle R.H., Characterization of a serine carboxypeptidase in the salivary glands and fat body of the orange wheat blossom midge, Sitodiplosis mosellana (Diptera: Cecidomyiidae). Insect Biochem. Mol. Biol. 2006, 36:154-160
    134. Mohl C., Breer H., Krieger J., Species-specific pheromonal compounds induce distinct conformational changes of pheromone binding protein subtypes from Antheraea polyphemus,Invert. Neurosci. 2002,4:165-174
    135. Mori K.., and Yoshihara Y., Molecular recognition and olfactory processing in the mammalian olfactory system. Prog. Neurobiol. 1995, 45:585-619
    136. Mustaparta H., Central mechanisms of pheromone information processing. Chem. Senses. 1996, 1:269-275
    137. Nagnan-Le Meillour P., Huet J.C., Maibeche M., Pernollet J.C., Descoins C., Purification and characterization of multiple forms of Odorant/Pheromone binding proteins in the antennae of Mamestra brassicae (Noctuidae). Insect Biochem. Mol. Biol. 1996, 26:59-67
    138. Nakagawa T., Sakurai T., Nishioka T., Touhara K., Insect sex-pheromone signals mediated by specific combinations of olfactory receptors. Science. 2005, 307:1638-1642
    139. Nykanen A., Haley B., Zamore P.D. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell. 2001, 107:309-321
    140. Napoli C., Lemieux C., Jorgensen R., Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous gene in trans. Plant Cell. 1990, 2:279-289
    141.Neuhaus E.M., Gisselmann G., Zhang W., Dooley R., Stortkuhl K., Hart H., Odorant receptor heterodimerization in the olfactory system of Drosophila melanogaster. Nature Neurosci.. 2005, 8:15-17
    142. Newcomb R.D., Sirey T.M., Rassam M., Greenwood D.R., Pheromone binding proteins of Epiphyas postvittana (Lepidoptera: Tortricidae) are encoded at a single locus. Insect Biochem. Mol. Biol. 2002, 32(11): 1543-1554
    143.Nikonov A.A., Peng G., Tsurupa G., Leal W.S., Unisex Pheromone detectors and pheromone binding proteins in Scarab Beetles. Chem. Senses. 2002, 27:495-504
    
    144. Ohnishi A., Hull J. J., and Matsumoto S., Targeted disruption of genes in the Bombyx mori sex pheromone biosynthetic pathway. Proc. Natl. Acad. Sci. 2006, 103, 4398-4403 .
    145. Olsen P.H., Ambros V., The lin-4 regulatory RNA controls developmental timing in C. elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol. 1999, 216:671-680
    146. Pace U., Hanski E., Salomon Y., Lancet D., Ordorant-sensitive adenylate cyclase may mediate olfactory reception. Nature. 1985, 316: 255-258
    147. Pelosi P., Odorant-binding proteins. Crit. Rev. Biochem. Molec. Biol. 29:199-228
    148. Peng G., Leal W.S., Identification and cloning of a pheromone-binding protein from the oriental beetle, Exomala orientalis. J. Chem. Ecol. 2001, 27(11):2183-2192
    149. Pelosi P., Perireceptor events in olfaction. J. Neurobiol. 1996, 30:3-19
    150. Pitts R.J., Fox A.N., Zwiebel L.J., A highly conserved candidate chemoreceptor expressed in both olfactory and gustatory tissues in the malaria vector Anopheles gambiae. Proc. Natl Acad. Sci. 2004, 101:5058-5063
    151. Plettner E., Lazar J., Prestwich E.G., Prestwich G.D., Discrimination of Pheromone enantiomers by two pheromone binding proteins from the Gypsy moth Lymantria dispar. Biochemistry. 2000, 39:8953-8962
    152. Prestwich G.D., Du G., Laforest S., How is pheromone specificity encoded in proteins? Chem. Senses. 1995,20:461-469
    153. Python F., Stocker R.F., Adult-like complexity of the larval antennal lobe of D. melanogaster despite markedly low numbers of odorant receptor neurons. J. Comp. Neurol. 2002, 445:374-387.
    154. Quan G.X., Kanda T., and Tamura T. Induction of the white egg 3 mutant phenotype by injection of the double-stranded RNA of the silkworm white gene. Insect Mol Biol. 2002, 11:217-222.
    155. Raming K., Krieger J., Breer H., Primary structure of a pheromone-binding protein from Antheraea pernyi: homologies with other ligand-carrying proteins. J. Comp. Physiol. B 1990, 1160: 503-509
    156. Rhein L.D., Cagan R.H., Biochem ical studies of olfaction: islation, characterization, and ordorant binding activity of cilia from rainbow trout olfactory rosettes. Proc. Natl. Acad. Sci. 1980, 77: 4412-4416
    157. Riviere S., Lartigue A., Quennedey B., Campanacci V., Farine J.P., Regoni M, Cambillau C., Brossut R., A pheromone-binding protein from the cockroach Leucophaea maderae: cloning, expression and pheromone binding. J. Biochem. 2003, 371: 573-579
    158. Robertson H.M, Martos R, Sears C.R, Todres E.Z., Waldon K.K.O., Nardi J.B., Diversity of odourant-binding proteins revealed by an expressed sequence tag project on male Manduca sexta moth antennae. Insect Mol. Biol. 1999, 8: 501-518
    159. Robertson H.M., Warr C.G., Carlson J.R., Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc. Nat]. Acad. Sci. 2003, 100: 14537-14542
    160. Sakurai T., Nakagawa T., Mitsuno H., et al., Identification and functional characterization of a sex pheromone receptor in the silkmoth Bombyx mori. Proc. Natl. Acad. Sci. 2005, 101(47): 16653-16658
    161. Sandier B.H., Nikonova L., Leal W.S., Clardy J., Sexual attraction in the silkworm moth: structure of the pheromone-binding-protein-bombykol complex. Chem. Biol. 2000, 7:143-151
    162. Schweitzer E.S., Sanes J.R., Hildebrand J.G., Ontogeny of electroantennogram responses in the moth, Manduca sexta. J. Insect Physiol. 1976, 22:955-960
    163. Shepherd G.M., Modules for molecules. Nature. 1992, 358:457-458
    164. Shepherd G.M., Discrimination of molecular signals by the olfactory receptor neuron. Neuron. 1994, 13:771-779
    165. Sijen T., Fleenor J., Simmer F., et al. On the role of RNA amplification in dsRNA -triggered gene silencing. Cell. 2001, 107:465-476
    166. Smardon A., Spoerke J.M., Stacey S.C., et al. EGO-1 is related to RNA-directed RNA polymerase and functions in germline development and RNA interference in C. elegans. Curr Biol. 2000, 10:169-178
    167. Spinelli S., Ramoni R., Grolli S., Bonicel J., Cambillau C., Tegoni M., The structure of the monomeric porcine odorant binding protein sheds light on the domain swapping mechanism. Biochemistry. 1998, 37:7913-7918
    168. Steinbrecht R.A., Ozaki M., Ziegelberger G., Immunocytochemical localization of pheromone binding protein in moth antennae. Cell Tissue Res. 1992, 270:287-302
    169. Steinbrecht R.A., Laue M., Ziegelberger G., Immunocytochernical of pheromone-binding protein and general odorant-binding protein in olfactory sensilla of the silk moth Antheraea and Bombyx. Cell Tissue Res. 1995, 282:203-217
    170. Steinbrecht R.A., Laue M., Zhang S.G., Ziegelberger G., Immunocytochemistry of odorant binding proteins. In OIfaction and Taste XL (eds. Kurihara K., Swmki N., Ogawa H. ), Springer, Tokyo, 1994,804-807
    171. Steinbrecht R.A., Pore structures in insect olfactory sensilla: a review of data and concepts. Int. J. Insect. Morphol. Embryol. 1997, 26:229-245
    172. Steinbrecht R.A., Olfactory receptors. in Atlas of Arthropod Sensory Receptors, Dynamic Morphology in Relation to Function (eds. Eguchi E., Tominaga Y.) Springer-Verlag, Tokyo. 1999,
    173.Tamaki Y., Noguchi H., Yushima T., Sex pheromone of Spodoptera litura(F.) (Lepidoptera: Noctuidae): isolation , identification and synthesis. Appl. Ent. Zool. 1973, 8: 200-203
    174. Tamaki Y., Osawa T., Yushima T., et al. Sex pheromone and related compounds secreted by the virgin female of Spodoptera litura (F.). Jap. J. Appl. Ent. Zool. 1976, 20: 81-86
    175. Tegoni M., Pelosi P., Vincent F., Spinelli S., Campanacci V., Grolli S., Ramoni R., Cambillau C, Mammalian Odorant Binding Proteins. Biochim. Biophys. Acta. 2000, 1482:229-240
    176. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgin D.G., The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acid Res. 1997, 25:4876-4882
    177. Tijsterman M., Okihara K.L., Thijssen K., et al. PPW-1, a PAZ/PIWI protein required for efficient germline RNAi, is defective in a natural isolate of C. elegans. Curr Biol. 2002, 12:1535-1540
    178. Tomoyasu Y., Denell R.E. Larval RNAi in Tribolium (Coleoptera) for analyzing adult development. Dev. Genes. Evol. 2004, 214:575-578
    179. Visser J.H., Host odor perception in phytophagous insects. Annu. Rev. Entonol. 1986, 31:121-144
    180. Vogt R.G., Molecular basis of pheromone detection in insects.In Comprehensive Insect Physiology, Biochemistry, Pharmacology and Molecular Biology, (eds. Gilbert L.I, Iatro K., Gill S.). Elsevier. 2004
    181. Vogt R.G., Callahan F.E., Rogers M.E., Dickens J.C., Odorant binding protein diversity and distribution among the insect orders, as indicated by LAP, an OBP-related protein of the true bug Lygns lineolaris (Hemiptera, Heteroptera). Chem. Senses. 1999, 24:481-495
    182. Vogt R.G., Kohne A.C., Dubnau J.T., Prestwich G.D., Expression of pheromone binding proteins during antennal development in the gypsy moth Lymantria dispar. J. Neurosci. 1989, 9:3332-3346
    183. Vogt R.G., Riddiford L.M., Pheromone binding and inactivation by moth antennae. Nature. 1981, 293:161-463
    184. Voinnet O., Non-cell autonomous RNA silencing. FEBS letters. 2005, 579:5858-5871
    185. Vosshall L.B., Olfaction in Drosophila. Curr. Opin. Neurobiol. 2000, 10:498-503
    186. Vosshall L.B., Diversity and expression of odorant receptors in Drosophila. In Insect Pheromone Biochemistry and Molecular Biology. (eds. Blomquist G.J., Vogt R.G.,), 2003, 567-591. Elsevier Academic Press, London.
    187. Vosshall L.B., Keller A., Decoding olfaction in Drosophila. Curr. Opin. Neurobiol. 2003, 13:103-110
    188. Vosshall L.B., Wong A.M., Axel R., An olfactory sensory map in the fly brain. Cell. 2000, 102: 147-159
    189. Wakamura S., Takai M., Kozai S., Inoue H., Yamashita I., Kawahara S., Kawamura M., Control of the beet army worm Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae) using synthetic sex pheromone. I. Effect of communication disruption in Welsh onion fields. Appl. Entomol. Zool. 1989, 24:387-397
    190. Wang G.R., Wu K.M., Guo Y.Y., Molecular cloning and bacterial expression of pheromone binding protein in the antennae of Helicoverpa armigera (Hubner). Arch. Insect Biochem. Physiol. 2004, 57(1): 15-27
    191. Wassenegger M., Heimes S., Riedel L., et al. RNA-directed denovo methylation of genomic sequences in plants. Cell. 1994, 76 : 567-576
    192. Willett C.S., Do pheromone-binding proteins converge in amino acid sequence when pheromone converge? J. Mol. Evol. 2000a, 50:175-183
    193. Willett C.S., Evidence for directional selection acting on pheromone-binding proteins in the genus Choristoneura. Mol. Biol. Evol. 2000b, 17:553-562
    194. Willett C.S., Harrison R.G., Pheromone binding proteins in the European and Asian corn borers: No protein change associates with pheromone differences. Insect Biochem. Mol. Biol. 1999, 29:277-284
    195. Winston W.M., Molodowitch C, Hunter C.P., Systemic RNAi in C.elegans requires the putative transmembrane protein SID-1. Science. 2002, 295(5564):2456-2459
    196. Wojtasek H., Hansson B.S., Leal W.S., Attracted or repelled? a matter of two neurons, one pheromone binding protein, and a chiral center. Biochem. Biophys. Res. Commun.. 1998, 250 (2):217-222
    197. Wojtasek H., Leal W.S., Conformationai change in the pheromone-binding protein from Bombyx mori induced by pH and by interaction with membranes. J. Biol. Chem. 1999, 274:30950-30956
    198. Worby C.,A., Simonson-Leff N., Dixon J.E., RNA interference of gene expression (RNAi) in cultured Drosophila cells. Sci STKE. 2001, 95:PL 1
    199. Wu-Scharf D., Jeong B., Zhang C, et al. Transgene and transposon silencing in Chlamydomonas reinhardtii by a DEAH-box RNA helicase. Science. 2000, 290:1159-1162
    200. Xia Q., Zhou Z., Lu C, Cheng D., Dai F., Li B., et al. A draft sequence for the genome of the domesticated silkworm {Bombyx mori). Science. 2004, 306:1937-1940
    201. Xia Y., Zwiebel L., Identification and characterization of an odorant receptor from the West Nile Virus mosquito, Culex quinquefasciatus Insect Biochem. Mol. Biol. 2006, 36 (3): 169-176
    202. Xiu W.M. and Dong S. L. Molecular Characterization of Two Pheromone Binding Proteins and Quantitative Analysis of their Expression in the Beet Armyworm, Spodoptera exigua Hiibner. J. Chem. Ecol. 2007, 33 (5): 947-961
    203. Xiu W.M., Zhou Y.Z. and Dong S.L. Molecular characterization and expression pattern of two pheromone binding proteins from Spodoptera litura (Fabricius). J. Chem. Ecol. 2008, 34(4):487-498
    204. Yoshiyasu Y, Yamagishi M., Katayama J., Control of the beet army worm Spodoptera exigua (Hiibner), on Welsh onion by synthetic sex pheromone in Yodo district Kyoto. Scientific reports of the Kyoto Prefectural University. 1995, 47:1-8
    205. Zamore P.D., Tuschl T., Sharp P.A., et al. RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell. 2000, 101:25-33
    206. Zhang S.G., Maida R., Steinbrecht R.A., Immunolocalization of odorant-binding proteins in noctuid moths (insecta, lepidoptera). Chem.Senses. 2001, 26:885-896
    207. Zhou X., Oi F. M., and Scharf M. E. Social exploitation of hexamerin, RNAi reveals a major caste-regulatory factor in termites. Proc. Nat. Acad. Sci. 2006, 103:4499-4504.
    208. Ziegelberger G., Redox-shift of pheromone binding protein in the silk moth Antheraea polyphemus. Eur. J. Biochem. 1995, 232:706-711
    209. Zubkov S., Gronenborn A.M., Byeon In-Ja L., Mohanty S., Structural consequences of the ph-induced conformational switch in A. polyphemus pheromone binding protein: mechanisms of ligand release. J. Mol. Biol. 2005, 354:1081-1090

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700