用户名: 密码: 验证码:
金属氧化物CO传感器智能化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统金属氧化物CO传感器对H_2等还原性气体存在交叉响应,选择性差,且其性能易受环境温度和湿度影响,难以完全满足工程应用的需要。智能化是气体传感技术发展的重要方向,本文提出从检测方式和信号处理算法入手,提高传统CO传感器抗H_2干扰的能力,并尝试对环境温湿度进行补偿;通过大量实验,确定了有效的温度调制方法、机器学习算法以及环境温度补偿方案,研制了基于单片机的智能CO传感器模块。
     本文设计了气体传感器测试系统,利用此系统先后对SnO_2型CO传感器MQ307A和TGS2442进行温度调制实验。考察了温度调制方式对MQ307A性能的影响;比较了快速傅立叶变换(FFT)和离散小波变换(DWT)两种特征提取方法,发现后者能够在特征空间对传感器在不同气体中的响应进行良好的分离;先后将支持向量机(SVM)和BP神经网络用于识别单一CO、单一H_2和CO/H_2混合物,并估计混合气体中CO的浓度。结果表明,支持向量机具有更高的正确识别率和估计精度;利用脉冲电压对TGS2442进行调制加热,从原始响应曲线和小波系数中提取分类特征,训练支持向量机模型,实现了对一定浓度范围的单一CO、单一H_2和CO/H_2混合气体的定性识别,并能够估计混合气体中CO的浓度。
     研究了环境参数对MQ307A和TGS2442性能的影响。MQ307A受湿度影响很大,在高湿条件下工作后,其响应幅度逐渐变小;TGS2442采用了特殊的封装,它几乎不受湿度的影响,但是其基线电压随环境温度的变化而漂移。采用基于知识的温度补偿方案,利用TGS2442对20℃、40℃和60℃三种环境温度下的单一CO进行定量估计,结果表明温度补偿方法可行。
     选用TGS2442作为基本传感器,研制了基于高性能单片机的智能CO传感器模块,利用DWT和SVM算法处理数据,使模块能够定性识别一定浓度范围的CO、H_2及其混合物,并估计混合物中CO的浓度,此外,模块还具有自检和温度自补偿等智能化功能,
Traditional metal oxide CO sensors are lack of selectivity for theircross-sensitivity to reductive gases, especially hydrogen gas. Besides, theirperformances are prone to be affected by ambient humidity and temperature.Increasing the intelligence level of gas sensor has been the mainstream in gas sensingtechnology. This paper aims to improve the H_2 resistibility of traditional CO sensor bymeans of dynamic working temperature control and self-learning algorithm, andcompensation for the effect of ambient humidity and temperature is also considered.After a large number of experiments, effective methods of temperature modulation,self-learning and temperature compensation are exploited, and a smart CO sensormodule is designed based on a high-performance rnicrocontroller.
     A testing apparatus for gas sensor is developed and temperature modulationexperiments are conducted for the SnO_2-based CO sensor MQ307A and TGS2442 inturn. Various heating voltages for MQ307A are studied, and sinusoidal voltage isfound to be preferable. MQ307A's responses to CO, H_2 and CO/H_2 mixtures areacquired and Discret Wavelet Transform (DWT) is found to be better than FastFourier Transform (FFT) in extracting important features from the sensor's responsesignals. Support Vector Machine (SVM) and BP Artificial Neural Network (BP ANN)are then applied respectively to classify these three gases and furthermore, estimatethe concentrations of CO in CO/H_2 binary mixtures. The results demonstrate thatSVM gives higher success rate of classification and prediction accuracy than BP ANNdoes. TGS2442's responses to CO, H_2 and CO/H_2 mixtures are acquired and featuresextracted either from the original responses or wavelet coefficients are then processedby SVMs. Following this procedure, CO, H_2 and CO/H_2 mixtures are classifiedqualitatively, and the concentrations of CO in CO/H_2 mixtures are predicted.
     Effects of ambient humidity and temperature on the performance of CO sensorare investigated. While MQ307A's output response is affected severely by relativehumidity, TGS2442 shows low humidity dependency due to its special encapsulation, however, the baseline of TGS2442 rises with the ambient temperature rising.Knowledge-based temperature compensation method has been adopted for TGS2442,and this method is validated in predicting the concentrations of CO at 20℃, 40℃and60℃respectively.
     A microcontroller-based smart CO sensor module is designed using TGS2442 asthe sensing element, and the feature extraction and SVM algorithms are transportedinto the microcontroller. The results of validation experiments show that the smart COmodule is able to classify CO, H_2 and CO/H_2 mixtures qualitatively, and moreover,predict the concentration of CO in the CO/H_2 binary mixtures. Additionally, thismodule is characteristic of self-diagnose and ambient temperature compensation.
引文
1.李平,余萍,肖定全,气敏传感器的近期进展,功能材料,1999,30(2):126-129。
    2.腾育英,美空间站大气污染控制和监测,载人航天信息,1994,3:12-15。
    3.杨成典,烟气连续排放监测系统的应用,电力环境保护,2001,(17)2:59-60。
    4.涂兴华,刘文消,董凤忠,张玉钧,王铁栋,齐锋,刘建国,谢品华,基于可调谐二极管激光吸收光谱技术在线监测机动车尾气排放CO和CO_2的方法,高技术通讯,2006,(16)9:980-984。
    5.苟建国,闫怀忠,侯鲁健,济南市环境空气质量及空气污染源监控网络的研究开发,中国环境监测,2004,20(4):6-9。
    6.褚金花 李苏玲,餐饮服务业空气污染调查,环境科学动态,2000,2:32-33。
    7.佚名,气体传感器的研究及发展方向,www.dzsc.com,2005.1.
    8.殷勇,嗅觉模拟技术,北京:化学工业出版社,2005,4。
    9. Gemma Garcia Mandayo, Enrique Castano, and F. Javier Gracia, Carbon monoxide detector fabricated on the basis of a tin oxide novel doping method. IEEE SENSORS JOURNAL, 2002, 2(4):322.
    10. Shafariza Shamsudin, Muhamad Yahaya, Muhamad Mat Salleh, The effect of dopants on the sensing selectivity of SnO_2 thin films-based gas sensors. ICSE2002 Proc., 2002, Penang Malaysia, p455-457.
    11. A. Cirera, J. Arbiol, F.Peiro, A. Cornet, J.R. Morante, Induced Pd nanoclustering on SnO2 nanoparticles for the enhancement of gas sensor devices. IEEE Nanotechnology for sensing, 2001.10.30, p534-539.
    12. E. Comini, G. Faglia, G. Sberveglieri et al, Characterization of p-type Cr:TiO2 gas sensor. Sensors, 2005 IEEE, p1320-1322.
    13. Moldovan, C., Sosin, S., Nedelcu, O., Kaufmann et al, Chemoresistive gas sensor manufacturing using mixed technologies. Semiconductor Conference, CAS Proceedings, 2005, 1:201-204.
    14. Gui-zhen Yan, Philip C.H.Chan, Johnny K.O.Sin, I-Ming Hsing, Yang-yuan Wang, An effective method to increase sensitivity and stability of the integrated gas sensor with sensing film annealing at higher temperature. Sensors, 2001 IEEE, p773-776.
    15. Ozaki Y., Suzuki S., Morimitsu M., Matsunaga M., Enhanced long-term stability of SnO2-based CO gas sensor by sulfuric acid and thiourea treatments. Chemical Sensors Ⅳ. Proceedings of the Symposium (Electrochemical Society Proceedings), 1999, 23:243-249.
    16. Ozaki Y., Suzuki S., Morimitsu M., Matsunaga M., Effects of thiourea treatment on the sensing properties and stability of SnO_2-based CO gas sensors. Journal of the Electrochemical Society, 2000, 147(4): 1589-1591.
    17. Ozaki Y., Suzuki S., Morimitsu M., Matsunaga M., Enhanced long-term stability of SnO_2-based CO gas sensors modified by sulfuric acid treatment. Sensors and Actuators B, 2000, 62(3):220-225.
    18. Ozaki Y., Suzuki S., Morimitsu M., Matsunaga M., Temperature and humidity dependence of SnO_2-based CO gas sensors modified with iridium and ruthenium. Journal Electrochemical and Solid-State Letters, 2000,3(6):297-299.
    19. Ozaki Y., Suzuki S., Morimitsu M., Matsunaga M., Temperature-humidity dependence and stability of SnO_2-based CO gas sensors improved by surface modification with platinum and iridium. Journal Electrochemistry, 2000, 68(9):694-701.
    20. Li Hetai, Cui Dongyan, Chen Xiaoyang, Dong Haiqing, Cui Zhiwu, Fabrication of the CO gas sensor based on nanometer SnO_2-PdO materials. Proceedings of the SPIE, 2000, 4077:284-287.
    21. Ponce M.A., Aldao C.M., Castro M.S., Influence of particle size on the conductance of SnO/sub 2/thick films. Journal of the European Ceramic Society, 2003, 23(12):2105-2111.
    22. Peter Ivanov, Mariana Stankova, Eduard Llobet, Xavier Vilanova, Jesus Brezmes, Isabel Gracia, Caries Cane, Josep Calderer, Xavier Correig, Nanoparticle Metal-Oxide Films for micro hotplate base gas sensor systems. Sensors, IEEE 2005, 5(5):798-809.
    23. Schweizer-Berberich M., Strathmann S., Gopel W., Sharma R., Peyre-Lavigne A., Filters for tin dioxide CO gas sensors to pass the UL2034 standard. Sensors and Actuators B, 2000, 66(1-3):34-36.
    24. Kitsukawa S., Nakagawa H., Fukuda K., Asakura S., Takahashi S., Shigemori T., The interference elimination for gas sensor by catalyst filters. Sensors and Actuators B, 2000, 65(1-3): 120-121.
    25. M. Burgmair, M. Zimmer, I. Eisele, Humidity and temperature compensation in work function gas sensor FETs. Sensors and Actuators B, 2003, 93:271-275.
    26. Middlehoek. S., Smart Sensor: When and where. Sensors and Actuators, 1985, 9:39-47.
    27. Joseph M.G., Smart Sensor. Sensor and Actuators. 1986, 10:239.
    28.樊尚春,传感器技术及应用,北京航空航天大学出版社,2004,399-400。
    29.闫军,智能传感器。自动化博览,2002,4:46-47。
    30.王祁,于航,传感器技术的新发展—智能传感器和多功能传感器。传感器技术,1998,17(1):56-58。
    31. Micheal Vogt, Erika Shoemaker etc., A trainable cermet gas microsensor technology using cyclic voltammetry and neural networks. Sensors and Actuators B, 1996, 35-35: 370-376.
    32. Elena Billi, Jean-Paul Viriceler etc., Development of a Protected Gas Sensor for Exhaust Automotive Applications. IEEE SENSORS, 2002, 2 (4): 342-348.
    33. Armin Jerger, Heinz Kohlker etc., New applications of tin oxide gas sensors intelligent sensor system for reliable monitoring of ammonia leakage. Sensora and Actuators B, 2002, 81: 301-307.
    34. M. Djamal, A new method for fault detection of gas sensor. IEEE SENSORS, 1993: 64-69.
    35. M. Cole, N. Uliviere etc., Parametric model of a polymeric chemoresistor for use in smart sensor design and simulation. Microelectronics Journal, 2003,34(9): 865-875.
    36. Ruedi P.F., Heim P., Mortara A., Franzi E., Oguey H., Arreguit X., Interface circuit for metal-oxide gas sensor. Conference on Custom Integrated Circuits, IEEE, 2001, p 109-112.
    37. J.L. Merino, R. Casanova, A. Dieguez, S.A. Bota, J. Samitier, C. Cane, A mixed-mode interface circuit for gas sensor control and measure. Design, Test, Integration and Packaging of MEMS/MOEMS 5-7, May, 2003, p69-74.
    38. Jose Luis Merino, Sebastian A. Bota, Raimon Casanova, Angel Dieguez, Carles Cane, and Josep Samitier, A Reusable Smart Interface for Gas Sensor Resistance Measurement. IEEE Transaction on instrumentation and measurement, 2004, (53)4:1173-1178.
    
    39. P. Malcovati, M. Grassi, F. Borghetti, V. Ferragina, A. Baschirotto, Design and Characterization of a 5-Decade Range Integrated Resistive Gas Sensor Interface with 13-Bit A/D Converter. Sensors, IEEE, 2005:472-476.
    
    40. Marco Grassi, Piero Malcovati and Andrea Baschirotto, A 0.1% Accuracy 100Ω-20MΩ Dynamic Range Integrated Gas Sensor Interface Circuit with 13+4 Bit Digital Output. Proceedings of ESSCIRC, Grenoble, France, 2005, p351-354.
    
    41. Barrettino D., Graf M., Zimmermann M., Hierlemann A., Baltes H., Hahn S., Barsan N., Weimar U., A smart single-chip micro-hotplate-based chemical sensor system in CMOS-technology. Circuits and Systems, 2002,2:157-160.
    
    42. Cardinali G.C., Dori L., Fiorini M., Sayago I., Faglia G., Perego C, Sberveglieri G., Liberali V., Maloberti F., Tonietto D., A smart sensor system for carbon monoxide detection. Analog Integrated Circuits and Signal Processing, 1997,14:275-296.
    
    43. A. Dieguez, J.L. Merino, R. Casanova, S.A. Bota, J. Samitier et al, A CMOS monolithically integrated gas sensor array with electronics for temperature control and signal interfacing. Sensors, IEEE, 2002:2727-2732.
    
    44. Diego Barrettino, Markus Graf, Stefano Taschini, Sadik Hafizovic, Christoph Hagleitner, Andreas Hierlemann, CMOS Monolithic Metal-Oxide Gas Sensor Microsystems. Sensors, IEEE 2006, 6(2):276-286.
    
    45. Markus Graf, Diego Barrettino, Martin Zimmermann, Andreas Hierlemann, Henry Baltes, Simone Hahn, Nicolae Barsan, and Udo Weimar, CMOS Monolithic Metal-Oxide Sensor System Comprising a Microhotplate and Associated Circuitry. Sensors, IEEE 2004, 4(1):9-16
    
    46. Michael Vogt, Erika Shoemaker, Tara Turner, A trainable cermet gas microsensor technology using cyclic voltammetry and neural networks, Sensor and Actuators B, 1996, 35-36:370-376.
    
    47. M.E. Hassan Amrani, Richard M. Dowdeswell, Peter A. Payne, Krishna C. Persaud, An intelligent gas sensing system, Sensors and Actuators B, 1997,44:512-516.
    
    48. Sofiane Brahim-Belhouari, Amine Bermak, Minghua Shi, and Philip C. H. Chan, Fast and Robust Gas Identification System Using an Integrated Gas Sensor Technology and Gaussian Mixture Models, Sensors, IEEE, 2005, 5(6): 1433-1444.
    
    49. Armin Jerger, Heinz Kohler, Frank Becker, Hubert B. Keller, Rolf Seifert, New applications of tin oxide gas sensors. Sensors and Actuators B, 2002, 81:301-307.
    
    50. Gary W. Hunter, Philip G. Neudeck, Liang-Yu Chen, A hazardous gas detection system for aerospace and commercial applications. Joint Propulsion Conference & Exhibit, 34th, Cleveland, OH, July 13-15, 1998, pl2.
    51.硫化氢传感器的智能化设计,周永清,仪表技术与传感器,2005,8:54-58。
    52.郭振华,陈星,刘锦淮,气体传感器阵列测试系统,仪表技术,2006,2:77-79.
    53. Filip Muller. Vapnik-Chervonenkis(VC) Learning Theory and Its Applicaions. IEEE Trans. on Neural Networks. Vol. 10, No.5, Sep 1999.
    54. V.Vapnik. Nature of Statistical Learning Theory. John Wiley and Sons,Inc.,New York,in preparation.
    55. J.C.Burges. A Tutorial on Support Vector Machines for Pattern Recognition. Bell Laboratories, Lucent Technologies. 1997.
    56. Corinna Cortes, V. Vapnik. Support-Vector Network. Machine Learning, 20.273—297(1995)
    57.Simon Haykin著,叶世伟,史忠植译,神经网络原理,北京:机械工业出版社,2004.1。
    1. C281x C/C++ Header Files and Peripheral Examples, Texas Instruments, www.ti.com.
    2. James R. Armstrong, F.Gail Gray著,李宗伯,王蓉晖等译,VHDL设计、表示和综合,北京:机械工业出版社,2002,4。
    3. 龚建伟,熊光明,Visual C++/Turbo C串口通信编程实践,北京:电子工业出版社,2005,6。
    1. S. R. Morrison, Selectivity in semiconductor gas sensors, Sensors and Actuators, 1987, 12:425-440.
    2. Yukio Hiranaka, Takako Abe, Gas dependent response in temperature transient of SnO_2 gas sensor. Sensors, IEEE, 1991:157-160.
    3. Xingjiu Huang, Fanli Meng, Gas sensing behavior of a single tin dioxide sensor under dynamic temperature modulation, Sensors and Actuators B 99 (2004) 444-450.
    4. Yo Kato, Toshiharu Mukai, A real-time intelligent gas sensor system using a nonlinear dynamic response. Sensors and Actuators B, 2007, 120:514-520.
    5. F. Parret, Ph. Menini et al., Improvement of micromachined SnO_2 gas sensors selectivity by optimised dynamic temperature operating mode. Sensors and Actuators B, 2006, 118:276-282.
    6. R. Gutierrez-Osuna, A. Gutierrez-Galvez, N. Powar, Transient response analysis for temperature-modulated chemoresistors, Sensors and Actuators B, 2003,93:57-66.
    7.MQ307A型CO气体传感器说明书,河南炜盛电子科技有限公司,www.winsensor.com.
    8. Ada Fort, Nicola Machetti, Santina Rocchi et al., Tin Oxide Gas Sensing: Comparison Among Different Measurement Techniques for Gas Mixture Classification, IEEE Trans action on instrumentation and measurement, 2003, 52(3):921-926.
    9. Daubechies I., Ten Lectures on Wavelets, CBMS-conference lecture notes. SIAM, Philadelphia, 1994, 61: 194-202.
    10. Wavelet Toolbox for Matlab~(?), Documentation, The Math Works Inc., 2000.
    11. Radu Ionescu, Eduard Llobet, Wavelet transform-based fast feature extraction from temperature modulated semiconductor gas sensors. Sensors and Actuators B, 2002, 81:289-295.
    12. Kristian Pelckmans, Johan A.K.Suykens et. al., LS-SVMlab: a MATLAB/C toolbox for Least Squares Support Vector Machines. http://www.esat.kuleuven.ac.be/sista/lssvmlab
    13. Figaro TGS2442 Datasheet, www.figarosensor.com.
    1.饱和盐溶液标准相对湿度值,OMILR121,全国物理化学计量技术委员会。
    2.殷勇,嗅觉模拟技术,北京:化学工业出版社,2005,4.
    3.庄哲民,基于环境参数融合的智能气体传感器设计,计量学报,2004,25(4):380-383.
    1. C8051F12x Datasheet, Silicon Laboratories Inc. www.silabs.com.
    2. T. Joachims, Making large-Scale SVM Learning Practical. Advances in Kernel Methods-Support Vector Learning, B. Sch61kopf and C. Burges and A. Smola (ed.), MIT-Press, 1999.
    3.小波分析及其在分析化学中的应用,王宗花主编,北京:地质出版社,2000年。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700